A New Approach to $(1,2)$-j-open sets in Bitopological Spaces

Dr.D.Sasikala ${ }^{1}$ and R.Usha ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore.
${ }^{2}$ Research Scholar, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore .

Abstract

The aim of this present paper is to introduce a new class of set namely (1,2)-j-open, (1,2)-j-closed in bitopological spaces. We investigate the several properties and study their relationship with other existing sets.

Keywords: (1,2)-j-open sets , (1,2)-j-closed sets

1 Introduction

Kelly[6] initiated the study of bitopological spaces in 1963. A nonempty set X equipped with two topological spaces τ_{1}, τ_{2} is called a bitopological space and is denoted by ($\mathrm{X}, \tau_{1}, \tau_{2}$). Using the notation of pre open set in 1990 D.Andrijievic and M. Ganster[1] defined the concept of γ-open set in topological spaces. S.N. Maheshwariand R. Prasad[10] extened the notion of semi-open sets and semi-continuity to the bitopological setting in 1977. B.P. Dvalishvli[4] introduced concepts of (1,2)-open domain and (1,2)-boundaries in bitopological space. B. Bhattacharya and A. Paul [2] introduced γ-open set in bitopological spaces and studied their properties. The concept of pre open sets in topological space was initiated by Mashhouret. $\mathrm{Al}[11]$. S. Raychaudhui and M.N. Mukherjee[12] have introduced the notion of δ preopen sets and δ-almost continuity in topological spaces.The class of δ-preopen sets is larger than that of preopen setsThe purpose of this paper is to define some properties by using (1,2)-j-open, (1,2)j -closed in bitopological space and analyse the relationships between them.

2 Preliminaries

2.1 Definition

Let X be a non empty set and τ_{1}, τ_{2} be the topologies on X . A triple $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is said to be a bitopological space.

2.2 Definition

A subset A of a bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ is called a (1,2)-semi open if $\mathrm{A} \subset \operatorname{cl}_{2}\left(\operatorname{int}_{1}(A)\right)$ and it is $(1,2)$-semi closed if $c l_{2}\left(i n t_{1}(A)\right) \subset A$

2.3 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be $(1,2)$-p-open set if $\mathrm{A} \subset \operatorname{int}_{1}\left(c l_{2}(A)\right)$ and A is (1,2)-p-closed if $X \backslash A$ is (1,2)-p-open

2.4 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be $(2,1)$-p-open set if $\mathrm{A} \subset \operatorname{int}_{2}\left(c l_{1}(A)\right)$

2.5 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be 1-p-open set if $\mathrm{A} \subset \operatorname{int}_{1}\left(c l_{1}(A)\right)$

2.6 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be 2 -p-open set if $\mathrm{A} \subset \operatorname{int}_{2}\left(c l_{2}(A)\right)$

2.7 Definition

Let A be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) then, the union all (1,2)-p-open sets contained in A is called $(1,2)-\mathrm{p}-\mathrm{int}(\mathrm{A})$

2.8 Definition

Let A be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) then, the intersection all (1,2)-p-closed sets containing in A is called (1,2)-p-cl(A)

2.9 Definition

Let A be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) then, A subset N of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called (1,2)-p- neighbourhood of a subset A of

X if there exists on (1,2)-p-open set U such that $A \subseteq U \subseteq N$

2.10 Definition

Let A be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) then, $(1,2)-\gamma$-open set if for any non empty (1,2)-popen set B such that $A \cap B \subseteq \operatorname{int}_{1}\left(c l_{2}(A \cap B)\right)$

3 (1,2)-j-open sets

3.1 Definition

Let A be a subset of a bitopological space($\mathrm{X}, \tau_{1}, \tau_{2}$) then, A is said to be $(1,2)$-j-open set if $\mathrm{A} \subset$ $\operatorname{int}_{1}\left(\operatorname{Pcl}_{2}(A)\right)$.

