A New Approach to (1, 2)-j-open sets in Bitopological Spaces

Dr.D.Sasikala¹ and R.Usha²

¹Assistant Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore. ²Research Scholar, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore.

Abstract

The aim of this present paper is to introduce a new class of set namely (1,2)-j-open, (1,2)-j-closed in bitopological spaces. We investigate the several properties and study their relationship with other existing sets.

Keywords: (1,2)-j-open sets, (1,2)-j-closed sets

1 Introduction

Kelly[6] initiated the study of bitopological spaces in 1963. A nonempty set X equipped with two topological spaces τ_1, τ_2 is called a bitopological space and is denoted by (X,τ_1,τ_2) . Using the notation of pre open set in 1990 D.Andrijievic and M. Ganster[1] defined the concept of γ -open set in topological spaces. S.N. Maheshwariand R. Prasad[10] extend the notion of semi-open sets and semi-continuity to the bitopological setting in 1977. B.P. Dvalishvli[4] introduced concepts of and (1,2)-boundaries in (1,2)-open domain bitopological space. B. Bhattacharya and A. Paul [2] introduced γ -open set in bitopological spaces and studied their properties. The concept of pre open sets in topological space was initiated by Mashhouret. Al[11]. S. Raychaudhui and M.N. Mukherjee [12] have introduced the notion of δ preopen sets and δ -almost continuity in topological spaces. The class of δ -preopen sets is larger than that of preopen setsThe purpose of this paper is to define some properties by using (1,2)-j-open, (1,2)j-closed in bitopological space and analyse the relationships between them.

2 Preliminaries

2.1 Definition

Let X be a non empty set and τ_1, τ_2 be the topologies on X. A triple(X, τ_1, τ_2) is said to be a bitopological space.

2.2 Definition

A subset A of a bitopological space (X,τ_1,τ_2) is called a (1,2)-semi open if $A \subset cl_2(int_1(A))$ and it is (1,2)-semi closed if $cl_2(int_1(A)) \subset A$

2.3 Definition

Let (X, τ_1, τ_2) be a bitopological space, $A \subset X$, A is said to be (1,2)-p-open set if $A \subset int_1(cl_2(A))$ and A is (1,2)-p-closed if $X \setminus A$ is (1,2)-p-open

2.4 Definition

Let (X, τ_1, τ_2) be a bitopological space, $A \subset X, A$ is said to be (2,1)-p-open set if $A \subset int_2(cl_1(A))$

2.5 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X$, A is said to be 1-p-open set if $A \subset int_1(cl_1(A))$

2.6 Definition

Let (X, τ_1, τ_2) be a bitopological space, $A \subset X, A$ is said to be 2-p-open set if $A \subset int_2(cl_2(A))$

2.7 Definition

Let A be a subset of a bitopological space (X, τ_1, τ_2) then, the union all (1,2)-p-open sets contained in A is called (1,2)-p-int(A)

2.8 Definition

Let A be a subset of a bitopological space (X,τ_1,τ_2) then, the intersection all (1,2)-p-closed sets containing in A is called (1,2)-p-cl(A)

2.9 Definition

Let A be a subset of a bitopological space (X,τ_1,τ_2) then, A subset N of a bitopological space (X,τ_1,τ_2) is called (1,2)-p- neighbourhood of a subset A of X if there exists on (1,2)-p-open set U such that $A \subseteq U \subseteq N$

2.10 Definition

Let A be a subset of a bitopological space (X, τ_1, τ_2) then, (1,2)- γ -open set if for any non empty (1,2)-popen set B such that $A \cap B \subseteq int_1(cl_2(A \cap B))$

3 (1,2)-j-open sets

3.1 Definition

Let A be a subset of a bitopological space(X, τ_1, τ_2) then, A is said to be (1,2)-j-open set if $A \subset int_1(Pcl_2(A))$.

3.2 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X, A$ is said to be (2,1)-j-open set if $A \subset int_2(Pcl_1(A))$.

3.3 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X, A$ is said to be 1-j-open set if $A \subset int_1(Pcl_1(A))$.

3.4 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X, A$ is said to be 2-j-open set if $A \subset int_2(Pcl_2(A))$.

