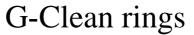
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 37 Number 4 – September 2016



Shaaban Ali SafariSabet, MarziehFarmani

¹Department of Mathematics, Islamic Azad University, Central Tehran Branch, Tehran, Iran ²(Corresponding author), Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract

An element of a ring R is clean if it is the sum of an idempotent and a unit. A ring R is called clean if each of its elements is clean. In this paper we define a ring is G-Clean if each of its elements is the sum of a G-regular and an idempotent element. Finally we investigate some properties of G-clean rings.

Keywords: Group, Ring, Von Neumann regular, G-regular, Clean, G-clean

1. Introduction

In 1936 Von Neumann defined that an element x in R is regular if x = xyx, for some $y \in R$, the ring R is regular if each of its elements is regular and an element $x \in R$ is said to be strongly (Von Neumann) regular if there exists $y \in R$ such that $x = x^2y$, the ring R is strongly regular if each of its elements is strongly regular. Some properties of regular rings and strongly regular has been studied in [1,7,10]. A ringR is said to be π - regular if for every element $a \in R$, there is an element $b \in R$ such that $a^n = a^n b a^n$, for some positive integer n. A ring R is said to be strongly π - regular if for every $x \in R$, there is an element $y \in R$ such that $x^m = x^{m+1}y$, for some positive integer m. In many papers concerned π -regular and strongly π -regular rings, see [3,4,5,6,9,13,14,15,17,20,21,23]. A ring R is abelian if every idempotent element of R is central. A ring R is called prime (resp. semiprime) if (0) is a prime (resp. semiprime) ideal. A ring R is called Jacobson semisimple (or J-semisimple for short) if rad(R) = 0.

Throughout the present article R is an associative ring with identity 1, and G denote a group, U(R) the group of units and Id(R) the set of idempotents. Let X be a set, group action is a map

$X \ G \to X$

(If there is no fear of confusion, we write (x, g) simply as by x^g) such that

I. $(x^g)^h = x^{gh}$ for all $x \in X$ and $g, h \in G$.

II. $x^1 = x$ for all $x \in X$.

For every $g \in G$ we set $R^g = \{ r^g | r \in R \}$.

We define an element $x \in R$ to be *G*-regular if there exist an element $g \in G$, depending on x, and $r \in R$ such that $x^g = x^g r x^g$. R is said to be *G*-regular if all of its elements are *G*-regular.

An element $x \in R$ is called clean if x = u + e, where $u \in U(R)$ and $e \in Id(R)$. We call an element x of ring R is G-clean if x = r + e, where r is G-regular and $e \in Id(R)$. Clearly G-regular rings and clean rings are G-clean.

2. Group-regular rings

Let G be a group. We defined G-regular and strongly G-regular rings in [21].

Definition 2.1:An element $x \in R$ is called to be*G*-regular if there exist an element $g \in G$, depending on x, and $r \in R$ such that $x^g = x^g r x^g$. R is said to be *G*-regular if all of its elements are *G*-regular.

Remark 2.2: For each $n \in \mathbb{N}$ by a^{ng} us mean $(a^g)^n$.

Definition 2.3:An element $x \in R$ is called to be strongly *G*-regular if there exist an element $g \in G$, depending on *x*, and $r \in R$ such that $x^g = x^{2g}r$ with this property that $(x^2)^g = (x^g)^2$. *R* is said to be strongly *G*-regular if all of its elements are strongly *G*-regular.

Here we give some examples of *G*-regular rings.

Definition 2.4:Let G = U(R) (where U(R) is the group of units of R). We call the action $(x, g) \rightarrow gx$ and the action $((x, g) \rightarrow gxg^{-1})$ from R G to R, regular action and conjugate action.

Example 2.5:Let G = U(R). We define an element $x \in R$ to be unitary regular(resp. strongly unitary regular) element if there exist an element $g \in G$, depending on x, and $r \in R$ such that xg = xgrxg(resp. $xg = (xg)^2r$). R is said to be unitary regular (resp. strongly unitary regular) if all of its elements are unitary regular (resp. strongly unitary regular).

