Fixed Point Theorems for Multivalued Contractive mappings in b-Metric Space

U. Karuppiah ${ }^{1}$ and M. Gunaseelan ${ }^{2}$
1.Department of Mathematics, St.Joseph's College(Autonomous), Tiruchirappalli-620 002,India.
2.Department of Mathematics, Sri Sankara Arts and Science College, Enathur, Kanchipuram-631 561,India.

25 Sep 2016

Abstract

In this paper, we prove a fixed point theorem for multivalued contractive mappings in b-metric spaces. This results offers a generalization of Swati Agarawal,K.Qureshi and Jyoti Nema theorem in [1].An example to support our result is presented

Key words:b-Metric space;Contraction;Multivalued mappings;Fixed point.

1 Introduction and preliminaries

In many branches of science,economics,computer science,engineering and the development of nonlinear analysis, the fixed point theory is one of the most important tool.In 1989,Backhtin [2] introduced the concept of b-metric space.In 1993,Czerwik [6] extended the results of b-metric spaces.Using this idea many researcher presented generalization of the renowned banach fixed point theorem in the b-metric space.Mehmet Kir [8],Boriceanu [5],Czerwik [6],Bota [4],Pacurar [9] extended the fixed point theorem in b-metric space.Various problems of the convergence of measurable functions with respect to measure,Czerwik [6] first presented a generalization of banach fixed point theorem in b-metric spaces.The following definitions will be needed in the sequel:

Definition 1.1. [6] Let X be a nonempty set and let $s \geq 1$ be a given real number.A function $d: X \times X \rightarrow \mathbb{R}^{+}$is said to be a b-metric if and only if for all $x, y, z \in X$ the following conditions are satisfied :
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, z) \leq s[d(x, y)+d(y, z)]$.

Then, the triplet (X, d, s) is called a b-metric space.

It is an obvious fact that a metric space is also a b-metric space with $s=1$, but the converse is not generally true.To support this fact, we have the following example.

Example 1.1. [5] The set $l_{p}(\mathbb{R})$ (with $0<p<1$), where $l_{p}(\mathbb{R}):=\left\{\left(x_{n}\right) \subset R\right.$: $\left.\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\}$, together with the function $d: l_{p}(\mathbb{R}) \times l_{p}(\mathbb{R}) \rightarrow \mathbb{R}$, $d(x, y)=\left(\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right)^{\frac{1}{p}}$ where $x=x_{n}, y=y_{n} \in l_{p}(\mathbb{R})$ is a b-metric space.By an elementary calculation we obtain that $d(x, z) \leq 2^{\frac{1}{p}}[d(x, y)+d(y, z)]$.

Example 1.2. [5] Let $X=\{0,1,2\}$ and $d(2,0)=d(0,2)=m \geq 2, d(0,1)=$ $d(1,2)=d(1,0)=d(2,1)=1$ and $d(0,0)=d(1,1)=d(2,2)=0$.then $d(x, y) \leq$ $\frac{m}{2}[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.If $m>2$ then the triangle inequality does not hold.

Example 1.3. [5] The space $L_{p}(0<p<1)$, for all real function $x(t), t \in[0,1]$ such that $\left(\int_{0}^{1}|x(t)-y(t)|^{p} d t\right)^{\frac{1}{p}}$.

Definition 1.2. [5] Let (X, d) be a b-metric space.Then a sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if and only if for all $\epsilon>0$ there exist $n(\epsilon) \in \mathbb{N}$ such that for each $n, m \geq n(\epsilon)$ we have $d\left(x_{n}, x_{m}\right)<\epsilon$.

Definition 1.3. [5] Let (X, d) be a b-metric space.Then a sequence $\left\{x_{n}\right\}$ in X is called convergent sequence if and only if there exists $x \in X$ such that for all $\epsilon>0$ there exists $n(\epsilon) \in \mathbb{N}$ such that for all $n \geq n(\epsilon)$ we have $d\left(x_{n}, x\right)<\epsilon$.In this case we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.4. [10] Let X and Y be nonempty sets.T is said to be multivalued mapping from X to Y if T is a function for X to the power set of Y.we denote a multivalued map:
$T: X \rightarrow 2^{Y}$.
Definition 1.5. [10] A point of $x_{0} \in X$ is said to be a fixed point of the multivalued mappings T if $x_{0} \in T x_{0}$.

