Importance of Quasi-Concavity and Quasi Convexity in Consumer Optimization Problems

Deepinder Kaur¹, Harmeet Singh Gulati²

¹Assistant Professor, Mathematics Department, S.G.N.D. Khalsa College, University of Delhi, INDIA ²Assistant Professor, Economics Department, S.G.N.D. Khalsa College, University of Delhi, INDIA

Abstract. Concavity and convexity play a vital role in Mathematics. Through this paper we want to check how Concavity and Convexity plays a role in Solving Consumer Problems. We want to see if a Quasi Concave function will lead to Consumer Maximization problem or it will minimize the consumer Utility.

Keywords - *Quasi-Concavity, Quasi-Convexity, Consumers Problem.*

I. INTRODUCTION

A function is said to be Quasi concave if upper level set is the convex set. i.e. in \mathbf{R}^2 + for each real number "a", define the set, P_a by

$$P_a = \{(x, y) \in S : f(x, y) \ge a\},\$$

then P_a should be a convex set.

We will use Lagrange to reach our result.

II. OBJECTIVE

To solve Consumers Problem using Mathematical concepts, and check how to maximize or minimize Consumers utility using **Lagrange optimisation**.

III. RESEARCH METHODOLOGY

Basic Mathematical concepts were used including the Graphs to find the solution to Consumers Problem.

IV. ANALYSIS

Claim

If "Utility function" of the consumer is "Quasiconcave" and "twice-differentiable", then "Lagrange-Optimization" will solve maxima, i.e.

$$L = U(x, y) + \lambda [M - P_x x - P_y y]$$
$$\frac{\partial L}{\partial x} = 0, \frac{\partial L}{\partial y} = 0, \frac{\partial L}{\partial \lambda} = 0$$

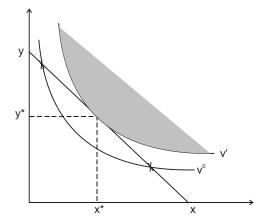
will give (x^*, y^*) which will maximize $U(x^*, y^*)$.

$$U(x, y) = xy \qquad \forall x > 0, y > 0$$

Indifference curve is:

UPPER LEVEL set is CONVEX SET.

Hence Lagrange will solve maximization problem



$$L = xy + \lambda [M - P_x x - P_y y]$$
$$\frac{\partial L}{\partial x} = y - \lambda P_y = 0, \qquad (1)$$

$$\frac{\partial L}{\partial y} = x - \lambda P_y = 0 \tag{2}$$

 $\frac{\partial L}{\partial y} = M - P_x x - P_y y = 0$

∂x

$$\lambda = \frac{y}{P_x} \tag{1'}$$

$$\lambda = \frac{x}{P_y} \tag{2'}$$

$$\frac{y}{P_x} = \frac{x}{P_y} \Longrightarrow P_y y = xP_x$$
$$M = P_x x + xP_x = 2P_x x$$

$$x^* = \frac{M}{2P_x}, \qquad y^* = \frac{M}{2P_y}$$

which maximizes the above utility function.

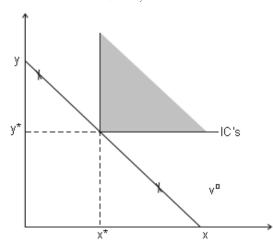
V. AIM

Suppose a utility function is "non-differentiable" Quasi-concave utility function, then also objective function will solve for "maximization problem".

Example

$$U(x, y) = \min(x, y)$$

subject to
$$M = P_x x + P_y y$$



Since the upper level set is the convex set, hence it will solve maximization problem, which happens at tangency point i.e. x = y

$$P_{x}x + P_{y}x = M \implies x = \frac{M}{P_{x} + P_{y}}$$
$$x^{*} + y^{*} = \frac{M}{P_{x} + P_{y}}$$

Claim

If "utility function" of the consumer is "Quasiconvex" and "twice-differentiable", then "Langrange optimization" will solve for minima.

