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Abstract

The aim of this present paper is to introduce a new class of set namely (1,2)-j-open, (1,2)-j-closed in
bitopological spaces. We investigate the several properties and study their relationship with other existing sets.
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1 Introduction

Kelly[6] initiated the study of bitopological spaces
in 1963. A nonempty set X equipped with two
topological spaces t,,t, is called a bitopological
space and is denoted by ( X,7,,7,). Using the
notation of pre open set in 1990 D.Andrijievic and
M. Ganster[1] defined the concept of y-open set in
topological spaces. S.N. Maheshwariand R.
Prasad[10] extened the notion of semi-open sets
and semi-continuity to the bitopological setting in
1977. B.P. Dvalishvli[4] introduced concepts of
(1,2)-open domain and (1,2)-boundaries in
bitopological space. B. Bhattacharya and A. Paul
[2] introduced y-open set in bitopological spaces
and studied their properties. The concept of pre
open sets in topological space was initiated by
Mashhouret. Al[11]. S. Raychaudhui and M.N.
Mukherjee[12] have introduced the notion of §-
preopen sets and §-almost continuity in topological
spaces.The class of &-preopen sets is larger than
that of preopen setsThe purpose of this paper is to
define some properties by using (1,2)-j-open, (1,2)-
j-closed in bitopological space and analyse the
relationships between them.

2 Preliminaries
2.1 Definition

Let X be a non empty set and t,,r,be the
topologies on X. A triple(X,t,,7,) is said to be a
bitopological space.

2.2 Definition
A subset A of a bitopological space (X,t4,7,) is

called a (1,2)-semi open if A c cl,(int,(4))and it
is (1,2)-semi closed if cl,(int,(A)) c A

2.3 Definition

Let (X,t4,T,) be a bitopological space, A c X, A is
said to be (1,2)-p-open set if A c int,(cl,(A)) and
A is (1,2)-p-closed if X\A is (1,2)-p-open

2.4 Definition

Let (X,7,,T,) be a bitopological space, A c X,A is
said to be (2,1)-p-open set if A < int,(cl; (4))

2.5 Definition

Let (X,7,,7,) be a bitopological space, A c X, A is
said to be 1-p-open set if A < int,(cl4(A))

2.6 Definition

Let (X,t4,T,) be a bitopological space, A c X, A is
said to be 2-p-open set if A < int,(cl,(4))

2.7 Definition

Let A be a subset of a bitopological space (X,t,,T,)
then, the union all (1,2)-p-open sets contained in A
is called (1,2)-p-int(A)

2.8 Definition

Let A be a subset of a bitopological space (X,7;,73)
then, the intersection all (1,2)-p-closed sets
containing in A is called (1,2)-p-cl(A)

2.9 Definition

Let A be a subset of a bitopological space (X,74,7;)
then, A subset N of a bitopological space (X,t4,7;)
is called (1,2)-p- neighbourhood of a subset A of
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X if there exists on (1,2)-p-open set U such that
ACUCSN

2.10 Definition

Let A be a subset of a bitopological space (X,7;,7;)
then, (1,2)-y-open set if for any non empty (1,2)-p-
open set B such that A n B < int,(cl,(A N B))

3 (1,2)-j-open sets
3.1 Definition

Let A be a subset of a bitopological space(X,z;,7;)
then, A is said to be (1,2)-j-open set if Ac
inty(Pcl,(A)).

3.2 Definition

Let (X,7,,T,) be a bitopological space, A c X,A is
said to be (2,1)-j-open set if A c int,(Pcl,(A)).

3.3 Definition

Let (X,7,,T,) be a bitopological space, A c X,A is
said to be 1-j-open set if A c int, (Pcly(4)).

3.4 Definition

Let (X,t,4,T,) be a bitopological space, A c X, A is
said to be 2-j-open set if A c int,(Pcl,(A)).