3.2 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be $(2,1)$-j-open set if $\mathrm{A} \subset \operatorname{int}_{2}\left(\operatorname{Pcl}_{1}(A)\right)$.

3.3 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be 1 -j-open set if $\mathrm{A} \subset \operatorname{int}_{1}\left(\operatorname{Pcl}_{1}(A)\right)$.

3.4 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be 2 -j-open set if $\mathrm{A} \subset \operatorname{int}_{2}\left(\operatorname{Pcl}_{2}(A)\right)$.

3.5 Definition

Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X,\{b\},\{b, c\}\}, \quad \tau_{2}=$ $\{\phi, X,\{a\},\{a, c\},\{c\}\} \quad$ then $(1,2)-$ $\mathrm{jO}(\mathrm{X})=\{\phi, X,\{b\},\{c\},\{b, c\},\{a, c\}\}$ $\operatorname{and}(2,1) \mathrm{jO}(\mathrm{X})=\{\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$ It is clear that $\{a\}\{a, b\}$ are $(2,1)$ $\mathrm{jO}(\mathrm{X})$ but not (1,2)-jO(X)

3.6 Example

Let $\quad X=\{a, b, c\}, \tau_{1}=\{\phi, X,\{b\},\{b, c\}\}, \quad \tau_{2}=$ $\{\phi, X,\{a\},\{a, c\},\{c\}\}$ then $\quad(1,2)-$ $\mathrm{jO}(\mathrm{X})=\{\phi, X,\{b\},\{c\},\{b, c\},\{a, c\}\}$ and $1-\mathrm{jO}(\mathrm{X})$ $=\{\phi, X,\{b\},\{a, b\},\{b, c\}\}$ It is clear that $\{c\}\{a, c\}$ are $(1,2)-\mathrm{jO}(\mathrm{X})$ but not $1-\mathrm{jO}(\mathrm{X})$ and $\{a, b\}$ is $1-$ $\mathrm{jO}(\mathrm{X})$ but not (1,2)-jO(X)

3.7 Example

Let $X=\{a, b, c\}, \tau_{1}=\{\phi, X,\{b\},\{b, c\}\}, \quad \tau_{2}=$ $\{\phi, X,\{a\},\{a, c\},\{c\}\} \quad$ then (1,2)$\mathrm{jO}(\mathrm{X})=\{\phi, X,\{b\},\{c\},\{b, c\},\{a, c\}\}$ and 2$\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a\},\{a, c\},\{c\}\} \quad$ It is clear that $\{b\}\{b, c\}$ are $(1,2)-\mathrm{jO}(\mathrm{X})$ but not $2-\mathrm{jO}(\mathrm{X})$ and $\{a\}$ is $2-\mathrm{jO}(\mathrm{X})$ but not $(1,2)-\mathrm{jO}(\mathrm{X})$

3.8 Theorem

Every 1-open sets is (1,2)-j-open
Every 2-open sets is $(2,1)$-j-open

Proof

Let A be any 1 -open set in bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ then $A=\operatorname{int}_{1}(A)$ and also $A \subseteq \operatorname{Pcl}_{2}(A)$.

Therefore, $\mathrm{A} \subset \operatorname{int}_{1}\left(\operatorname{Pcl}_{2}(A)\right)$.
Let A be any 2-open set in bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$ then $A=\operatorname{int}_{2}(A)$ and also $A \subseteq \operatorname{Pcl}_{1}(A)$.

Therefore, $\mathrm{A} \subset \operatorname{int}_{2}\left(\operatorname{Pcl}_{1}(A)\right)$.

4 Interior, Closure and neighbourhood in bitopological spaces

4.1 Definition

LetA be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) then, the union all $(1,2)$ - j -open sets contained in A is called $(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A})$.

4.2 Definition

Let A be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) then, the intersection all (1,2)-j-closed sets containing in A is called (1,2)-j-cl(A).

