Cordial and total magic cordial labelings for the Extended duplicate graph of Arrow Graph

B. Selvam ${ }^{1}$, R.Avudainayaki ${ }^{2}$ and P.P.Ulaganathan ${ }^{3}$
${ }^{1,3}$ Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai - 600 073, India
${ }^{2}$ Department of Mathematics, Sri Sairam Institute of Technology, Chennai - 600 044, India

Abstract

In this paper, we prove that the extended duplicate graph of arrow graph is cordial, total cordial and total magic cordial.

AMS Subject Classification : 05C78
Keywords: Graph labeling, Cordial labeling, Total magic cordial labeling, Arrow graph.

1.INTRODUCTION:

Graph theory is the fast growing area of combinatorics. Graph labeling is one of the major research area in graph theory. Graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Graph labeling used in many applications like coding theory, radar circuit design, communication network and X ray etc.,. Various papers based on graph labeling have been studied in over 2100 papers [1]. Several researchers refer to Rosa's [2] work

One of the most famous labeling of graph theory is cordial labeling. This labeling was introduced by Cahit in the year 1987 [3]. Cahit has introduced the concept of total magic cordial graph.The concept of duplicate graph was introduced by E. Sampath kumar and he proved many results on it [4] .K.Thirusangu, P.P. Ulaganathan and B. Selvam have proved that the duplicate graph of a path graph P_{m} is cordial [5]. V.J.Kaneria, M.M.Jariya and H.M.Makadia have proved the gracefulness of arrow graphs and double arrow graphs [7]. N.Deepa and R.Sridevi have proved the total 3sum cordial labeling of arrow graphs and double arrow graphs [8]. K.Thirusangu, B.Selvam and P.P.

Ulaganathan have proved that the extended duplicate graph of twig graphs is cordial and total cordial[6]. B.Selvam and K.Thirusangu have proved that the extended duplicate graph of twig graphs is total magic cordial [9].

2. PRELIMINARIES

In this section, we give the basic definitions relevant to this paper. Let $\mathrm{G}=\mathrm{G}(\mathrm{V}, \mathrm{E})$ be a finite, simple and undirected graph with p vertices and q edges. By a labeling we mean a one-to-one mapping that carries a set of graph elements onto a set of numbers, called labels (usually the set of integers).

Definition 2.1 ARROW GRAPH: An arrow graph A_{m}^{n} with width ' n ' and length ' m ' is obtained by joining a vertex ' v ' with superior vertices of $P_{\mathrm{t}} \times P_{\mathrm{m}}$ by ' t ' new edges from one end. Clearly it has $2 \mathrm{~m}+1$ vertices and 3 m edges.

Illustration 1: ARROW GRAPH (A_{3}^{2})

Definition 2.2 DUPLICATE GRAPH: Let G (V,E) be a simple graph and the duplicate graph of G is $\mathrm{DG}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$,where the vertex set $\mathrm{V}_{1}=\mathrm{V} \cup \mathrm{V}^{\prime}$ and $\mathrm{V} \cap \mathrm{V}^{\prime}=\phi$ and $f: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is bijective (for $v \in$ V , we write $f(v)=v^{\prime}$ for convenience) and the edge
set E_{1} of DG is defined as the edge $a b$ is in E if and only if both $a b^{\prime}$ and $a b$ are edges in E_{1}.

Definition2.3 EXTENDED DUPLICATE GRAPH

 OF ARROW GRAPH: Let $\mathrm{DG}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ be a duplicate graph of the arrow graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$. Extended duplicate graph of arrow graph is obtained by adding the edge $v_{2} v_{2}^{\prime}$ to the duplicate graph. It is denoted by EDG ($\mathrm{A}_{\mathrm{m}}^{2}$). Clearly it has $4 m+2$ vertices and $6 m+1$ edges, where ' m ' is the number of length.Illustration 2: EXTENDED DUPLICATE GRAPH OF ARROW GRAPH (A_{3}^{2})

Fig: $\operatorname{EDG}\left(\mathrm{A}_{3}^{2}\right)$

Definition 2.4 CORDIAL LABELING:

A function $f: \mathrm{V} \rightarrow\{0,1\}$ such that each edge $u v$ receives the label $|f(u)-f(v)|$ is said to be cordial labeling if the number of vertices labeled ' 0 ' and the number of vertices labeled ' 1 ' differ by at most one, and the number of edges labeled ' 0 ' and the number of edges labeled ' 1 ' differ by at most one.

Definition 2.5 TOTAL CORDIAL LABELING:

A function $f: \mathrm{V} \rightarrow\{0,1\}$ such that each edge uv receives the label $|f(\mathrm{u})-f(\mathrm{v})|$ is said to be total cordial labeling if the number of vertices and
edges labeled ' 0 ' and the number of vertices and edges labeled ' 1 'differ by at most one.