Definition 1.6. [3] Let (X, d) be a metric space. A map $T: X \rightarrow X$ is called Contraction if there exists $0 \leq \lambda<1$ such that $d(T x, T y) \leq \lambda d(x, y)$,for all $x, y \in X$.

Definition 1.7. [3] Let (X, d) be a metric space. We define the Hausdorff metric on $C B(X)$ induced by d.That is
$H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}$ for all $A, B \in C B(X)$, where $C B(X)$ denotes the family of all nonempty closed and bounded subsets of X and $d(x, B)=\inf \{d(x, b): b \in B\}$,for all $x \in X$.

Definition 1.8. [3] Let (X, d) be a metric space. A map $T: X \rightarrow C B(X)$ is said to be multivalued contraction if there exists $0 \leq \lambda<1$ such that $H(T x, T y) \leq$ $\lambda d(x, y)$,for all $x, y \in X$.

In 2016,Swati Agarawal,K.Qureshi and Jyoti Nema proved the following theorem in [1].

Theorem 1.4. Let (X, d) be a complete b-metric space. Let T be a mappings $T: X \rightarrow X$ such that

$$
d(T x, T y) \leq a \max \{d(x, T x), d(y, T y), d(x, y)\}+b\{d(x, T y)+d(y, T x)\}
$$

where $a, b>0$ such that $a+2 b s \leq 1$ for all $x, y \in X$ and $s \geq 1$ then T has a unique fixed point.

In 1996,B.E.Rhoades define the contractive definition as follows:
Let $F: X \rightarrow C B(X)$. For each $x, y \in X$,

$$
\begin{equation*}
H(F x, F y) \leq \alpha d(x, y)+\beta \max \{d(x, F x), d(y, T y)\}+\gamma[d(x, F y)+d(y, F y)] \tag{1}
\end{equation*}
$$

where $\alpha, \beta, \gamma \geq 0$ and such that

$$
s:=\left(\frac{1+\alpha+\gamma}{1-\beta-\gamma}\right)\left(\frac{\alpha+\beta+\gamma}{1-\gamma}\right)<1 .
$$

In this paper, we study the existence of fixed point on above contractive mapping under b-metric space. Our results generalization of [1].

2 Main results

Theorem 2.1. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and the mapping $T: X \rightarrow C B(X)$ be multivalued map satisfying

$$
\begin{equation*}
H(T x, T y) \leq a d(x, y)+b \max \{d(x, T x), d(y, T y)\}+c[d(x, T y)+d(y, T y)] \tag{2}
\end{equation*}
$$

for all $x, y \in X$, and $a, b, c \in[0,1)$ are constant such that $a+b+c<1$. Then T has a unique fixed point in X.

Proof. For every $x_{0} \in X$ and $n \geq 1, x_{1} \in T x_{0}$ and $x_{n+1} \in T x_{n}$. we have

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & \leq H\left(T x_{n}, T x_{n-1}\right) \\
& \leq a d\left(x_{n}, x_{n-1}\right)+b \max \left\{d\left(x_{n}, T x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right)\right\} \\
& +c\left[d\left(x_{n}, T x_{n-1}\right)+d\left(x_{n-1}, T x_{n-1}\right)\right] \\
& \leq a d\left(x_{n}, x_{n-1}\right)+b \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\} \\
& +c\left[d\left(x_{n}, x_{n}\right)+d\left(x_{n-1}, x_{n}\right)\right] \\
& \leq(a+c) d\left(x_{n}, x_{n-1}\right)+b \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\} \\
& \leq(a+c) d\left(x_{n}, x_{n-1}\right)+b M_{1}
\end{aligned}
$$

where $M_{1}=\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\}$
Now two cases arises,
Case I: If suppose that $M_{1}=d\left(x_{n}, x_{n+1}\right)$ then we have,

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leq(a+c) d\left(x_{n}, x_{n-1}\right)+b d\left(x_{n}, x_{n+1}\right) \\
& \leq\left(\frac{a+c}{1-b}\right) d\left(x_{n}, x_{n-1}\right) \\
& \leq k d\left(x_{n}, x_{n-1}\right) \tag{3}
\end{align*}
$$

where $k=\left(\frac{a+c}{1-b}\right)<1$

$$
\begin{aligned}
& \therefore d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right), \\
& d\left(x_{n}, x_{n+1}\right) \leq k^{2} d\left(x_{n-1}, x_{n-2}\right)
\end{aligned}
$$