3.5 Definition

Let X ={a,b,c} 1, = {¢,X, {3}, {b, C}] v T2 =
{¢,X,{a}, {a,c},{c}} then (1,2)-
joX)={¢, X, {b}, {c},{b, c}, {a,c}}

and(2,1)jO(X)={ ¢.x {a}.{b}.{c}{a b},
{b,c}{a,c}}t is clear that {a}{a,b} are (2,1)-
JO(X) but not (1,2)-jO(X)

3.6 Example

Let X ={ab,clt,={d X {b}{bc}}, 1,=
{d), X,{a},{a,c}, {c}}then (1,2)-
jOX)={¢, X, {b},{c}, {b,c},{a,c}} and 1-jO(X)
={¢, X, {b},{a, b}, {b,c}} It is clear that {c}{a,c}
are (1,2)-jO(X) but not 1-jO(X) and {a, b} is 1-
JO(X) but not (1,2)-jO(X)

3.7 Example

Let X ={ab,c} 7, ={¢ X, {b}L{b,c}} K 1=
{¢,X,{a}, {a,c},{c}} then 1,2)-
joX)={¢, X, {b}, {c},{b,c}, {a,c}} and 2-
jOX)={¢, X, {a}, {a,c},{c}} It is clear that
{b}{b,c} are (1,2)-jO(X) but not 2-jO(X) and {a}
is 2-jO(X) but not (1,2)-jO(X)

3.8 Theorem

Every 1-open sets is (1,2)-j-open
Every 2-open sets is (2,1)-j-open
Proof

Let A be any 1-open set in bitopological space
(X,74,7,) then A = int,(A) and also A < Pcl,(A).

Therefore,A c int;(Pcl,(4)).

Let A be any 2-open set in bitopological space
(X,t4,T,) then A = int,(A) and also A < Pcl,(A).

Therefore,A c int,(Pcly(4)).

4 Interior, Closure and neighbourhood in
bitopological spaces

4.1 Definition

LetA be a subset of a bitopological space (X,74,7;)
then, the union all (1,2)-j-open sets contained in A
is called (1,2)-j-int(A).

4.2 Definition

Let A be a subset of a bitopological space (X,74,7;)
then, the intersection all (1,2)-j-closed sets
containing in A is called (1,2)-j-cl(A).

4.3 Definition

Let A be a subset of a bitopological space
(X,t4,75). A subset N of a bitopological space
(X,74,7,) is called (1,2)-j- neighbourhood of a
subset A of X if there exists on (1,2)-j-open set U
suchthat ACSUCS N

4.4 Theorem

For any subset A & B of a bitopological space X,
the following statements are true:

0) The (1,2)-j-int(A) is the largest (1,2)-
j-open set contained in A.
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(i) The (1,2)-j-int(A) is an (1,2)-j-open
set in X contained in A.

(iii) Ais an (1,2)-j-open set iff A=(1,2)-j-
int(A)

(iv)  (1.2)J-int(p)= ¢

(v) (1,2)-j-int (X)=X

(vi) IfA € B, the (1,2)-j-int (A) €(1,2)-j-
int(B)

(vii) (1,2)-j-int(A n B) =(1,2)-j-int
(A)N(1,2)-j-int(B)

(viii)  (1,2)-j-int (A)U(1,2)-j-int(B) < (1,2)-
j-int(A U B)

Proof

()Since (1,2)-j-int(A) = U{G:G is (1,2)-j-open,
GcA}contains every j-open subset G of A. It is
therefore largest open subset of A.

(i) Since (1,2)-j-int(A)is the largest (1,2)-j-open set
of A and (1,2)-j-int(A) = U{G:G is (1,2)-j-open set
of A}so (1,2)-j-int(A) is an (1,2)-j-open set of A.

(iii) Let A=(1,2)-j-int(A) and since(1,2)-j-int(A) is
an (1,2)-j-open set of A. So, A is also (1,2)-j-open.
LetA is (1,2)-j-open then A is largest (1,2)-j-open
set of A.Hence A=(1,2)-j-int(A).

(vi)Let A c B, Let x€(1,2)-j-int (A),3 a (1,2)-j-
open set G Such that xe G < A. Since A € B, B is
also have xe G < Bwhich impliesx€(1,2)-j-int (A).
Thus x€(1,2)-j-int (A) =(1,2)-j-int(B). Therefore,
(1,2)-j-int (A) €(1,2)-j-int(B).

(vii)Let xe(1,2)-j-int(A N B), 3 a (1,2)-j-open set G
in X such that xe(A N B), X€ A and X€ B,XE G C
A and Xxe€ G < B.Sox€(1,2)-j-int  (A) and
X €(1,2)-j-int (B). Therefore, (1,2)-j-int (A)N(1,2)-
j-int(B).