Definition 2.6 TOTAL MAGIC CORDIAL

LABELING: A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to admit total total magic cordial labeling if $f: \mathrm{V} \cup \mathrm{E} \rightarrow\{0,1\}$ such that
$\{f(x)+f(y)+f(x y)\}(\bmod 2)$ is constant for all edges $x y \in \mathrm{E}$.
(ii) $|f(0)-f(1)| \leq 1$, where
a) $f(0)$ denotes the sum of the number of the vertices labeled with ' 0 ' and the number of edges labeled with ' 0 ' .
b) $f(1)$ denotes the sum of the number of the vertices labeled with ' 1 ' and the number of edges labeled with ' 1 '.

3. MAIN RESULTS

3.1 CORDIAL LABELING

In this section, we present an algorithm and prove the existence of cordial labeling for the extended duplicate graph of arrow graph $A_{m}^{2}, m \geq 2$.

ALGORITHM: 3.1

Procedure[Cordial labeling for $\left.\boldsymbol{E D G}\left(\mathrm{A}_{\mathrm{m}}^{2}\right), \boldsymbol{m} \geq 2\right]$
$\mathrm{V} \leftarrow\left\{v_{1}, v_{2}, \ldots, v_{2 \mathrm{~m}}, v_{2 \mathrm{~m}+1}, v^{\prime}{ }_{1}, v^{\prime}{ }_{2}, \ldots, v^{\prime}{ }_{2 \mathrm{~m}}, v^{\prime}{ }_{2 \mathrm{~m}+1}\right\}$
$\mathrm{E} \leftarrow\left\{e_{1}, e_{2}, \ldots, e_{3 \mathrm{~m}}, e_{3 \mathrm{~m}+1}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{3 m}^{\prime}\right\}$

$$
v_{1} \leftarrow 1, v_{1}^{\prime} \leftarrow 0
$$

$$
\begin{array}{r}
\text { For } \mathrm{i}=0 \text { to }(\mathrm{m}-1) \quad \text { do } \\
\begin{array}{c}
v_{2+2 \mathrm{i}}
\end{array} \quad \leftarrow 1 \\
v_{3+2 \mathrm{i}} \quad \leftarrow 0
\end{array}
$$

end for
for $\mathrm{i}=0$ to $[(\mathrm{m}-1) / 2]$ do

$$
\begin{aligned}
& v_{2+4 \mathrm{i}}^{\prime} \leftarrow 0 \\
& v_{3+4 \mathrm{i}}^{\prime} \leftarrow 1
\end{aligned}
$$

end for
for $\mathrm{i}=0$ to $[(\mathrm{m}-2) / 2]$ do

$$
\begin{aligned}
& v_{4+4 \mathrm{i}}^{\prime} \leftarrow 1 \\
& v_{5+4 \mathrm{i}}^{\prime} \leftarrow 0
\end{aligned}
$$

end for end procedure

THEOREM 3.1: The extended duplicate graph of arrow graph $A_{m}^{2}, m \geq 2$ is cordial labeling.