Continuing this process, we obtain

$$
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right) .
$$

Case II:If suppose that $M_{1}=d\left(x_{n-1}, x_{n}\right)$

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leq(a+c) d\left(x_{n}, x_{n-1}\right)+b d\left(x_{n-1}, x_{n}\right) \\
& \leq(a+b+c) d\left(x_{n}, x_{n-1}\right) \\
& \leq k d\left(x_{n}, x_{n-1}\right) \tag{4}
\end{align*}
$$

where $k=a+b+c<1$

$$
\begin{aligned}
& \therefore d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right), \\
& d\left(x_{n}, x_{n+1}\right) \leq k^{2} d\left(x_{n-1}, x_{n-2}\right)
\end{aligned}
$$

Continuing this process, we obtain

$$
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right) .
$$

Let $m, n \in N, m>n$,

$$
\begin{align*}
d\left(x_{n}, x_{m}\right) & \leq s\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{m}\right)\right] \\
& \leq s d\left(x_{n}, x_{n+1}\right)+s^{2}\left[d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{m}\right)\right] \\
& \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+s^{3} d\left(x_{n+2}, x_{n+}\right)+\ldots \ldots \\
& \leq s k^{n} d\left(x_{0}, x_{1}\right)+s^{2} k^{n+1} d\left(x_{n+1}, x_{n+2}\right)+s^{3} k^{n+2} d\left(x_{0}, x_{1}\right)+\ldots \ldots \\
& \leq s k^{n} d\left(x_{0}, x_{1}\right)\left[1+s k+(s k)^{2}+(s k)^{3}+\ldots \ldots\right] \\
& \leq \frac{s k^{n}}{1-s k} d\left(x_{0}, x_{1}\right) \tag{5}
\end{align*}
$$

Since $k<1, \lim _{n \rightarrow \infty} \frac{s k^{n}}{1-s k} d\left(x_{0}, x_{1}\right)=0$ as $n, m \rightarrow \infty$. Then $\left\{x_{n}\right\}$ is Cauchy sequence in (X, d).Since (X, d) is a complete b-metric space, there exists $z \in X$
such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$.
Now,

$$
\begin{align*}
d(z, T z) & \leq s\left[d\left(z, x_{n+1}\right)+d\left(x_{n+1}, T z\right)\right] \\
& \leq s d\left(z, T x_{n}\right)+s H\left(T x_{n}, T z\right) \\
& \leq s d\left(z, x_{n+1}\right)+s\left[a d\left(x_{n}, z\right)+b \max \left\{d\left(x_{n}, T x_{n}\right), d(z, T z)\right\}\right. \\
& \left.+c\left(d\left(x_{n}, T z\right)+d(z, T z)\right)\right] \\
& \leq s d\left(z, x_{n+1}\right)+s\left[a d\left(x_{n}, z\right)+b \max \left\{d\left(x_{n}, x_{n+1}\right), d(z, T z)\right\}\right. \\
& \left.+c\left(d\left(x_{n}, T z\right)+d(z, T z)\right)\right] \\
& \leq s d\left(z, x_{n+1}\right)+\operatorname{sad}\left(x_{n}, z\right)+s b \max \left\{d\left(x_{n}, x_{n+1}\right), d(z, T z)\right\} \\
& +s c\left(d\left(x_{n}, T z\right)+d(z, T z)\right) \\
& \leq s d\left(z, x_{n+1}\right)+\operatorname{sad}\left(x_{n}, z\right)+s b M_{2}+s c\left(d\left(x_{n}, T z\right)+d(z, T z)\right) \tag{6}
\end{align*}
$$

where $M_{2}=\max \left\{d\left(x_{n}, x_{n+1}\right), d(z, T z)\right\}$.
Case I:If suppose that $M_{2}=d\left(x_{n}, x_{n+1}\right)$ then we have,

$$
\begin{align*}
d(z, T z) & \leq s d\left(z, x_{n+1}\right)+\operatorname{sad}\left(x_{n}, z\right)+\operatorname{sbd}\left(x_{n}, x_{n+1}\right)+s c\left(d\left(x_{n}, T z\right)+d(z, T z)\right) \\
& \leq s d\left(z, x_{n+1}\right)+\operatorname{sad}\left(x_{n}, z\right)+s^{2} b d\left(x_{n}, z\right)+s^{2} b d\left(z, x_{n+1}\right) \\
& +s^{2} c d\left(x_{n}, z\right)+s^{2} c d(z, T z)+\operatorname{scd}(z, T z) \\
& \left.\leq\left(\frac{s+s^{2} b}{1-s^{2} c-s c}\right) d\left(z, x_{n+1}\right)\right)+\left(\frac{s a+s^{2} b+s^{2} c}{1-s^{2} c-s c}\right) d\left(x_{n}, z\right) \tag{7}
\end{align*}
$$