(viii)Let xe(1,2)-j-int (A)U(1,2)-j-int(B), xe(1,2)-j-
int (A) or xe(1,2)-j-int(B). If xe(1,2)-j-int (A), 3
(1,2)-j-open set G in X such that xe G c A =xe
G € AU B =Xe (1,2)-j-int(A U B) Therefore,
(1,2)-j-int (A)U(1,2)-j-int(B) < (1,2)-j-int(A U B).

4.5 Example
(1,2)-j-int(A)N(1,2)-j-int(B)#(1,2)-j-int(A N B)

Let X={a, b, c},7,={¢, X, {b, c}} 7, = {¢, X, {a, b}
then (1,2)-jO(X)={¢, X, {a, b}, {b,c}}. If we take
A={a,b} and B={b,c} then (1,2)-j-int(A)={a, b}
(1,2)-j-int(B)={b,c} So (1,2)-j-int (A)N(1,2)-j-

int(B)={b},(1,2)-j-int(A N B)=(1,2)-j-int({b})={¢}.
Hence (1,2)-j-int  (A)N(1,2)-j-int(B) +#(1,2)-j-
int(A N B).

4.6 Example
(1,2)-j-int (A) U(1,2)-j-int(B) #(1,2)-j-int (A U B).

LetX={a,b,c}, .,={ ¢, X, {a}}
7,={ ¢, X,{c}, {a, b}} then (1,2)-jO(X)={¢, X, {a}}.
If we take A={a,b} and B={b} then (1,2)-j-
int(A)={a} ,(1,2)-j-int(B)={¢}So (1,2)-j-int
(A)U(1,2)-j-int(B)={a} ,(1,2)-j-int(A U B)=(1,2)-j-
int({X})=X.Hence (1,2)-j-int (A)U(1,2)-j-int(B)
#(1,2)-j-int(A U B).

4.7 Lemma
For any subset A we have

(i) 1-int (A) € (1,2)-j-int(A), but (1,2)-j-
int(A) #1-int (A).

(i) 2-int (A) € (2,1)-j-int(A), but (2,1)-j-
int(A) #2-int (A).

Proof

Follows from the fact that every 1-open set is (1,2)-
j-open.

The converse of the above lemma is not true which
is shown in the following example:

4.8 Example
Let X={a,b,c}, 7.={ ¢, X, {a}}
,={ ¢, X, {c},{a,b}} then (1,2)-j0(X)

={¢, X, {a}}. 1jO0X)={ &, X, {a},{a b},{a c}}. If
we take A={a,c} and B = {b} then (1,2)-j-
int(A)={a},1-j-int(A)={a, c} =(1,2)-j-int(A) #1-j-
int(A)

5 (1,2)-j-closed sets
5.1 Definition

Let A is said to be (1,2)-j-closed if
int,(Pcl,(4)) € A.

5.2 Definition

Let (X,t4,T,) be a bitopological space, A c X, A is
said to be (2,1)-j-closed set if int,(Pcl; (4)) c A.

5.3 Definition
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Let (X,t4,T,) be a bitopological space, A € X, A is
said to be 1-j-closed set if int, (Pcl,(4)) c A.

5.4 Definition

Let (X,t,,T,) be a bitopological space, A c X, A is
said to be 2-j-closed set if A c int,(Pcl,(4)) c A

5.5Theorem

For any subset A & B of a bitopological space X,
the following statements are true:

Q) The (1,2)-j-cl(A) is the smallest (1,2)-
j-closed set containing A.

(ii) A'is an (1,2)-j-closed set iff A= (1,2)-
j-cl(A)

(i) (1.2)j-cl(p)=¢

(iv) (1,2)-j-cl(X)=X

(v) A < (1,2)-j-cl (A)

(vi) IfA € B, then (1,2)-j-cl (A) =(1,2)-j-
cl (B)

(vii) (1,2)-j-cl(A n B) €(1,2)-j-cl
(A)N(1,2)-j-cl (B)

(viii)  (1,2)-j-cl (A)u(1,2)-j-cl (B) < (1,2)}-
cl (AU B)

Proof

(i) (1,2)-j-cl (A)is intersection of all(1,2)-j-closed
set containing A so (1,2)-j-cl (A) is the smallest
(1,2)-j-closed set containing A.