Proof: Let $\mathrm{A}_{\mathrm{m}}^{2}, \mathrm{~m} \geq 2$ be a arrow graph. In order to label the vertices, define a function f : V $\rightarrow\{0,1\}$ as given in algorithm 3.1. The vertices v_{1} and v_{1} receive label ' 1 ' and ' 0 ' respectively ; the vertices $v_{2+2 i}$ receive label ' 1 ' and the vertices $v_{3+2 \mathrm{i}}$ receive label ' 0 ' for $0 \leq \mathrm{i} \leq(\mathrm{m}-1)$; the vertices $v^{\prime}{ }_{2+4 i}$ receive label ' 0 ' and the vertices $v_{3+4 i}^{\prime}$ receive label ' 1 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-1) / 2]$; the vertices $v^{\prime}{ }_{4+4 i}$ receive label ' 1 ' and the vertices $v^{\prime}{ }_{5+4 \mathrm{i}}$ receive label ' 0 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$. Thus all the $4 \mathrm{~m}+2$ vertices namely the vertices v_{1} and v_{1} receive label ' 1 ' and ' 0 ' respectively ; the vertices $v_{2}, v_{4}, v_{6}, v_{8}, v_{10}, \ldots \ldots, v_{2 \mathrm{~m}}$ receive label ' 1 '; the vertices $v_{3}, v_{5}, v_{7}, v_{9}, v_{11}$, $v_{13,}, \ldots, v_{2 \mathrm{~m}+1}$ receive label ' 0 ';
when m is odd, the vertices $v_{2}^{\prime}, v_{6,}^{\prime}, v_{10}^{\prime}, v^{\prime}{ }_{14,}$ $v^{\prime}{ }_{18}, \ldots . ., v^{\prime}{ }_{2 m}$ receive label ' 0 ' ; the vertices $v_{3}^{\prime}, v^{\prime}{ }_{7,} v_{11}^{\prime}, v^{\prime}{ }_{15}, v^{\prime}{ }_{19}, \ldots \ldots, v^{\prime}{ }_{2 \mathrm{~m}+1}$ receive label ' 1 ' ; the vertices $v^{\prime}{ }_{4}, v^{\prime}{ }_{8,} v^{\prime}{ }_{12}, v^{\prime}{ }_{16,}, v^{\prime}{ }_{20}, \ldots \ldots, v^{\prime}{ }_{2 \mathrm{~m}-2}$ receive label ' 1 ' and the vertices $v^{\prime}{ }_{5}, v^{\prime}{ }_{9}, v^{\prime}{ }_{13}$, $v_{17, \ldots}^{\prime}, \ldots, v_{2 m-1}^{\prime}$ receive label ' 0 ';
when ' m ' is even, $v^{\prime}{ }_{2}, v^{\prime}{ }_{6,} v^{\prime}{ }_{10}, v^{\prime}{ }_{14}, v_{18}^{\prime}, \ldots .$. ,$v^{\prime}{ }_{2 \mathrm{~m}-2}$ receive label ' 0 ' ; the vertices $v_{3}{ }_{3}, v^{\prime}{ }_{7}$, $v_{11}^{\prime}, v^{\prime}{ }_{15}, v^{\prime}{ }_{19}, \ldots \ldots, v^{\prime}{ }_{2 \mathrm{~m}-1}$ receive label ' 1 ' ; the vertices $v_{4}^{\prime}, v^{\prime}{ }_{8}, v_{12}^{\prime}, v_{16,}^{\prime}, v_{20}^{\prime}, \ldots \ldots, v^{\prime}{ }_{2 \mathrm{~m}}$ receive label ' 1 ' and the vertices $v_{5}^{\prime}, v_{9}^{\prime}, v_{13}{ }_{13} v_{17, \ldots}, \ldots$, $v^{\prime}{ }_{2 \mathrm{~m}+1}$ receive label ' 0 '.

Hence the entire $4 \mathrm{~m}+2$ vertices are labeled such that the number of vertices labeled ' 0 ' is $2 \mathrm{~m}+1$ and the number of vertices labeled ' 1 ' is $2 \mathrm{~m}+1$,
which differ by atmost one and satisfies the required condition.

To obtain the labels for edges, we define the induced function $\mathrm{f} *: \mathrm{E} \rightarrow\{0,1\}$ such that

$$
\mathrm{f} *\left(v_{\mathrm{i}} v_{\mathrm{j}}\right)=\left|f\left(v_{\mathrm{i}}\right)-f\left(v_{\mathrm{j}}\right)\right| \text { where } v_{\mathrm{i}}, v_{\mathrm{j}} \in \mathrm{~V}
$$

The induced function yields the label ' 1 ' for the edges $\mathrm{e}_{1}, \mathrm{e}_{1}$ and $\mathrm{e}_{3 \mathrm{~m}+1}$; label ' 0 ' for the edges $\mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}^{\prime}{ }_{2}$ and e_{3}; label ' 0 ' for the edges $\mathrm{e}_{4+\mathrm{j}+6 \mathrm{i}}$ for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$ and $0 \leq \mathrm{j} \leq 1$; label ' 1 ' for the edges $\mathrm{e}_{6+6 \mathrm{i}}$ for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$; label ' 1 ' for the edges $\mathrm{e}_{7+\mathrm{j}+6 \mathrm{i}}$ for $0 \leq \mathrm{i} \leq[(\mathrm{m}-3) / 2]$ and $0 \leq \mathrm{j} \leq 1$; label ' 0 ' for the edges $\mathrm{e}_{9+6 \mathrm{i}}$ for $0 \leq$ $\mathrm{i} \leq[(\mathrm{m}-3) / 2]$; label ' 1 ' for the edges $\mathrm{e}^{\prime}{ }_{4+\mathrm{j}+6 \mathrm{i}}$ for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$ and $0 \leq \mathrm{j} \leq 2$; label ' 0 ' for the edges $\mathrm{e}^{\prime}{ }_{7+\mathrm{j}+6 \mathrm{i}}$ for $0 \leq \mathrm{i} \leq[(\mathrm{m}-3) / 2]$ and $0 \leq \mathrm{j} \leq 2$.