Example 2.6: Let G = U(R). We define an element $x \in R$ to be conjugate regular(resp. strongly conjugate regular) element if there exist an element $g \in G$, depending on x, and $r \in R$ such that $x = xg^{-1}rgx$ (resp. $xg = x^2gr$). R is said to be conjugate regular (resp. strongly conjugate regular) if all of its elements are conjugate regular (resp. strongly conjugate regular).

Example 2.7:Let Aut(R) be automorphism group of R. We define an element $x \in R$ to be Automorphic-regular ((Aut)-regular) if there exist an element $\alpha \in Aut(R)$, depending on x, and $r \in R$ such that $x^{\alpha} = x^{\alpha}rx^{\alpha}$. R is said to be automorphic regular if all of its elements are automorphic regular. If choice of α is independent of x we say that R is α -regular.

Also we define a *G*-regular ideals as follows:

Definition 2.8: A two sided ideal J in a ring R is G-regular provided that for each $x \in J$, there exist $y \in J$ and $g \in G$ such that $x^g = x^g r x^g$.

Let $\mu: R \times G \to R$ be a group action and *I* be a two sided ideal of *R*. Then *G* can acts naturally n*R* by the rule $\mu(r+I,g) = \mu(r,g) + I$.

Theorem 2.9: Every factor ring of a G-regular (resp. strongly G-regular) ring is G-regular (resp. strongly G-regular). In particular a homomorphic image of a G-regular ring is G-regular.

:ProofSee [19].

Lemma 2.10:Let G be a group acts on the ring R by this property that $(xy)^g = x^g y^g$ for each $x, y \in R$. If $x, y \in R$, $g \in G$ and $x' = x^g - x^g y x^g$, and if $x'^h = x'^h a x' x'^h$ for some $a \in R$ and some $h \in G$. Then $x^g = x^g b x^g$ for some $b \in R$.

:ProofSee [19].

Theorem 2.11:Let $J \leq K$ be two sided ideals in a ring R. If K is G-regular then K/J is regular.

:ProofIt is trivial.

We define action of G on $\prod_{i \in I} R_i$ by the following manner:

For each $g \in G$ and $(x_i) \in \prod_{i \in I} R_i$ we define $(x_i)_{i \in I}^g = (x_i^g)_{i \in I}$, thus we have:

Lemma 2.12: A finite direct product $\prod_{i \in I} R_i$ (*I* is a finite set) of *G*-regular rings $\{R_i\}_{i \in I}$ is *G*-regular, where *G* is an abelian group.

:ProofSee [19].

Theorem 2.13:(1) Let $x \in R$ be G-regular. Then there exist $g \in G$ and $r \in R$ such that $x^g r$ is idempotent.

(2) If an element $x \in R$ is Von Neumann regular, then it is *G*-regular by taking *G* to be trivial group.

(3) If an element $x \in R$ is π -regular, then it is \mathbb{Z} -regular in which \mathbb{Z} acts on R by the rule $\mu(x, n) = x^n$.

(4) An element $x \in R$ is G-regular if there exist $g \in G$ such that x^g is Von Neumann regular.

:Proof(1) Since $x \in R$ is *G*-regular thus there exist $g \in G$ and $r \in R$ such that $x^g = x^g r x^g$. Therefore $x^g r = x^g r x^g r = (x^g r)^2$.(2), (3), (4) are trivial.

Theorem 2.14:Let *R* be a commutative ring. Then the following statements are equivalent for $x \in R$:

(1) x is Von Neumann regular.

- (2) $x^2u = x$ fore some $u \in U(R)$.
- (3) x = ue for some $u \in U(R)$ and $e \in id(R)$.
- (4) xy = 0 for some Von Neumann regular element $x \neq y \in R$ with $x + y \in U(R)$.
- (5) xy = 0 for some $y \in R$ with $x + y \in U(R)$.

Proof: See [1].

Theorem 2.15:Let *R* be a commutative ring. Then the following statements are equivalent for $x \in R$:

(1) x is G-regular.

(2) x^g is Von Neumann regular for some $g \in G$.

(3) $x^g = ue$ for some $u \in U(R)$, $e \in Id(R)$, and $g \in G$.

Proof: We deduce from theorem 2.14.

Theorem 2.16:Let S be the center of G-regular ring R with the property that $S^g \subset S$, $\forall g \in G$. Then S is G-regular.