3.5 Definition

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}, \{b, c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{a, c\}, \{c\}\}$ then (1,2) $jO(X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and (2,1) $jO(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ It is clear that $\{a\}\{a, b\}$ are (2,1)jO(X) but not (1,2)-jO(X)

3.6 Example

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{b\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, c\}, \{c\}\}$ then (1,2) $jO(X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and 1-jO(X) $= \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$ It is clear that $\{c\}\{a, c\}$ are (1,2)-jO(X) but not 1-jO(X) and $\{a, b\}$ is 1-jO(X) but not (1,2)-jO(X)

3.7 Example

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}, \{b, c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{a, c\}, \{c\}\}$ then (1,2) $jO(X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ and 2 $jO(X) = \{\phi, X, \{a\}, \{a, c\}, \{c\}\}$ It is clear that $\{b\}\{b, c\}$ are (1,2)-jO(X) but not 2-jO(X) and $\{a\}$ is 2-jO(X) but not (1,2)-jO(X)

3.8 Theorem

Every 1-open sets is (1,2)-j-open

Every 2-open sets is (2,1)-j-open

Proof

Let A be any 1-open set in bitopological space (X, τ_1, τ_2) then $A = int_1(A)$ and also $A \subseteq Pcl_2(A)$.

Therefore, $A \subset int_1(Pcl_2(A))$.

Let A be any 2-open set in bitopological space (X, τ_1, τ_2) then $A = int_2(A)$ and also $A \subseteq Pcl_1(A)$.

Therefore, $A \subset int_2(Pcl_1(A))$.

4 Interior, Closure and neighbourhood in bitopological spaces

4.1 Definition

Let A be a subset of a bitopological space (X, τ_1, τ_2) then, the union all (1,2)-j-open sets contained in A is called (1,2)-j-int(A).

4.2 Definition

Let A be a subset of a bitopological space (X, τ_1, τ_2) then, the intersection all (1,2)-j-closed sets containing in A is called (1,2)-j-cl(A).

4.3 Definition

Let A be a subset of a bitopological space (X,τ_1,τ_2) . A subset N of a bitopological space (X,τ_1,τ_2) is called (1,2)-j- neighbourhood of a subset A of X if there exists on (1,2)-j-open set U such that $A \subseteq U \subseteq N$

4.4 Theorem

For any subset A & B of a bitopological space X, the following statements are true:

(i) The (1,2)-j-int(A) is the largest (1,2)j-open set contained in A.

- (ii) The (1,2)-j-int(A) is an (1,2)-j-open set in X contained in A.
- (iii) A is an (1,2)-j-open set iff A=(1,2)-jint(A)
- (iv) (1,2)-j-int (ϕ)= ϕ
- (v) (1,2)-j-int (X)= X
- (vi) If $A \subseteq B$, the (1,2)-j-int (A) \subseteq (1,2)-j-int(B)
- (vii) (1,2)-j-int $(A \cap B) \subseteq (1,2)$ -j-int (A) $\cap (1,2)$ -j-int(B)
- (viii) (1,2)-j-int (A) \cup (1,2)-j-int(B) \subseteq (1,2)j-int(A \cup B)

Proof

(i)Since (1,2)-j-int(A) = \bigcup {G:G is (1,2)-j-open, G \subset A}contains every j-open subset G of A. It is therefore largest open subset of A.

(ii) Since (1,2)-j-int(A) is the largest (1,2)-j-open set of A and (1,2)-j-int(A) = \bigcup {G:G is (1,2)-j-open set of A}so (1,2)-j-int(A) is an (1,2)-j-open set of A.

(iii) Let A=(1,2)-j-int(A) and since(1,2)-j-int(A) is an (1,2)-j-open set of A. So, A is also (1,2)-j-open. Let A is (1,2)-j-open then A is largest (1,2)-j-open set of A.Hence A=(1,2)-j-int(A).

(vi)Let $A \subset B$, Let $x \in (1,2)$ -j-int (A), \exists a (1,2)-jopen set G Such that $x \in G \subset A$. Since $A \subseteq B$, B is also have $x \in G \subset B$ which implies $x \in (1,2)$ -j-int (A). Thus $x \in (1,2)$ -j-int (A) $\Rightarrow (1,2)$ -j-int(B). Therefore, (1,2)-j-int (A) $\subseteq (1,2)$ -j-int(B).