4.3 Definition

Let A be a subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$). A subset N of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is called (1,2)-j- neighbourhood of a subset A of X if there exists on (1,2)-j-open set U such that $A \subseteq U \subseteq N$

4.4 Theorem

For any subset A \& B of a bitopological space X, the following statements are true:
(i) The (1,2)-j-int(A) is the largest (1,2)j -open set contained in A.
(ii) The (1,2)-j-int(A) is an (1,2)-j-open set in X contained in A.
(iii) $\quad \mathrm{A}$ is an $(1,2)$ - j -open set iff $\mathrm{A}=(1,2)-\mathrm{j}$ $\operatorname{int}(\mathrm{A})$
(iv) $\quad(1,2)-\mathrm{j}-\mathrm{int}(\phi)=\phi$
(v) $\quad(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{X})=X$
(vi) IfA $\subseteq B$, the $(1,2)-j$-int $(A) \subseteq(1,2)-j-$ $\operatorname{int}(\mathrm{B})$
(vii) $\quad(1,2)-\mathrm{j}-\operatorname{int}(A \cap B) \subseteq(1,2)-\mathrm{j}-\mathrm{int}$ (A) $\cap(1,2)-j-i n t(B)$
(viii) $\quad(1,2)-\mathrm{j}$-int $(\mathrm{A}) \cup(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B}) \subseteq(1,2)-$ $\mathrm{j}-\operatorname{int}(A \cup B)$

Proof

(i)Since $(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A})=\mathrm{U}\{\mathrm{G}: \mathrm{G}$ is $(1,2)$ - j -open, $G \subset A\} c o n t a i n s$ every j-open subset G of A. It is therefore largest open subset of A.
(ii) Since (1,2)-j-int(A)is the largest (1,2)-j-open set of A and $(1,2)-j-\operatorname{int}(A)=U\{G: G$ is $(1,2)$ - j-open set of A$\}$ so $(1,2)-\mathrm{j}$-int(A) is an $(1,2)-\mathrm{j}$-open set of A .
(iii) Let $\mathrm{A}=(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A})$ and since $(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A})$ is an (1,2)-j-open set of A. So, A is also (1,2)-j-open. LetA is $(1,2)$ - j -open then A is largest $(1,2)$ - j -open set of A.Hence $A=(1,2)-j-\operatorname{int}(A)$.
(vi)Let $A \subset B$, Let $\mathrm{x} \in(1,2)$ - j -int $(\mathrm{A}), \exists$ a $(1,2)-\mathrm{j}-$ open set G Such that $x \in G \subset A$. Since $A \subseteq B, B$ is also have $\mathrm{x} \in G \subset B$ which implies $\mathrm{x} \in(1,2)$ - j -int (A). Thus $x \in(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A}) \Rightarrow(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B})$. Therefore, $(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A}) \subseteq(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B})$.
(vii)Let $\mathrm{x} \in(1,2) \mathrm{j}-\mathrm{jint}(A \cap B), \exists \mathrm{a}(1,2)$ - j -open set G in X such that $\mathrm{x} \in(A \cap B), \mathrm{x} \in A$ and $\mathrm{x} \in B, \mathrm{x} \in G \subset$ A and $\quad \mathrm{x} \in G \subset B . \operatorname{So}, \mathrm{x} \in(1,2)$-j-int (A) and $\mathrm{x} \in(1,2)$ - j -int (B). Therefore, (1,2)-j-int (A) $\cap(1,2)$ j -int(B).
(viii)Let $\mathrm{x} \epsilon(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A}) \mathrm{U}(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B}), \mathrm{x} \epsilon(1,2)-\mathrm{j}-$ int (A) or $x \epsilon(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B})$. If $\mathrm{x} \epsilon(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A}), \exists$ (1,2)-j-open set G in X such that $\mathrm{x} \in G \subset A \Rightarrow \mathrm{x} \in$ $G \subset A \cup B \Rightarrow \mathrm{x} \in(1,2)-\mathrm{j}-\operatorname{int}(A \cup B) \quad$ Therefore, $(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{A}) \cup(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B}) \subseteq(1,2)-\mathrm{j}-\mathrm{int}(A \cup B)$.