(ii) If A'is (1,2)-j-closed set, then A itself is the
smallest (1,2)-j-closed set containing A. Hence
(1,2)-j-cl(A)=A

Conversely,

If (1,2)-j-cl (A)=A,Since (1,2)-j-cl(A) is (1,2)-j-
closed and so A is also (1,2)-j-closed.

(v) Since (1,2)-j-cl (A) is the smallest (1,2)-j-
closed set containing A, and A < (1,2)-j-cl (A)

(vi)Let A € B, and by the pervious theorem we
have B c (1,2)-j-cl (B).Since A c B, we have A c
(1,2)-jcl (B) but (1,2)-j-cl (B) is (1,2)-j-closed
set.Thus (1,2)-j-cl (B) is (1,2)-j-closed set
containing A.Since (1,2)-j-cl (A) is the smallest
(1,2)-j-closed set containing A.We have (1,2)-j-cl
(A) £(1,2)-j-cl(B) S0, A € B=(1,2)-jl
(A) €(1,2)-j-cl (B)

(Viil)A n BcA= (1,2)-j-cl (A n B) c(1,2)-j-cl (A)
and AnBc B = (1,2)-j-cl (A n B) c(1,2)-j-cl (B).
Hence (1,2)-j-cl (A n B) €(1,2)-j-cl (A)N(1,2)-j-cl
(B)

5.2 Example
(1,2)-j-cl (A) n(1,2)-j-cl (B) #(1,2)-j-cl (A N B)

Let X={a,b,c},v;={¢p, X, {b,c}},7, = {¢, X, {a, b}
then  (1,2)-jO0(X)={¢, X, {a, b}, {b,c}}, (L1,2)-
joX)={¢, X, {a}, (b}, {c}.{a,c}}. If we take
A={a, b} and B={b, c} then (1,2)-j-cl (A)=X and
(1,2)-jcl (B)=X. So (1,2)-j-cl (A)N(L,2)-j-cl
(B)={b}%(1,2)-j-cl (AnB)=(1,2)-j-cl ({b})={b}.
Hence (1,2)-j-cl (A)N(1,2)-j-cl (B) +#(1,2)-j-cl
(AN B)

5.3 Example
(1,2)-j-cl (A)u(1,2)-j-cl (B) #(1,2)-j-cl (AU B)

LetX={a,b,c}, 1,={¢, X, {b,c}}, T, = {¢, X, {a, b}}
then  (1,2)-jO0(X)={¢, X, {a, b}, {b,c}}, (1,2)-
jC(X):{qS,X, {a},{b},{c} {qa, c}}. If we take A={a}
and B={b} then (1,2)-j-cl (A)={a}and (1,2)-j-cl
(B)={b} S0, (1,2)-j-cl (A)u(1,2)-j-cl
(B)={a, b},(1,2)-j-cl (4 U B)=(1,2)-j-cl ({a,b})=X.
Hence (1,2)-j-cl (A)u(l1,2)-j-cl (B) +(1,2)-j-cl
(AuB)

5.4 Proposition
A subset A is (1,2)-j-closed iff Pclyint,(A) c A
Proof

Suppose that A is(1,2)-j-closed set in a
bitopological space X, the X\ A is (1,2)-j-open.
Hence X\ A c int,Pcl,(X \ A). But Pcl,(X\
A) = X\ Pint,(4), so X\Ac Pint,(X \ A)c
int,(A)). Again Pint, (X \ int,(4)) = X\
Pclyint,(A). Therefore, we get X\AcX\
Pclyint,(A). Taking complement of both sides, we
obtain Pcl,int,(A) c A.

Conversely,

Suppose the Pclyint,(A) c A, then by taking
complement of both sides we obtain X\ Ac
Pint,Pcl,(X \ A) which implies that X\ Ais
(1,2)-j-open. Hence A is (1,2)-j-closed.
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5.5 Proposition

Every 1-closed subset of a bitopological space
(X714, T2) is (1,2)-j-closed

Proof

Let A be 1-closed subset of bitopological space
(X,tq, T5). Then A=Pcl, (4).

Hence Pclyint,(A) c A, so Ais (1,2)-j-closed.
5.6 Proposition

Every 2-closed subset of a bitopological space
(X,7q,T2) is (2,1)-j-closed

Proof

Let A be 2-closed subset of bitopological space
(X,74, 7). Then A=Pcl,(A).

HencePcl,int,(A) c A, so Ais (2,1)-j-closed.
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