(vii)Let $x \in (1,2)$ -j-int($A \cap B$), $\exists a (1,2)$ -j-open set G in X such that $x \in (A \cap B)$, $x \in A$ and $x \in B, x \in G \subset A$ and $x \in G \subset B$.So, $x \in (1,2)$ -j-int (A) and $x \in (1,2)$ -j-int (B). Therefore, (1,2)-j-int (A) $\cap (1,2)$ -j-int(B).

(viii)Let $x \in (1,2)$ -j-int (A) $\cup (1,2)$ -j-int(B), $x \in (1,2)$ -jint (A) or $x \in (1,2)$ -j-int(B). If $x \in (1,2)$ -j-int (A), \exists (1,2)-j-open set G in X such that $x \in G \subset A \Rightarrow x \in$ $G \subset A \cup B \Rightarrow x \in (1,2)$ -j-int($A \cup B$) Therefore, (1,2)-j-int (A) $\cup (1,2)$ -j-int(B) $\subseteq (1,2)$ -j-int($A \cup B$).

4.5 Example

(1,2)-j-int $(A) \cap (1,2)$ -j-int $(B) \neq (1,2)$ -j-int $(A \cap B)$

Let X={a, b, c}, τ_1 ={ ϕ , X, {b, c}} τ_2 = { ϕ , X, {a, b}} then (1,2)-jO(X)={ ϕ , X, {a, b}, {b, c}}. If we take A={a, b} and B={b, c} then (1,2)-j-int(A)={a, b} ,(1,2)-j-int(B)={b, c} So (1,2)-j-int (A)\cap(1,2)-jint(B)={b},(1,2)-j-int($A \cap B$)=(1,2)-j-int({b})={ ϕ }. Hence (1,2)-j-int (A)∩(1,2)-j-int(B) ≠(1,2)-j-int($A \cap B$).

4.6 Example

$(1,2)\text{-}j\text{-}int (A) \cup (1,2)\text{-}j\text{-}int(B) \neq (1,2)\text{-}j\text{-}int (A \cup B).$

Let X={a,b,c}, $\tau_1 = \{\phi, X, \{a\}\}$ $\tau_2 = \{\phi, X, \{c\}, \{a, b\}\}$ then (1,2)-jO(X)={ $\phi, X, \{a\}$ }. If we take A={a, b} and B={b} then (1,2)-jint(A)={a} ,(1,2)-j-int(B)={ ϕ }So (1,2)-j-int (A)U(1,2)-j-int(B)={a} ,(1,2)-j-int(A U B)=(1,2)-jint({X})= X.Hence (1,2)-j-int (A)U(1,2)-j-int(B) \neq (1,2)-j-int(A U B).

4.7 Lemma

For any subset A we have

- (i) 1-int (A) \subseteq (1,2)-j-int(A), but (1,2)-jint(A) \neq 1-int (A).
- (ii) 2-int (A) \subseteq (2,1)-j-int(A), but (2,1)-jint(A) \neq 2-int (A).

Proof

Follows from the fact that every 1-open set is (1,2)-j-open.

The converse of the above lemma is not true which is shown in the following example:

4.8 Example

Let $X = \{a,b,c\}, \quad \tau_1 = \{\phi, X, \{a\}\}$ $\tau_2 = \{\phi, X, \{c\}, \{a, b\}\}$ then (1,2)-jO(X) $= \{\phi, X, \{a\}\}.$ 1-jO(X)= $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}.$ If we take A= $\{a, c\}$ and B = $\{b\}$ then (1,2)-jint(A)= $\{a\}, 1$ -j-int(A)= $\{a, c\} \Rightarrow (1,2)$ -j-int(A) $\neq 1$ -jint(A)

5 (1,2)-j-closed sets

5.1 Definition

Let A is said to be (1,2)-j-closed if $int_1(Pcl_2(A)) \subset A$.

5.2 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X, A$ is said to be (2,1)-j-closed set if $int_2(Pcl_1(A)) \subset A$.

5.3 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X, A$ is said to be 1-j-closed set if $int_1(Pcl_1(A)) \subset A$.