Thus the entire $6 \mathrm{~m}+1$ edges are labeled in such a way that when ' m ' is odd, $3 \mathrm{~m}+1$ edges namely edges $\mathrm{e}_{2}, \mathrm{e}^{\prime}{ }_{2}$ and $\mathrm{e}^{\prime}{ }_{3}$ receive label ' 0 '; edges e_{3}, $e_{9}, e_{15}, e_{21}, \ldots \ldots, e_{3 m}$ receive label ' 0 '; edges e_{4}, e_{5}, $\mathrm{e}_{10}, \mathrm{e}_{11}, \mathrm{e}_{16}, \mathrm{e}_{17, \ldots \ldots .}, \mathrm{e}_{3 \mathrm{~m}-5}, \mathrm{e}_{3 \mathrm{~m}-4}$ receive label ' 0 '; edges $\mathrm{e}_{7}, \mathrm{e}_{8}, \mathrm{e}_{9}, \mathrm{e}_{13}, \mathrm{e}_{14}, \mathrm{e}_{15}, \ldots ., \mathrm{e}_{3 \mathrm{~m}-2}, \mathrm{e}^{{ }_{3 m}-1}{ }^{2}$, $\mathrm{e}^{\prime}{ }_{3 \mathrm{~m}}$ receive label ' 0 ' and 3 m edges namely edges e_{1}, e_{1}^{\prime} and $e_{3 m+4}$ receive label ' 1 '; edges $\mathrm{e}_{6}, \mathrm{e}_{12}, \mathrm{e}_{18}, \ldots \ldots, \mathrm{e}_{3 m-3}$ receive label ' 1 '; edges e_{7}, $e_{8,} e_{13}, e_{14}, \ldots ., e_{3 m-2}, e_{3 m-1}$ receive label ' 1 '; edges $\mathrm{e}_{4}^{\prime}, \mathrm{e}_{5}^{\prime}, \mathrm{e}_{6}^{\prime}, \mathrm{e}_{10}^{\prime}, \mathrm{e}_{11}^{\prime}, \mathrm{e}_{12}^{\prime}, \ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-5}, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-4}, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-3}$ receive label ' 1 '.
when ' m ' is even, 3 m edges namely edges e_{2}, $\mathrm{e}^{\prime}{ }_{2}$ and $\mathrm{e}^{\prime}{ }_{3}$ receive label ' 0 ' ; edges e_{3}, $\mathrm{e}_{9}, \mathrm{e}_{15}$, $\mathrm{e}_{21, \ldots \ldots, \mathrm{e}_{3 \mathrm{~m}-3}}$ receive label ' 0 '; edges $\mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{10}$, $\mathrm{e}_{11}, \mathrm{e}_{16}, \mathrm{e}_{17,}, \ldots, \mathrm{e}_{3 \mathrm{~mm}-2}, \mathrm{e}_{3 \mathrm{~m}-1}$ receive label ' 0 ' ; edges $\mathrm{e}_{7}, \mathrm{e}_{8}, \mathrm{e}_{9}, \mathrm{e}_{13}, \mathrm{e}_{14}, \mathrm{e}_{15}, \ldots ., \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-5} \mathrm{e}^{\prime}{ }_{3 m-4}, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-3}$ receive label ' 0 ' and $3 \mathrm{~m}+1$ edges namely edges e_{1}, e_{1} and $e_{3 m+4}$ receive label ' 1 '; edges e_{6}, e_{12}, $\mathrm{e}_{18, \ldots \ldots, \mathrm{e}_{3 \mathrm{~m}}}$ receive label ' 1 '; edges $\mathrm{e}_{7}, \mathrm{e}_{8}, \mathrm{e}_{13}$, $\mathrm{e}_{14}, \ldots \ldots . ., \mathrm{e}_{3 \mathrm{~m}-5}, \mathrm{e}_{3 \mathrm{~m}-4}$ receive label ' 1 '; edges $\mathrm{e}^{\prime}{ }_{4}$,
$\mathrm{e}_{5}^{\prime}, \mathrm{e}_{6}^{\prime}, \mathrm{e}_{10}, \mathrm{e}_{11}, \mathrm{e}_{12}^{\prime}, \mathrm{e}_{16}^{\prime}, \mathrm{e}_{17}^{\prime}, \mathrm{e}_{18}^{\prime}, \ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-2}, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-1}$, $e^{\prime}{ }_{3 \mathrm{~m}}$ receive label ' 1 '.

Hence all the $6 \mathrm{~m}+1$ edges are labeled such that when ' m ' is odd, $3 \mathrm{~m}+1$ edges receive label ' 0 ' and 3 m edges receive label ' 1 ' and when ' m ' is even, 3 m edges receive label ' 0 ' and $3 \mathrm{~m}+1$ edges receive label ' 1 ' which differ by atmost one and satisfies the required condition.

Hence the extended duplicate graph of arrow graph $A_{m}^{2}, m \geq 2$ is cordial labeling.