Proof: Let R be a ring with center S, and let $x \in R$. There exist $y \in R$ and $g \in G$ such that $x^g = x^g y x^g$, and we set $z = y x^g y$. Note that $x^g z x^g = x^g y x^g y x^g = x^g$ given any $r \in R$, we have:

$$zr = yx^{g}yr$$

= $y^{2}rx^{g}$
= $yx^{g}yx^{g}ry$
= $yx^{g}ry$
Similarly we have $rz = yrx^{g}y$, so
 $rz = yrx^{g}y$
= $yx^{g}ry$

= zr

therefore $z \in S$. Thus S is also G-regular.

Theorem 2.17:Every strongly *G*-reguler ring is *G*-regular.

Proof: Assume *R* is a strongly *G*-regular ring. Then for any $a \in R$ there exist $r \in R$ and $g \in G$ such that $a^g = a^{2g}r$. R^g is reduced. Indeed, if $a \in R$ such that $(a^g)^2 = 0$, then we see that $a^g = 0$. then we have:

$$(a^{g} - a^{g} ra^{g})^{2} = a^{2g} - a^{g} a^{g} ra^{g} - a^{g} ra^{g} a^{g} + a^{g} ra^{g} a^{g} ra^{g}$$
$$= a^{2g} - a^{2g} - a^{g} ra^{2g} + a^{g} ra^{2g}$$
$$= 0$$

So $x^g = x^g r x^g$.

Theorem 2.18: If *R* is a *G*-regular domain, then *R* is a strongly *G*-regular.

Proof: Since R is G-regular, for each $x \in R$, there exist $r \in R$, $g \in G$ such that $x^g = x^g r x^g$. If $a^g = 0$ for some $g \in G$ thentrivially $x^g = x^{2g}r$ for any $r \in R$ so R is strongly G-regular as we wants. Otherwise if $x^g \neq 0$ for any $g \in G$ then $x^{2g} = x^{2g}rx^g$, i.e., $(x^{2g} - x^{2g}rx^g) = 0$. So $(x^g - x^{2g}r)x^g = 0$. Since R is domain, this implies that $x^g = x^{2g}r$, therefore R is strongly G-regular.

3. G-clean rings

In this section first we define G-clean element and G-clean rings and we investigate some properties of G-clean rings.

Definition 3.1:Let G be a group. An element x of a ring R is G-clean if x = r + e, where r is a G-regular element of R and $e \in Id(R)$. R is G-clean if every element of R is G-clean.

Now we define strongly *G*-clean rings.

Definition 3.2:Let G be a group. An element x of a ring R is strongly G-clean if x = r + e, where r is a G-regular element of R and $e \in Id(R)$ such that er = re. R is strongly G-clean if every element of R is strongly G-clean.

Theorem 3.3:Every factor ring of a *G*-clean ring is *G*-clean.

Proof: let R be G-clean and $I \triangleleft R$. Now let $\overline{x} = x + I \in R/I$. Since R is G-clean we have x = r + e where x is G-regular and $e \in Id(R)$.

Thus $\bar{x} = \bar{r} + \bar{e}$. By theorem 2.10, we conclude that \bar{e} is *G*-regular. Since $\bar{e} \in Id(R/I)$, it follows that R/I is G-clean.

Corollary 3.4: The homomorphic image of *G*-clean (resp. strongly π -Clean) is *G*-clean (resp. strongly π -Clean).

Proof: We deduce from theorem 3.3 immediately.

Theorem 3.5:Let G be an abelian group. A finite direct product $\prod_{i \in I} R_i$ (*I* is a finite set) of rings $\{R_i\}_{i \in I}$ is G-Clean if and only if so is each $\{R_i\}_{i \in I}$.

Proof: One direction immediately follows from theorem 3.3. Conversely, let R_i be G-clean for each $i \in I$. Set $x = (x_i)_{i \in I} \in \prod_{i \in I} R_i$. For each i, write $x_i = r_i + e_i$, where r_i is G-clean and $e_i \in Id(R_i)$. By lemma 2.12, we conclude that $(r_i)_{i \in I} \in \prod_{i \in I} R_i$ is G-regular. Since $(e_i)_{i \in I} \in Id(\prod_{i \in I} R_i)$, it follows that $\prod_{i \in I} R_i$ is G-clean.