5.4 Definition

Let (X,τ_1,τ_2) be a bitopological space, $A \subset X, A$ is said to be 2-j-closed set if $A \subset int_2(Pcl_2(A)) \subset A$

5.5Theorem

For any subset A & B of a bitopological space X, the following statements are true:

- (i) The (1,2)-j-cl(A) is the smallest (1,2)j-closed set containing A.
- (ii) A is an (1,2)-j-closed set iff A=(1,2)-j-cl(A)
- (iii) (1,2)-j-cl (ϕ)= ϕ
- (iv) (1,2)-j-cl(X) = X
- (v) $A \subseteq (1,2)$ -j-cl (A)
- (vi) If $A \subseteq B$, then (1,2)-j-cl (A) \subseteq (1,2)-j-cl (B)
- (vii) (1,2)-j-cl $(A \cap B) \subseteq (1,2)$ -j-cl $(A) \cap (1,2)$ -j-cl (B)
- (viii) (1,2)-j-cl (A) \cup (1,2)-j-cl (B) \subseteq (1,2)-jcl (A \cup B)

Proof

(i) (1,2)-j-cl (A) is intersection of all(1,2)-j-closed set containing A so (1,2)-j-cl (A) is the smallest (1,2)-j-closed set containing A.

(ii) If A is (1,2)-j-closed set, then A itself is the smallest (1,2)-j-closed set containing A. Hence (1,2)-j-cl(A)=A

Conversely,

If (1,2)-j-cl (A)=A,Since (1,2)-j-cl(A) is (1,2)-j-closed and so A is also (1,2)-j-closed.

(v) Since (1,2)-j-cl (A) is the smallest (1,2)-j-closed set containing A, and A \subseteq (1,2)-j-cl (A)

(vi)Let $A \subset B$, and by the pervious theorem we have $B \subset (1,2)$ -j-cl (B).Since $A \subset B$, we have $A \subset (1,2)$ -j-cl (B) but (1,2)-j-cl (B) is (1,2)-j-closed set.Thus (1,2)-j-cl (B) is (1,2)-j-closed set containing A.Since (1,2)-j-cl (A) is the smallest (1,2)-j-closed set containing A.We have (1,2)-j-cl (A) $\subseteq (1,2)$ -j-cl(B) so, $A \subseteq B \Rightarrow (1,2)$ -j-cl (A) $\subseteq (1,2)$ -j-cl (B) (vii) $A \cap B \subset A \Rightarrow (1,2)$ -j-cl $(A \cap B) \subset (1,2)$ -j-cl (A) and $A \cap B \subset B \Rightarrow (1,2)$ -j-cl $(A \cap B) \subset (1,2)$ -j-cl (B). Hence (1,2)-j-cl $(A \cap B) \subseteq (1,2)$ -j-cl (A) $\cap (1,2)$ -j-cl (B)

5.2 Example

(1,2)-j-cl (A) \cap (1,2)-j-cl (B) \neq (1,2)-j-cl (A \cap B)

Let $X=\{a, b, c\}, \tau_1=\{\phi, X, \{b, c\}\}, \tau_2 = \{\phi, X, \{a, b\}\}$ then (1,2)-jO(X)= $\{\phi, X, \{a, b\}, \{b, c\}\},$ (1,2)jO(X)= $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}\}$. If we take A= $\{a, b\}$ and B= $\{b, c\}$ then (1,2)-j-cl (A)=X and (1,2)-j-cl (B)=X. So (1,2)-j-cl (A)\cap(1,2)-j-cl (B)= $\{b\},(1,2)$ -j-cl (A \cap B)=(1,2)-j-cl ($\{b\}$)= $\{b\}$. Hence (1,2)-j-cl (A)\cap(1,2)-j-cl (B) \neq (1,2)-j-cl (A \cap B)

5.3 Example

(1,2)-j-cl (A) \cup (1,2)-j-cl (B) \neq (1,2)-j-cl (A \cup B)