THEOREM 3.2 :The extended duplicate graph of arrow graph $\mathrm{A}_{\mathrm{m}}^{2}, \mathrm{~m} \geq 2$ is total cordial.
Proof: In theorem 3.1, $(2 \mathrm{~m}+1)$ vertices were assigned the label ' 0 ', $(2 m+1)$ vertices were assigned the label ' 1 ' and it has been proved that when ' m ' is odd, the number of edges labeled ' 0 '
is 3 m and the number of edges labeled ' 1 ' is $(3 m+1)$ and when ' m ' is even, the number of edges labeled ' 0 ' is $(3 \mathrm{~m}+1)$ and the number of edges labeled ' 1 ' is 3 m . From this we conclude that, when ' m ' is odd, the number of vertices and edges labeled ' 0 ' is $(2 \mathrm{~m}+1)+3 \mathrm{~m}=5 \mathrm{~m}+1$ and the number of vertices and edges labeled ' 1 ' is $(2 m+1)+$ $(3 m+1)=5 m+2$ and when ' m ' is even, the number of vertices and edges labeled ' 0 ' is $(2 \mathrm{~m}+1)+$ $(3 m+1)=5 m+2$ and the number of vertices and edges labeled ' 1 ' is $(2 m+1)+3 m=5 m+1$, which differ by atmost one and satisfies the required condition.
Hence the extended duplicate graph of arrow graph $A_{m}^{2}, m \geq 2$ is total cordial.

Illustration 3: Cordial labeling for the graphs $\operatorname{EDG}\left(\mathrm{A}_{5}^{2}\right)$ and $\operatorname{EDG}\left(\mathrm{A}_{6}^{2}\right)$
CORDIAL LABELING FOR THE EXTENDED DUPLICATE OF ARROW GRAPH

Fig: $\operatorname{EDG}\left(\mathrm{A}_{5}^{2}\right)$

Fig: $E D G\left(\mathrm{~A}_{6}^{2}\right)$

3.2 TOTAL MAGIC CORDIAL LABELING

ALGORITHM: 3.2

PROCEDURE (Total magic cordial labeling for $\boldsymbol{E D G}\left(\mathrm{A}_{\mathrm{m}}^{2}\right), \boldsymbol{m} \geq 2$)
$\mathrm{V} \leftarrow\left\{v_{1}, v_{2}, \ldots, v_{2 \mathrm{~m}}, v_{2 \mathrm{~m}+1}, v^{\prime}{ }_{1}, v^{\prime}{ }_{2}, \ldots, v^{\prime}{ }_{2 \mathrm{~m}}, v^{\prime}{ }_{2 \mathrm{~m}+1}\right\}$
$\mathrm{E} \leftarrow\left\{e_{1}, e_{2}, \ldots, e_{3 \mathrm{~m}}, e_{3 \mathrm{~m}+1}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{3 m}^{\prime}\right\}$
$v_{1} \leftarrow 0, v_{2} \leftarrow 0, v_{3} \leftarrow 1, v_{1}^{\prime} \leftarrow 1$,
$v_{2}^{\prime} \leftarrow 1, v_{3}^{\prime} \leftarrow 0$
$e_{1} \leftarrow 1, e_{2} \leftarrow 0, e_{3} \leftarrow 0, e_{3 \mathrm{~m}+1} \leftarrow 1$,
$e_{1}^{\prime} \leftarrow 1, e_{2}^{\prime} \leftarrow 0, e_{3}^{\prime} \leftarrow 0$
for $\mathrm{i}=0$ to $[(\mathrm{m}-1) / 2]$ do

$$
\begin{aligned}
& v_{4+4 i} \leftarrow 1 \\
& v_{5+4 i} \leftarrow 0
\end{aligned}
$$

end for
for $\mathrm{i}=0$ to $[(\mathrm{m}-2) / 2]$ do

$$
\begin{aligned}
& v_{6+4 i} \leftarrow 0 \\
& v_{7+4 i} \leftarrow 1
\end{aligned}
$$

end for
for $\mathrm{i}=0$ to (m-1) do

$$
\begin{aligned}
& v_{4+2 \mathrm{i}}^{\prime} \leftarrow 1 \\
& v_{5+2 \mathrm{i}}^{\prime} \leftarrow 0
\end{aligned}
$$

end for
for $\mathrm{i}=0$ to $[(\mathrm{m}-1) / 2]$ do
for $\mathrm{j}=0$ to 2 do

$$
e_{4+j+6 i} \leftarrow 1
$$

end for
end for
for $\mathrm{i}=0$ to $[(\mathrm{m}-2) / 2]$ do
for $\mathrm{j}=0$ to 2 do

$$
e_{7+j+6 i} \leftarrow 1
$$

end for
end for

$$
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { to }[(\mathrm{m}-1) / 2] \text { do } \\
& \text { for } \mathrm{j}=0 \text { to1 do } \\
& e^{\prime}{ }_{4+\mathrm{j}+6 \mathrm{i}} \leftarrow 1 \\
& \text { end for } \\
& \text { end for } \\
& \text { for } \mathrm{i}=0 \text { to }[(\mathrm{m}-1) / 2] \text { do } \\
& \text { end for } \quad e_{6+6 \mathrm{i}}^{\prime} \leftarrow 1 \\
& \text { for } \mathrm{i}=0 \text { to }[(\mathrm{m}-2) / 2] \text { do } \\
& \text { for } \mathrm{j}^{\prime}=0 \text { to } 1 \mathbf{d o} \\
& e^{\prime}{ }_{7+\mathrm{j}+6 \mathrm{i}} \leftarrow 1 \\
& \text { end for } \\
& \text { end for } \\
& \text { for } \mathrm{i}=0 \text { to }[(\mathrm{m}-2) / 2] \text { do } \\
& \quad e_{9+6 \mathrm{i}}^{\prime} \leftarrow 1 \\
& \text { end for } \\
& \text { end for } \\
& \text { end procedure }
\end{aligned}
$$

THEOREM 3.3: The extended duplicate graph of arrow graph $A_{m}^{2}, m \geq 2$ is total magic cordial.

