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Abstract 

An element of a ring  is clean if it is the sum of an idempotent and a unit. A ring  is called clean if 

each of its elements is clean. In this paper we define a ring is -Clean if each of its elements is the sum of 

a -regular and an idempotent element. Finally we investigate some properties of -clean rings. 
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1. Introduction 

In 1936 Von Neumann defined that an element  in  is regular if , for some , the ring  

is regular if each of its elements is regular and an element  is said to be strongly (Von Neumann) 

regular ifthere exists  such that , the ring  is strongly regular if each of its elements is 

strongly regular. Some properties of regular rings and strongly regular has been studied in [1,7,10].A ring  

is said to be - regular if for every element , there is an element  such that 

,for some positive integer . A ring  is said to be strongly - regular if for every , there is 

an element  such that ,for some positive integer .In many papers concerned 

-regular and strongly -regular rings, see [3,4,5,6,9,13,14,15,17,20,21,23]. A ring R is abelian if every 

idempotent element of R is central. A ring  is called prime (resp. semiprime) if  is a prime 

(resp. semiprime) ideal. A ring  is called Jacobson semisimple (or -semisimple for short) if 

. 

Throughout the present article  is an associative ring with identity , and denote a group,  the 

group of units and  the set of idempotents. Let  be a set, group action is a map 

 

(If there is no fear of confusion, we write  simply as by ) such that 

I. for all  and . 

II. for all . 

For every  we set . 

We define an element  to be -regular if there exist an element , depending on , and 

such that . is said to be -regular if all of its elements are -regular.  

An element  is called clean if , where  and . We call an element  

of ring  is -clean if where  is -regular and . Clearly -regular rings and 

clean rings are -clean. 

 

2. Group-regular rings 

Let  be a group. We defined -regular and strongly -regular rings in [21]. 

Definition 2.1:An element  is called to be -regular if there exist an element , depending on 

, and  such that .  is said to be -regular if all of its elements are -regular. 

Remark 2.2: For each  by us mean . 

Definition 2.3:An element is called to bestrongly -regular if there exist an element 

, depending on , and such that with this property that .  is said to be 

strongly -regular if all of its elements are strongly -regular. 

Here we give some examples of -regular rings. 

Definition 2.4 Let  (where  is the group of units of ). We call the action 

and the action from  to , regular action andconjugate action  
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Example 2.5:Let . We define an element to be unitary regular(resp. strongly unitary 

regular) element if there exist an element , depending on , and  such that 

(resp. ).  is said to be unitary regular (resp. strongly unitary regular) if all of its 

elements are unitary regular (resp. strongly unitary regular).  

Example 2.6: Let . We define an element  to be conjugate regular(resp. strongly 

conjugate regular) element if there exist an element , depending on , and  such that 

 (resp. ).  is said to be conjugate regular (resp. strongly conjugate regular) if all 

of its elements are conjugate regular (resp. strongly conjugate regular).  

Example 2.7:Let  be automorphism group of . We define an element  to be 

Automorphic-regular (( )-regular) if there exist an element , depending on , and  

such that .  is said to be automorphic regular if all of its elements are automorphic regular . If 

choice of  is indepent of  we say that  is -regular. 

 

Also we define a -regular ideals as follows: 

Definition 2.8: A two sided ideal  in a ring  is -regular provided that for each , there exist 

 and  such that . 

Let  be a group action and  be a two sided ideal of . Then  can acts naturallyon  

by the rule . 

Theorem 2.9: Every factor ring of a -regular (resp. strongly -regular) ring is -regular (resp. strongly 

-regular). In particular a homomorphic image of a -regular ring is -regular. 

See [19]. 

Lemma 2.10:Let  be a group acts on the ring  by this property that  for each 

. If ,  and , and if for some and some 

. Then for some . 

See [19]. 

Theorem 2.11:Let  be two sided ideals in a ring . If  is -regular then  is regular. 

It is trivial. 