4.5 Example

$(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{A}) \cap(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{B}) \neq(1,2)-\mathrm{j}-\operatorname{int}(A \cap B)$

Let $\mathrm{X}=\{a, b, c\}, \tau_{1}=\{\phi, X,\{b, c\}\} \tau_{2}=\{\phi, X,\{a, b\}\}$ then $(1,2)-\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a, b\},\{b, c\}\}$. If we take $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{b, c\}$ then $(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{A})=\{a, b\}$, $(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B})=\{b, c\} \quad$ So $\quad(1,2)-\mathrm{j}-\mathrm{int} \quad(\mathrm{A}) \cap(1,2)-\mathrm{j}-$
$\operatorname{int}(\mathrm{B})=\{b\},(1,2)-\mathrm{j}-\operatorname{int}(A \cap B)=(1,2)-\mathrm{j}-\operatorname{int}(\{b\})=\{\phi\}$.
Hence $\quad(1,2)-\mathrm{j}$-int $\quad(\mathrm{A}) \cap(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B}) \quad \neq(1,2)-\mathrm{j}-$ $\operatorname{int}(A \cap B)$.

4.6 Example

$(1,2)-\mathrm{j}-\operatorname{int}(\mathbf{A}) \cup(1,2)-\mathrm{j}-\operatorname{int}(B) \neq(1,2)-\mathrm{j}-\operatorname{int}(A \cup B)$.

$$
\operatorname{Let} X=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}, \quad \tau_{1}=\{\phi, X,\{a\}\}
$$ $\tau_{2}=\{\phi, X,\{c\},\{a, b\}\}$ then $(1,2)-\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a\}\}$. If we take $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{b\}$ then $(1,2)-\mathrm{j}-$ $\operatorname{int}(\mathrm{A})=\{a\} \quad,(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{B})=\{\phi\}$ So $\quad(1,2)-\mathrm{j}-\mathrm{int}$ $(\mathrm{A}) \cup(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{B})=\{a\} \quad,(1,2)-\mathrm{j}-\operatorname{int}(A \cup B)=(1,2)-\mathrm{j}-$ $\operatorname{int}(\{X\})=X$. Hence $\quad(1,2)-\mathrm{j}-\mathrm{int} \quad(\mathrm{A}) \cup(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{B})$ $\neq(1,2)-\mathrm{j}-\operatorname{int}(A \cup B)$.

4.7 Lemma

For any subset A we have
(i) \quad 1-int $(A) \subseteq(1,2)-\mathrm{j}-\mathrm{int}(\mathrm{A})$, but $(1,2)-\mathrm{j}-$ $\operatorname{int}(A) \neq 1$-int (A).
(ii) $\quad 2$-int $(\mathrm{A}) \subseteq(2,1)-\mathrm{j}-\mathrm{int}(\mathrm{A})$, but $(2,1) \mathrm{j}-$ $\operatorname{int}(\mathrm{A}) \neq 2$-int (A).

Proof

Follows from the fact that every 1-open set is (1,2)-j-open.