Proof: Let $A_{m}^{2}, m \geq 2$ be a arrow graph. In order to label the vertices and edges, define a function $f: \mathrm{VUE} \rightarrow\{0,1\}$ as given in algorithm 3.2.

The vertices v_{1}, v_{2} and v_{3}^{\prime} receive label ' 0 ' ; the vertices v_{3}, v_{1} and v_{2}^{\prime} receive label ' 1 '; the vertices $v_{4+4 i}$ receive label ' 1 ' and the vertices $v_{5+4 i}$ receive label ' 0 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-1) / 2]$; the vertices $v_{6+4 i}$ receive label ' 0 ' and the vertices $v_{7+4 i}$ receive label ' 1 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$; the vertices v ' ${ }_{4+2 i}$ receive label ' 1 ' and the vertices $v^{\prime}{ }_{5+2 \mathrm{i}}$ receive label ' 0 ' for $0 \leq \mathrm{i} \leq(\mathrm{m}-1)$.

Thus when ' m ' is odd, the vertices $v_{1}, v_{2}, v_{6}, v_{10}$, $v_{14,}, \ldots ., v_{2 \mathrm{~m}}$ receive label ' 0 ' ; the vertices v_{5}, v_{9}, $v_{13}, v_{17}, v_{21,}, \ldots$., $v_{2 \mathrm{~m}-1}$ receive label ' 0 ' ; the vertices $v_{3}^{\prime}, v^{\prime}{ }_{7}, v_{11}^{\prime}, v^{\prime}{ }_{15}, v_{19}^{\prime}, \ldots . ., v^{\prime}{ }_{2 \mathrm{~m}+1}$ receive label ' 0 ' ; the vertices $v_{5}^{\prime}, v^{\prime}, v_{9}^{\prime}, v_{13},{ }_{17}, v^{\prime}{ }_{21}, \ldots .$. , $v^{\prime 2 m-1}$ receive label ' 0 ' ; the vertices $v_{3}, v_{7}, v_{11,} v_{15}$ $v_{19}, \ldots \ldots, v_{2 \mathrm{~m}+1}$ receive label ' 1 '; the vertices v_{4}, $v_{8}, v_{12}, v_{16}, v_{20, \ldots \ldots, v_{2 m-2}}$ receive label ' 1 '; the vertices $v_{1}^{\prime}, v_{2}^{\prime}, v_{6}^{\prime}, v_{10}^{\prime}, v_{14}^{\prime}, \ldots . ., v_{2 \mathrm{~m}}^{\prime}$ receive label ' 1 ' ; the vertices $v^{\prime}{ }_{4}, v^{\prime}{ }_{8}, v_{12}, v^{\prime}{ }_{16}, \ldots \ldots$. ,$v^{\prime 2 \mathrm{~m}-2}$ receive label ' 1 ' and
when ' m ' is even, the vertices $v_{1}, v_{2}, v_{6}, v_{10}, v_{14,} \ldots$., $v_{2 \mathrm{~m}-2}$ receive label ' 0 ' ; the vertices v_{5}, v_{9}, v_{13}, $v_{17}, v_{21,}, \ldots$. ., $v_{2 \mathrm{~m}+1}$ receive label ' 0 ' ; the vertices $v_{3}^{\prime}, v^{\prime}{ }_{7}, v^{\prime}{ }_{11}, v_{15}^{\prime}, v^{\prime}{ }_{19}, \ldots . ., v_{2 m-1}^{\prime}$ receive label ' 0 ' ; the vertices $v^{\prime}{ }_{5}, v^{\prime}{ }_{9}, v^{\prime}{ }_{13}, v^{\prime}{ }_{17}, v^{\prime}{ }_{21}, \ldots . ., v^{\prime}{ }_{2 \mathrm{~m}+1}$ receive label ' 0 ' ; the vertices $v_{3}, v_{7}, v_{11}, v_{15}$, $v_{19}, \ldots \ldots, v_{2 m-1}$ receive label ' 1 '; the vertices v_{4}, $v_{8}, v_{12}, v_{16}, v_{20,}, \ldots, v_{2 m}$ receive label ' 1 '; the vertices $v_{1}^{\prime}, v^{\prime}, v^{\prime}{ }_{6}, v^{\prime}{ }_{10}, v_{14}^{\prime}, \ldots \ldots, v^{\prime}{ }_{2 m-2}$ receive label ' 1 ' ; the vertices $v^{\prime}{ }_{4}, v^{\prime}{ }_{8}, v^{\prime}{ }_{12}, v^{\prime}{ }_{16}, \ldots .$. ,$v^{\prime}{ }_{2 \mathrm{~m}}$ receive label ' 1 '.