LetX={a, b, c}, τ_1 ={ $\phi, X, \{b, c\}$ }, τ_2 = { $\phi, X, \{a, b\}$ } then (1,2)-jO(X)={ $\phi, X, \{a, b\}, \{b, c\}$ }, (1,2)jC(X)={ $\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}$ }. If we take A={a} and B={b} then (1,2)-j-cl (A)={a}and (1,2)-j-cl (B)={b} so, (1,2)-j-cl (A) \cup (1,2)-j-cl (B)={a, b},(1,2)-j-cl ($A \cup B$)=(1,2)-j-cl ({a, b})= X. Hence (1,2)-j-cl (A) \cup (1,2)-j-cl (B) \neq (1,2)-j-cl ($A \cup B$)

5.4 Proposition

A subset A is (1,2)-j-closed iff $Pcl_1int_2(A) \subset A$

Proof

Suppose that A is(1,2)-j-closed set in a bitopological space X, the $X \setminus A$ is (1,2)-j-open. Hence $X \setminus A \subset int_1Pcl_2(X \setminus A)$. But $Pcl_2(X \setminus A) = X \setminus Pint_2(A)$, so $X \setminus A \subset Pint_1(X \setminus A) \subset$ $int_2(A)$. Again $Pint_1(X \setminus int_2(A)) = X \setminus$ $Pcl_1int_2(A)$. Therefore, we get $X \setminus A \subset X \setminus$ $Pcl_1int_2(A)$. Taking complement of both sides, we obtain $Pcl_1int_2(A) \subset A$.

Conversely,

Suppose the $Pcl_1int_2(A) \subset A$, then by taking complement of both sides we obtain $X \setminus A \subset Pint_1Pcl_2(X \setminus A)$ which implies that $X \setminus A$ is (1,2)-j-open. Hence A is (1,2)-j-closed.

5.5 Proposition

Every 1-closed subset of a bitopological space (X, τ_1, τ_2) is (1,2)-j-closed

Proof

Let A be 1-closed subset of bitopological space (X, τ_1, τ_2) . Then A=Pcl₁(A).

Hence $Pcl_1int_2(A) \subset A$, so A is (1,2)-j-closed.

5.6 Proposition

Every 2-closed subset of a bitopological space (X, τ_1, τ_2) is (2,1)-j-closed

Proof

Let A be 2-closed subset of bitopological space (X, τ_1, τ_2) . Then A= $Pcl_2(A)$.

Hence $Pcl_1int_2(A) \subset A$, so A is (2,1)-j-closed.

References

- D. Andrijevic and M. Ganster, On PO-equivalent topologies, In IV International Meeting on Topology in Italy (Sorrento, 1988), Rend. Circ. Mat. Palermo, (2) Suppl, 251-256.
- [2] B.Bhattacharya and A. Paul, On bitopological γ-open set, *Isor journal of Mathematics*, 5(2) (2013), 10-14.
- [3] S. Bose, Semi-open sets, semi continuity and semi-open mappings in bitopological spaces, *Bull.Calcutta Math.Soc*, 73(1981), 237-246.
- [4] B.P. Dvalishvili Bitopological spaces: theory, relations with generalized algebraic 2005.
- [5] A.Kar and B.Bhattacharya, Bitopological pre-open sets, pre-continuity and pre-open mappings, *Indian J. Math.*, 34(1992), 237-246
- [6] J.C. Kelly, Bitopological spaces, Proc. London, Math. Soc., 13(1963), 71-89.
- [7] A.B. Khalaf and A.M. Omer, Si Open sets and Si continuity in bitopological spaces, *Tamkang Journal of Mathematics*, 43(1) (2012), 81-97
- [8] F.H. Khedr, Properties of ij delta open sets, *Fasciculi Mathematici*, 52(2014), 65-81.
- [9] N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer Math.Monthly*, 70 (1963),36-41.
- [10] S.N. Maheshwari and R. Prasad, Semi open sets and semi continuous functions in bitopological spaces, *Math.Notae.*, 26(1977/78), 29-37.
- [11] A.S. Mashhour, M.E.Abdl El-Monsef and S.N. El-Deeb, Onprecontinuous and weak pre continuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [12] S.Raychaudhui and M.N. Mukherjee, on δ -almost continuity and δ -preopen sets, *Bull. Inst.Math.Acad. Sinica*, 21(1993), 357-366.
- [13] M.M. El-Sharkasy, OnΛα-sets and the associated topology TΛα, Journal of the Egyptian Mathematical Society, 23(2015), 371-376.