The converse of the above lemma is not true which is shown in the following example:

4.8 Example

Let $\quad \mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \tau_{1}=\{\phi, X,\{a\}\}$
$\tau_{2}=\{\phi, X,\{c\},\{a, b\}\} \quad$ then $\quad(1,2)-\mathrm{jO}(X)$
$=\{\phi, X,\{a\}\}$. $1-\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a\},\{a, b\},\{a, c\}\}$. If we take $\mathrm{A}=\{a, c\}$ and $\mathrm{B}=\{b\}$ then $(1,2)-\mathrm{j}-$ $\operatorname{int}(\mathrm{A})=\{a\}, 1-\mathrm{j}-\operatorname{int}(\mathrm{A})=\{a, c\} \Rightarrow(1,2)-\mathrm{j}-\operatorname{int}(\mathrm{A}) \quad \neq 1-\mathrm{j}-$ $\operatorname{int}(\mathrm{A})$

5 (1,2)-j-closed sets

5.1 Definition

Let A is said to be $(1,2)$-j-closed if $\operatorname{int}_{1}\left(\operatorname{Pcl}_{2}(A)\right) \subset A$.

5.2 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be $(2,1)$-j-closed set if $\operatorname{int}_{2}\left(\operatorname{Pcl}_{1}(A)\right) \subset A$.

5.3 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be 1 -j-closed set if $\operatorname{int}_{1}\left(\operatorname{Pcl}_{1}(A)\right) \subset A$.

5.4 Definition

Let ($\mathrm{X}, \tau_{1}, \tau_{2}$) be a bitopological space, $A \subset X, A$ is said to be 2 -j-closed set if $\mathrm{A} \subset \operatorname{int}_{2}\left(\operatorname{Pcl}_{2}(A)\right) \subset A$

5.5Theorem

For any subset A \& B of a bitopological space X, the following statements are true:
(i) The $(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})$ is the smallest $(1,2)-$ j -closed set containing A.
(ii) $\quad \mathrm{A}$ is an $(1,2)$ - j -closed set iff $\mathrm{A}=(1,2)$ -j-cl(A)
(iii) $\quad(1,2)-\mathrm{j}-\mathrm{cl}(\phi)=\phi$
(iv) $\quad(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{X})=X$
(v) $\mathrm{A} \subseteq(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})$
(vi) IfA $\subseteq B$, then $(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A}) \subseteq(1,2)-\mathrm{j}-$ cl (B)
(vii) $\quad(1,2)-\mathrm{j}-\mathrm{cl}(A \cap B) \subseteq(1,2)-\mathrm{j}-\mathrm{cl}$ (A) $\cap(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{B})$
(viii) $\quad(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A}) \mathrm{U}(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{B}) \subseteq(1,2)-\mathrm{j}-$ $\mathrm{cl}(A \cup B)$

Proof

(i) (1,2)-j-cl (A)is intersection of all(1,2)-j-closed set containing A so (1,2)-j-cl (A) is the smallest (1,2)-j-closed set containing A.
(ii) If A is $(1,2)$ - j -closed set, then A itself is the smallest (1,2)-j-closed set containing A. Hence $(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$

Conversely,

If $(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$, Since $(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})$ is $(1,2)-\mathrm{j}-$ closed and so A is also $(1,2)$ - j -closed.
(v) Since (1,2)-j-cl (A) is the smallest (1,2)-jclosed set containing A , and $\mathrm{A} \subseteq(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})$
(vi)Let $A \subset B$, and by the pervious theorem we have $\mathrm{B} \subset(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{B})$. Since $A \subset B$, we have $\mathrm{A} \subset$ (1,2)-j-cl (B) but (1,2)-j-cl (B) is (1,2)-j-closed set.Thus (1,2)-j-cl (B) is (1,2)-j-closed set containing A.Since (1,2) $\mathrm{j}-\mathrm{cl}$ (A) is the smallest (1,2)-j-closed set containing A.We have (1,2)-j-cl
$(A) \subseteq(1,2)$-j-cl(B) \quad so, $\quad A \subseteq B \Rightarrow(1,2)$-j-cl (A) $\subseteq(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{B})$
(vii) $\mathrm{A} \cap \mathrm{B} \subset \mathrm{A} \Rightarrow(1,2)-\mathrm{j}-\mathrm{cl} \quad(A \cap B) \subset(1,2) \mathrm{j}-\mathrm{cl} \quad(\mathrm{A})$ and $\mathrm{A} \cap \mathrm{B} \subset \mathrm{B} \Rightarrow(1,2)-\mathrm{j}-\mathrm{cl}(A \cap B) \subset(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{B})$. Hence $(1,2)-\mathrm{j}-\mathrm{cl}(A \cap B) \subseteq(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A}) \cap(1,2) \mathrm{j}-\mathrm{cl}$ (B)