We define action of  on by the following manner: 

For each  and we define ,thus we have: 

Lemma 2.12: A finite direct product  (  is a finite set) of -regular rings  is 

-regular, where  is an abelian group. 

See [19]. 

Theorem 2.13:(1) Let  be G-regular. Then there exist  and  such that  is 

idempotent. 

(2)If an element  is Von Neumann regular, then it is -regular by taking  to be trivial group. 

(3)If an element  is -regular, then it is -regular in which  acts on  by the rule . 

(4) An element  is -regular if there exist such that isVon Neumann regular. 

(1) Since is -regular thus there exist and such that . Therefore

(2), (3), (4) are trivial. 

Theorem 2.14:Let  be a commutative ring. Then the following statements are equivalent for : 

(1) x is Von Neumann regular. 

(2)  fore some . 

(3)  for some  and . 

(4)  for some Von Neumann regular element  with . 

(5)  for some  with . 
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Proof: See [1]. 

Theorem 2.15:Let  be a commutative ring. Then the following statements are equivalent for : 

(1) x is G-regular. 

(2) isVon Neumann regular for some . 

(3) for some , , and . 

Proof: We deduce from theorem 2.14. 

Theorem 2.16:Let  be the center of -regular ring  with the property that , . Then  

is -regular. 

Proof: Let  be a ring with center , and let . There exist  and  such that 

, and we set . Note that given any , we have: 

 

 

 

 

 

Similarly we have , so 

 

    =  

 

therefore . Thus  is also -regular. 

Theorem 2.17:Every strongly -reguler ring is -regular.  

Proof: Assume is a strongly -regular ring. Then for any there exist  and  such that 

 . is reduced. Indeed, if  such that , then we see that . then we have: 

 

 

 

So .  

Theorem 2.18:If  is a -regular domain, then  is a strongly -regular. 

Proof: Since  is -regular, for each , there exist ,  such that .If  for 

some thentrivially for any  so  is strongly -regular as we wants. Otherwise if 

for any then ,i.e., . So . Since  is 

domain, this implies that , therefore  is strongly -regular. 

 
3. G-clean rings 

In this section first we define -clean element and -clean rings and we investigate some properties of 

-clean rings. 

Definition 3.1:Let be a group. An element of a ring is -clean if , where  is a 

-regular element of  and .  is -clean if every element of  is G-clean. 

Now we define strongly -clean rings. 

Definition 3.2:Let  be a group. An element  of a ring  is strongly -clean if , where  

is a -regular element of  and  such that .  is strongly -clean if every element of 

 is strongly -clean. 

Theorem 3.3:Every factor ring of a -clean ring is -clean.  
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Proof: let  be -clean and . Now let . Since  is -clean we have

where  is -regular and .  

Thus By theorem 2.10, we conclude that  is -regular. ince , it follows that 

 is G-clean. 

Corollary 3.4:The homomorphic image of -clean (resp. strongly -Clean) is -clean (resp. strongly 

-Clean). 

Proof: We deduce from theorem 3.3 immediately. 

Theorem 3.5:Let  be an abelian group. A finite direct product ( is a finite set)of rings  is 

-Clean if and only if so is each . 

Proof: One direction immediately follows from theorem 3.3. Conversely, let be -clean for each . Set 

. For each , write , where  is -clean and . By lemma 

2.12, we conclude that is -regular. Since , it follows that  

is -clean. 

 

Let  be a ring and  be two group, we shall denote the group ring of  over  as . The 

augmentation ideal of  is the ideal of  generated by . We shall use  to denote the 

augmentation ideal of It is known That is a homomorphic image of  since .If is 

-clean, then  is -clean by theorem 2.9.  

Theorem3.6 Let  be a ring in which be invertible in and be a group. Then is -clean 

if and only if  is -clean, where  is an abelian group.  

 

Proof: If  is -clean then by what we said in above  is -clean. 

Conversely, if  is -clean and  is invertible in  then via the mapping 

,[12].  

Hence  is -clean by theorem 3.5. 
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