The edges $e_{1}, e^{\prime}{ }_{1}$ and $e_{3 m+1}$ receive label ' 1 '; the edges $\mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{2}$ and e_{3} receive label ' 0 '; the edges $\mathrm{e}_{4+\mathrm{j}+6 \mathrm{i}}$ receive label ' 1 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-1) / 2]$ and $0 \leq \mathrm{j} \leq 2$; the edges $\mathrm{e}_{7+\mathrm{j}+6 \mathrm{i}}$ receive label ' 1 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$ and $0 \leq \mathrm{j} \leq 2$; the edges $\mathrm{e}^{\prime}{ }_{4+\mathrm{j}+6 \mathrm{i}}$ receive label ' 0 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-1) / 2]$ and 0 $\leq \mathrm{j} \leq 1$; the edges $\mathrm{e}^{\prime}{ }_{6+6 i}$ receive label ' 1 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-1) / 2]$; the edges $\mathrm{e}^{\prime}{ }_{7+\mathrm{j}+6 \mathrm{i}}$ receive label ' 1 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$ and $0 \leq \mathrm{j} \leq 1$; the edges $\mathrm{e}^{\prime}{ }_{9+6 \mathrm{i}}$ receive label ' 0 ' for $0 \leq \mathrm{i} \leq[(\mathrm{m}-2) / 2]$.

Thus when ' m ' is odd, the edges $\mathrm{e}_{1}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{10}$, $\mathrm{e}_{11}, \mathrm{e}_{12}, \ldots, \mathrm{e}_{3 \mathrm{~m}-5}, \mathrm{e}_{3 \mathrm{~m}-4}, \mathrm{e}_{3 \mathrm{~m}-3}$ receive label ' 1 '; the
edges $\mathrm{e}^{\prime}{ }_{1}, \mathrm{e}^{\prime}{ }_{6}, \mathrm{e}^{\prime}{ }_{12}, \mathrm{e}^{\prime}{ }_{18}, \ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-3}$, receive label ' 1 '; the edges $\mathrm{e}_{2}^{\prime}, \mathrm{e}_{3}^{\prime}, \mathrm{e}_{4}^{\prime}, \mathrm{e}_{5}^{\prime}, \mathrm{e}^{\prime}{ }_{10}, \mathrm{e}^{\prime}{ }_{11}, \mathrm{e}^{\prime}{ }_{16}, \mathrm{e}^{\prime}{ }_{17}$, $\ldots, \mathrm{e}_{3 \mathrm{~m}-5}, \mathrm{e}_{3 \mathrm{~m}-4}$ receive label ' 0 ' ; the edges e_{2}, $e_{3}, e_{7}, e_{8}, e_{9}, e_{13}, e_{14}, e_{15}, \ldots, e_{3 m-2}, e_{3 m-1}, e_{3 m}$ receive label ' 0 ' ; the edges $\mathrm{e}^{\prime}{ }_{7}, \mathrm{e}{ }_{8}, \mathrm{e}^{\prime}{ }_{13}, \mathrm{e}^{\prime}{ }_{14}, \ldots, \mathrm{e}{ }_{3 \mathrm{~m}-2}$, $\mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-1}$ receive label ' 1 ' ; the edges $\mathrm{e}_{9}, \mathrm{e}_{15}, \mathrm{e}^{\prime}{ }_{21}$, $\ldots, \mathrm{e}^{\prime} 3 \mathrm{~m}$ receive label ' 0 '.
when ' m ' is even, the edges $\mathrm{e}_{1}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{10}$, $\mathrm{e}_{11}, \mathrm{e}_{12}, \ldots, \mathrm{e}_{3 \mathrm{~m}-2}, \mathrm{e}_{3 \mathrm{~m}-1}, \mathrm{e}_{3 \mathrm{~m}}$ receive label ' 1 '; the edges $\mathrm{e}^{\prime}{ }_{1}, \mathrm{e}^{\prime}{ }_{6}, \mathrm{e}^{\prime}{ }_{12}, \mathrm{e}^{\prime}{ }_{18}, \ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}}$ receive label ' 1 '; the edges $\mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}^{\prime}{ }_{10}, \mathrm{e}_{11}, \mathrm{e}^{\prime}{ }_{16}, \mathrm{e}^{\prime}{ }_{17}$, $\ldots, \mathrm{e}_{3 \mathrm{~m}-2}, \mathrm{e}_{3 \mathrm{~m}-1}$ receive label ' 0 ' ; the edges e_{2}, $\mathrm{e}_{3}, \mathrm{e}_{7}, \mathrm{e}_{8}, \mathrm{e}_{9}, \mathrm{e}_{13}, \mathrm{e}_{14}, \mathrm{e}_{15}, \ldots, \mathrm{e}_{3 \mathrm{~m}-5}, \mathrm{e}_{3 m-4}, \mathrm{e}_{3 \mathrm{~m}-3}$ receive label ' 0 '; the edges $\mathrm{e}^{\prime}{ }_{7}, \mathrm{e}^{\prime}{ }_{8}, \mathrm{e}^{\prime}{ }_{13}, \mathrm{e}^{\prime}{ }_{14,}, \ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-5}$, $\mathrm{e}^{\prime}{ }_{3 \mathrm{~m}} \quad-4$ receive label ' 1 '; the edges $\mathrm{e}_{9}, \mathrm{e}_{15}, \mathrm{e}_{21}$, $\ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}-3}$ receive label ' 0 '.