5.2 Example

$(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A}) \cap(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{B}) \neq(1,2)-\mathrm{j}-\mathrm{cl}(A \cap B)$

Let $\mathrm{X}=\{a, b, c\}, \tau_{1}=\{\phi, X,\{b, c\}\}, \tau_{2}=\{\phi, X,\{a, b\}\}$ then $\quad(1,2)-\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a, b\},\{b, c\}\}, \quad(1,2)-$ $\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a\},\{b\},\{c\},\{a, c\}\}$. If we take $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{b, c\}$ then $(1,2)-\mathrm{j}-\mathrm{cl}(\mathrm{A})=X$ and $(1,2)-\mathrm{j}-\mathrm{cl} \quad(\mathrm{B})=X$. So $\quad(1,2)-\mathrm{j}-\mathrm{cl} \quad(\mathrm{A}) \cap(1,2)-\mathrm{j}-\mathrm{cl}$ $(\mathrm{B})=\{b\},(1,2)-\mathrm{j}-\mathrm{cl} \quad(A \cap B)=(1,2) \mathrm{j}-\mathrm{cl} \quad(\{b\})=\{b\}$. Hence (1,2)-j-cl (A) $\cap(1,2)$-j-cl (B) $\neq(1,2)$-j-cl $(A \cap B)$

5.3 Example

$(1,2)$-j-cl (A) $\cup(1,2)-\mathrm{j}-\mathrm{cl}(B) \neq(1,2)-\mathrm{j}-\mathrm{cl}(A \cup B)$

Let $\mathrm{X}=\{a, b, c\}, \tau_{1}=\{\phi, X,\{b, c\}\}, \tau_{2}=\{\phi, X,\{a, b\}\}$ then $\quad(1,2)-\mathrm{jO}(\mathrm{X})=\{\phi, X,\{a, b\},\{b, c\}\}, \quad(1,2)-$ $\mathrm{jC}(\mathrm{X})=\{\phi, X,\{a\},\{b\},\{c\},\{a, c\}\}$. If we take $\mathrm{A}=\{a\}$ and $\mathrm{B}=\{b\}$ then $(1,2) \mathrm{j}-\mathrm{cl}(\mathrm{A})=\{a\}$ and $(1,2) \mathrm{j}-\mathrm{cl}$ $(\mathrm{B})=\{b\} \quad$ so, $\quad(1,2)-\mathrm{j}-\mathrm{cl} \quad(\mathrm{A}) \cup(1,2)-\mathrm{j}-\mathrm{cl}$ (B) $=\{a, b\},(1,2)-\mathrm{j}-\mathrm{cl}(A \cup B)=(1,2)-\mathrm{j}-\mathrm{cl}(\{a, b\})=X$. Hence (1,2)-j-cl (A) $\mathrm{U}(1,2)-\mathrm{j}-\mathrm{cl} \quad(B) \quad \neq(1,2)-\mathrm{j}-\mathrm{cl}$ $(A \cup B)$

5.4 Proposition

A subset A is $(1,2)$-j-closed iff $\mathrm{Pcl}_{1} \mathrm{int}_{2}(A) \subset A$