Letting $n \rightarrow \infty$, we get $d(z, T z)=0$.
Thus, $T z=z$.Therefore z is the fixed point of T.
Case II:If suppose that $M_{2}=d(z, T z)$ then we have,

$$
\begin{align*}
d(z, T z) & \leq s d\left(z, x_{n+1}\right)+\operatorname{sad}\left(x_{n}, z\right)+\operatorname{sd}(z, T z)+\operatorname{sc}\left(d\left(x_{n}, T z\right)+d(z, T z)\right) \\
& \leq s d\left(z, x_{n+1}\right)+\operatorname{sad}\left(x_{n}, z\right)+\operatorname{sd}(z, T z) \\
& +s^{2} c d\left(x_{n}, z\right)+s^{2} c d(z, T z)+\operatorname{scd}(z, T z) \\
& \left.\leq\left(\frac{s}{1-s-s^{2} c-s c}\right) d\left(z, x_{n+1}\right)\right)+\left(\frac{s a+s^{2} b}{1-s-s^{2} c-s c}\right) d\left(x_{n}, z\right) \tag{8}
\end{align*}
$$

Letting $n \rightarrow \infty$, we get $d(z, T z)=0$.
Thus, $T z=z$. Therefore z is the fixed point of T. Now we show that z is the unique fixed point of T.Assume that u is another fixed point of T. Then we have $T v=v$ and

$$
\begin{aligned}
d(u, v) & =d(T z, T v) \\
& \leq s[d(u, T v)+d(v, T u)]
\end{aligned}
$$

we obtain, $d(u, v) \leq 2 s d(u, v)$.This implies that $u=v$. Therefore T has a fixed point in X.

Example 2.2. Let $X=[0,1]$. We define $d: X \times X \rightarrow X$ by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$.Then (X, d) is a complete b-metric space.
Define $T: X \rightarrow C B(X)$ by $T x=\frac{x}{7}$ for all $x, y \in X$. Then,

$$
H(T x, T y)=\frac{1}{49} d(x, y)
$$

[where, $b=c=0, a=\frac{1}{49}$].
Therefore, $0 \in X$ is the unique fixed point of T.

References

[1] Swati Agrawal,K.Qureshi and Jyoti Nema, "A fixed point theorem for bmetric"Int.J.of Pure and Applied Mathematical Sciences, Volume 9,Number 1(2016), pp.45-50.
[2] I.A.Bakhtin, "The contraction mappings principle in quasi-metric spaces,"Functional Analysis, vol.30,pp.26-37,1989(Russian).
[3] Banach,S, "Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales",Fundam.Math.3,133-181 (1922).
[4] Bota,M.,Molnar,A.and Varga,C., "On ekeland's variational principle in bmetric spaces, Fixed Point Theory 12(2011), no.2,21-28.
[5] Boriceanu,M., "Fixed point theory for multivalued generalized contraction on a set with two b-metrics,"Studia Universitatics Babes-Bolyai-Series Mathematica,vol.54,no.3,pp.3-14,2009.
[6] S.Czerwick, "Contraction mappings in b-metric spaces,"Acta Mathematica et Informatica Universitatis Ostraviensis,vol.1,pp.5-11,1993.
[7] S.Czerwick, "Nonlinear set-valued contraction mappings in b-metric spaces,"Atti del Seminario Mathematico e Fisico dell'Università di Modena,vol.46,pp.263-276,1998.
[8] Kir Mehmet,Kiziltune,Hukmi, "On some well known fixed point theorems in b-metric spaces,Turkish Journal of analysis and number theory,2013,vol.1,no.13-16.
[9] Pacurar,M., "Sequence of almost contractions and fixed points in b-metric spaces,"Analele Universitát de Vest,Timisoara,Seria Matematicá Informaticá XLVIII (2010),no.3,125-137.
[10] J.Nadler, "Multi-valued contraction mappings,"Pacific Journal of Mathematics,vol.30,pp.445-488,1969.
[11] Billy E.Rhoades, "A fixed point theorem for a multivalued nonself mapping,"Commentations Mathematicae Universitatis Universitatis Carolinae, Vol.37(1996), No.2,401-404.