"Quasi-convex" in R_{+}^{2} is

For each real number "a", define the set P_a , by

$$P_a = \{(x, y) \in S : f(x, y) \le a\},\$$

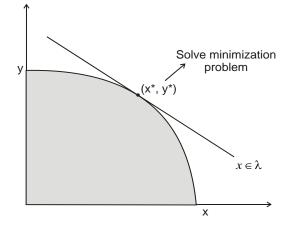
i.e. lower level set, should be a convex set.

Example

$$U = x^2 + y^2$$

subject to $M = P_x x + P_y y$

Here lower level set is convex set. Hence the above function is "Quasi-convex"



$$L = x^2 + y^2 + \lambda [M - P_x x - P_y y]$$

$$\frac{\partial L}{\partial x} = 2x - \lambda P_x = 0 \tag{4}$$

$$\frac{\partial L}{\partial y} = 2y - \lambda P_y = 0 \tag{5}$$

$$\frac{\partial L}{\partial \lambda} = M - P_x x - P_y y = 0 \tag{6}$$

$$\lambda = \frac{2x}{P_x} \qquad \lambda = \frac{2y}{P_y} \tag{4'}$$

$$M = P_x \left(\frac{yP_x}{P_y}\right) + P_y y$$

$$M = \left(\frac{P_x^2}{P_y}\right) y + P_y y$$

$$M.P_y = (P_x^2 + P_y^2) y$$

$$y = \frac{M.P_y}{P_x^2 + P_y^2}, \qquad x = y \frac{P_x}{P_y} = \left(\frac{M.P_y}{P_x^2 + P_y^2}\right) \left(\frac{P_x}{P_y}\right)$$

$$y^* = \frac{M.P_y}{P_x^2 + P_y^2} \qquad x^* = \frac{M.P_x}{P_x^2 + P_y^2}$$

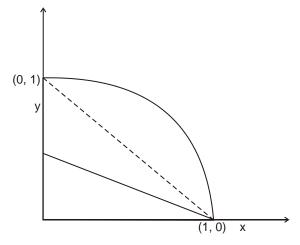
is the minimization solution of the above problem. In MAXIMIZATION problem $U = x^2 + y^2$ subject $P_x x + P_y y = M$

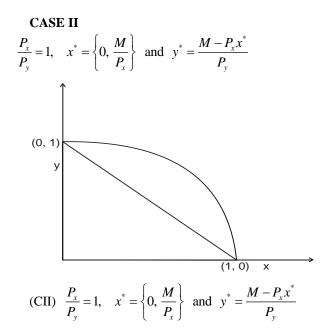
Maximization Problem records a "Corner solution" that could be turned out from **"KHUN TUCKER"** Methodology

CASE I

$$\frac{P_x}{P_y} < 1,$$
 $x^* = \frac{M}{P_x}, y^* = 0$

is the solution to above problem.



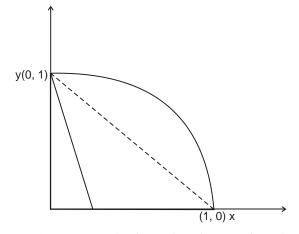


Is the **optimal solution** of above problem.

CASE III

$$\frac{P_x}{P_y} > 1,$$
 $x^* = 0,$ $y^* = \frac{M}{P_y}$

Is the optimal solution of the above problem



Try the same exercise for U(x, y) = max(x, y) which is also a **quasi convex but non differentiable utility function.**

CONCLUSIONS

- 1. A Quasi Concave Utility function will always lead to Consumer Maximization Problem, if we apply LANGRANGE.
- 2. A Quasi Convex Utility function on the other hand will Minimize Consumer Utility on applying Lagrange. Hence we have to apply for corner solutions by applying " KHUN TUCKER "

REFERENCES

[1] K.Sydsaeter and P.Hammand: Mathematics for Economic Analysis, Pearson Educational Asia:Delhi(2002).

[2] Calculus, by Anton, Bivens and Davis (7th Edition), Wiley India Edition

[3] Intermediate Micro Economics: A Modern Approach(8^{th} Edition).