Proof

Suppose that A is(1,2)-j-closed set in a bitopological space X , the $X \backslash A$ is (1,2)-j-open. Hence $X \backslash A \subset \operatorname{int}_{1} \operatorname{Pcl}_{2}(X \backslash A)$. But $\operatorname{Pcl}_{2}(X \backslash$ $A)=X \backslash \operatorname{Pint}_{2}(A)$, so $X \backslash A \subset \operatorname{Pint}_{1}(X \backslash A) \subset$ $\left.\operatorname{int}_{2}(A)\right)$. Again $\operatorname{Pint}_{1}\left(X \backslash \operatorname{int}_{2}(A)\right)=X \backslash$ Pcl_{1} int $_{2}(A)$. Therefore, we get $X \backslash A \subset X \backslash$ $\mathrm{Pcl}_{1} \mathrm{int}_{2}(A)$. Taking complement of both sides, we obtain Pcl_{1} int $_{2}(A) \subset A$.

Conversely,

Suppose the $\operatorname{Pcl}_{1} \operatorname{int}_{2}(A) \subset A$, then by taking complement of both sides we obtain $X \backslash A \subset$ $\operatorname{Pint}_{1} \operatorname{Pcl}_{2}(X \backslash A)$ which implies that $X \backslash A$ is $(1,2)$-j-open. Hence A is $(1,2)$ - j -closed.

5.5 Proposition

Every 1-closed subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is (1,2)-j-closed

Proof

Let A be 1-closed subset of bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$. Then $\mathrm{A}=\operatorname{Pcl}_{1}(A)$.

Hence $\operatorname{Pcl}_{1} \operatorname{int}_{2}(A) \subset A$, so A is $(1,2)$-j-closed.

5.6 Proposition

Every 2-closed subset of a bitopological space ($\mathrm{X}, \tau_{1}, \tau_{2}$) is (2,1)-j-closed

Proof

Let A be 2-closed subset of bitopological space $\left(\mathrm{X}, \tau_{1}, \tau_{2}\right)$. Then $\mathrm{A}=\mathrm{Pcl}_{2}(A)$.

Hence Pcl $_{1} \operatorname{int}_{2}(A) \subset A$, so A is $(2,1)$-j-closed.

References

[1] D. Andrijevic and M. Ganster, On PO-equivalent topologies, In IV International Meeting on Topology in Italy (Sorrento, 1988), Rend. Circ. Mat. Palermo, (2) Suppl, 251-256.
[2] B.Bhattacharya and A. Paul, On bitopological γ-open set, Isor journal of Mathematics, 5(2) (2013), 10-14.
[3] S. Bose, Semi-open sets, semi continuity and semi-open mappings in bitopological spaces, Bull.Calcutta Math.Soc, 73(1981), 237-246.
[4] B.P. Dvalishvili Bitopological spaces: theory, relations with generalized algebraic 2005.
[5] A.Kar and B.Bhattacharya, Bitopological pre-open sets, pre-continuity and pre-open mappings, Indian J. Math., 34(1992), 237-246
[6] J.C. Kelly, Bitopological spaces, Proc. London, Math. Soc., 13(1963), 71-89.
[7] A.B. Khalaf and A.M. Omer, Si - Open sets and Si continuity in bitopological spaces, Tamkang Journal of Mathematics, 43(1) (2012), 81-97
[8] F.H. Khedr, Properties of ij - delta open sets, Fasciculi Mathematici, 52(2014), 65-81.
[9] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer Math.Monthly, 70 (1963),36-41.
[10] S.N. Maheshwari and R. Prasad, Semi open sets and semi continuous funtions in bitopological spaces, Math.Notae., 26(1977/78), 29-37.
[11] A.S. Mashhour, M.E.Abdl El-Monsef and S.N. El-Deeb, Onprecontinuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
[12] S.Raychaudhui and M.N Mukherjee, on δ-almost continuity and δ-preopen sets, Bull. Inst.Math.Acad. Sinica, 21(1993), 357-366.
[13] M.M. El-Sharkasy, On $\wedge \alpha$-sets and the associated topology $\mathrm{T} \wedge \alpha$, Journal of the Egyptian Mathematical Society, 23(2015), 371-376.