Let *R* be a ring and *H*, *G* be two group, we shall denote the group ring of *H* over *R* as *RH*. The augmentation ideal of *RH* is the ideal of *RH* generated by $\{1 - h | h \in H\}$. We shall use Δ to denote the augmentation ideal of *RH*. It is known That *R* is a homomorphic image of *RH* since *RH*/ $\Delta \cong R$. If *RH* is *G*-clean, then *R* is *G*-clean by theorem 2.9.

Theorem3.6 :Let *R* be a ring in which 2 be invertible in R and $H = \{1, h\}$ be a group. Then *RH* is *G*-clean if and only if *R* is *G*-clean, where *G* is an abelian group.

Proof: If RH is G-clean then by what we said in above R is G-clean.

Conversely, if R is G-clean and 2 is invertible in R then $RH \cong R \times R$ via the mapping $a + bg \rightarrow (a + b, a - b), [12]$.

Hence RH is G-clean by theorem 3.5.

References

- [1] Anderson, D. F., A. Badawi. (2012). Von Neumann regular and related elements incommutative rings. Algebra Colloq, 19, 1017-1041.
- [2] Ara, P. (1996). π -regular rings have stable rangeone.Proc. Amer. Math. Soc., 124, No. 11, 3293-3298.
- [3] Azumaya, G. (1954). Stronglyπ-regular rings. J. Fac. Sci. Hokkaido Univ., 13. 34-39.
- [4] Badawi, A. (1993). Semicommutativeπ-regular rings.Commun. Algebra, 22, No. 1, 151-157.
- [5] Badawi, A.(1997). Abelian π -regular rings. Commun. Algebra, 25, No. 4, 1009-1021.
- [6] Burgess, W. D., Menal.P. (1988). Strongly π -regular rings and homomorphisms into them. Commun. Algebra, 16, 1701-1725.
- [7] Camillo, V., Xiao, Y. (1994). Regular rings. Commun. Algebra, 22, No. 10, 4095-4112.
- [8] Chacron, M. (1969). Algebraic rings. Bull. Austral. Math. Soc., 1, 385-389.
- [9] Chin, A. Y. M., Chen, H. V. (2002) On strongly π -regular, Southeast Asian Bulletin of Mathematices, 26, 387-390.
- [10] Goodearl, K. R. (1979). Von Neumann regular rings.Pitman, London.
- [11] Gupta, V. (1984). Generalization of strongly regular rings. Acta Math. Hung., 43, 57-61.
- [12] Han, J., Nicholson, W. K. (2001). Extensions of clean rings. Comm. Algebra, 29 (6),2589-2595.
-]13] Hirano, Y. (1978). Studies on strongly π -regular rings.Math. J. Okayama Univ., 20, No. 2, 141-149.
- [14] Hirano, Y. (1985). π -regular rings with involution.Math. J. Okayama Univ., 27, 45-47.
- [15] Hirano, Y., J.Park, J. P.(1993). Self-injective strongly π -regularrings. Commun. Algebra, 21, No. 1, 85-91.
- [16] Lam, T. Y.(1991) A first course in Non-commutative rings.Gradate texts in Mathematics, No. 131, springer-verlag.
-]17] Ohori, M. (1997). Strongly*π*-regular rings and periodic rings.Math. J. Okayama Univ., 19, No. 2, 123-127.
- [18] Safari sabet, Sh. A., Farmani, M., Karami, M. (2013). On strongly commuting regular rings. J. Basic. Appl. Sci. Res, 3. No. 2.
- [19] Safari sabet.Sh. A.Karami, M. (2014). G-regular and strongly G-regular Rings.IJONS. 26(5), 1953-1958.
- [20] Steger. A.)1966 Elementary .(factorization in π -regular rings.Canad. J. Math., 18, 307-313.
- [21] Xue, W.(1993). Three questions on strongly π -regular rings and regular rings. Commun. Algebra 21, No. 2, 699-704.
- [22] Yamini, A. H., Safari Sabet, Sh. A.)2004 (Commuting regular rings.Int. J. Appl. Math, 14(4), 357-364.
- [23] Yu, H. P. (1995).On strongly π-regular rings of stable rangeone.Bull. Austral. Math.Soc., 51, No. 3, 433-437.