Thus the entire $4 m+2$ vertices and $6 m+1$ edges are labeled in such a way that the number of vertices labeled ' 0 ' and the number of vertices labeled ' 1 ' are same as $2 m+1$, when ' m ' is odd, the number of edges labeled ' 0 ' is 3 m and the number of edges labeled ' 1 ' is $3 m+1$ and when ' m ' is even, the number of edges labeled ' 0 ' is $3 \mathrm{~m}+1$ and the number of edges labeled ' 1 ' is 3 m , which differ by atmost one and satisfies the required condition.

The induced function $\mathrm{f}^{*}: \mathrm{V} \mathrm{UE} \rightarrow\{0,1\}$ is defined as

$$
\mathrm{f} *\left(v_{\mathrm{i}} v_{\mathrm{j}}\right)=\left\{f\left(v_{\mathrm{i}}\right)+f\left(v_{\mathrm{j}}\right)+f\left(v_{\mathrm{i}} v_{\mathrm{j}}\right)\right\}(\bmod 2) ; v_{\mathrm{i}} v_{\mathrm{j}} \in \mathrm{E}
$$

Thus the induced function yields the total magic cordial constant ' 0 '.

Hence the extended duplicate graph of arrow graph $\mathrm{A}_{\mathrm{m}}^{2}, \mathrm{~m} \geq 2$ is total magic cordial.

Illustration 4: Total magic cordial labeling for the graphs $\operatorname{EDG}\left(\mathrm{A}_{5}^{2}\right)$ and $\operatorname{EDG}\left(\mathrm{A}_{6}^{2}\right)$

TOTAL MAGIC CORDIAL LABELING FOR THE EXTENED DUPLICATE OF ARROW GRAPH

Fig: $\operatorname{EDG}\left(\mathrm{A}_{5}^{2}\right)$

4. CONCLUSION

In this paper, we presented algorithms and prove that the extended duplicate graph of arrow graph $A_{m}^{2}, m \geq 2$ is cordial, total cordial and total magic cordial labeling.

5. REFERENCES

[1] Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of combinatories, 19, \# DS6 (2012).
[2] Rosa A, On certain Valuations of the vertices of a graph, Theory of graphs (Internat. Symposium, Rome, July 1966), Gordon and Breech, N.Y. and Dunod paris, 1967.pp. 349-355.
[3] Cahit, On cordial and 3-equitable labelings of graphs, Util. Math., Vol. 37 (1990)pp.189-198.
[4] E.Sampath kumar, "On duplicate graphs", Journal of the Indian Math. Soc. 37 (1973), 285 - 293.
[5] Thirusangu, K, Ulaganathan P.P and Selvam B. Cordial labeling in duplicate graphs, Int.J. Computer Math. Sci. Appl. Vol. 4, Nos. (1-2) (2010) 179-186.
[6] Thirusangu,K, Selvam B.and Ulaganathan P.P, Cordial labelings in extended duplicate twig graphs ,International Journal of computer, mathematical sciences and applications, Vol.4, Nos 3-4 ,(2010), pp.319-328.

Fig: $\operatorname{EDG}\left(\mathrm{A}_{6}^{2}\right)$
[7] V.J.Kaneria, M.M.Jariya and H.M.Makadia, Gracefulness of arrow graphs and double arrow graphs ,Malaya Journal of Mat. 3(4) (2015) pp. 382-386.
[8] N.Deepa and R.Sridevi, Total 3- sum cordial labeling of arrow graphs and double arrow graphs, International journal of Mathematical Archive -7(4), 2016, pp154-160.
[9] B.Selvam and K.Thirusangu, Total Magic Cordial Labeling in Extended Duplicate Graph of Twig, International Journal of Advanced Scientific Research and Development, Vol 03, Issue 01,Jan-Mar' 2016.

