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Abstract: 
 Rainfall is of critical importance for many people particularly those whose livelihoods are dependent on rain fed 

agriculture. Predicting the trend of rainfall is a difficult task in meteorology and environmental sciences. Statistical 

approaches from time series analysis provide an alternative way for predicting the patterns of rainfall. This paper 

describes an empirical study of modeling and forecasting seasonal rainfall patterns in India. The Box-Jenkins 

SARIMA Methodology has been adopted for forecasting, the diagnostic checking has shown that the seasonal model 

4(0,0,0) (0,1,1) fitted to the series is appropriate, and forecast are obtained on the basis of the fitted model. 

Seasonal ARIMA model was a proper method for modeling and predicting the time series of seasonal rainfall 

patterns. 
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1. Introduction 

 

The pattern and amount of rainfall are among the most important factors that affect agricultural systems. The 

analysis of rainfall records for long periods provides information about rainfall patterns and variability. Rain plays a 

major role in hydrology that finds its greatest applications in the design and operations of water resources, 

engineering works as well as agricultural systems. Stochastic models are used in operational hydrology to generate 

synthetic time series which exhibit similar statistical characteristics as the observed data. One of the crucial 

problems in stochastic modeling of hydrologic time series is to find a model which is capable of preserving the 

historical statistical characteristics that affect the variability of the data. Furthermore, the model should be capable of 

reproducing certain statistics that are related to the intended use of the model. Generally, the properties of a process 

include the mean, variance, skewness, and the correlation structure of the data. 

Autoregressive Integrated Moving Average Model (ARIMA), is a widely used time series analysis model for 

analyzing chronological data in statistics. ARIMA model was firstly proposed by Box and Jenkins in the early 

1970s, which is often termed as Box-Jenkins model or B-J model for simplicity (Stoffer and Dhumway, 2010)[1]. 

ARIMA is a type of short-term prediction model in time series analysis, because this method is relatively systematic, 

flexible and can grasp more original time series information. This is the most widely used method in meteorology, 

engineering technology, Marine, business statistics and prediction technology, (Kantz and Schreiber, 2004; Cryer 

and Chan, 2008)[3].  

The general ARIMA model is also applicable for non-stationary time series that have some clearly identifiable 

trends (Stoffer and Dhumway, 2010)[1]. The general notation of Auto Regressive Integrated Moving Average model 

as ARIMA ( , , )p d q , where p is the order of autoregressive part, d is the order of differencing and q is the order 

of the moving average process and all are non-negative integers. General ARIMA model named as non-seasonal 

ARIMA ( , , )p d q model, we should also consider some periodical time series. The periodicity of the time series is 

usually due to seasonal changes like quarterly, monthly and degree of weeks change or some other natural changes. 

If a time series has seasonal variation, there will be autocorrelation at lag S and possibly at multiples of that lag, 

depending on the persistence and nature of that autocorrelation. This seasonal dependence can be described by 

seasonal ARIMA (SARIMA) model of order ( , , )P D Q if it is necessary to take seasonal difference. Weesakul and 

Lowanichchai (2005)[12] developed ARIMA models most appropriate to forecast annual rainfall in all regions of 

Thailand with acceptable accuracy, which are able to fulfill the requirement for agricultural water allocation 

planning.   

Considering the data relation, we can build a multiplication ( , , ) ( , , )sSARIMA p d q P D Q , the term 

( , , )sP D Q gives the order of the seasonal part.  The model has been successfully applied in many seasonal time 
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series. In practical applications, the order of model SARIMA is usually not too large (Guo, 2009)[9]. If the period of 

time series equals to 4, it can be denoted as 4( , , ) ( , , )SARIMA p d q P D Q . In the adjustment of the season, this 

is a very convenient, steady model. 

2. Materials and Methods: 

2.1 Seasonal ARIMA Model 

The general form of multiplicative seasonal model SARIMA( , , ) ( , , )sp d q P D Q is given by 

( ) ( ) ( ) ( )s D d s

P p s t Q q tB B x B B a         (1) 

Where,  

2

2( ) 1s s s Ps

P PB B B BL L  is the seasonal autoregressive operator of order P . 

2

1 2( ) 1 p

p pB B B BL L  is the regular autoregressive operator of order p . 

2

1 2( ) 1s s s Qs

Q QB B B BL L  is the seasonal moving average operator of order Q ;  

2

2( ) 1 q

q qB B B BL L is the regular moving average operator of order q ; 

Where  is the intercept term or mean term (1 )d dB ; (1 )D s D

s B ;  
k

t t kB x x  

ta ,the non-stationary time series ta  is the usual Gaussian white noise process; s  is the period of the time 

series and B is the backshift operator.  

In this study, we concentrate on southwest monsoon monthly precipitation time series. If the seasonal 

period of the series s = 4. It is clear that we may then rewrite Equation (1) as: 

 
4 4

4( ) ( ) ( ) ( )D d

P p t Q q tB B x B B a        (2) 

2.2 Model Identification 

In time series analysis, the most crucial steps are to identify and built a model based on the available data. 

At this stage it is necessary to identify the values of ( , , )p d q and ( , , )sP D Q . The goal is to employ 

computationally simple techniques to narrow down the range of parsimonious models. The Box-Jenkins method is 

only suitable for stationary time series data. In such case, first, we should construct a time plot of the data and 

inspect the graph for any anomalies (Cryer and Chan, 2008) [2]. Through careful examination of the plot, usually we 

get an idea about whether the series contains a trend, seasonality, outliers; non-constant variances, and other non-

normal and non-stationary phenomena. This will give us to choose proper data transformation. If the variance 

grows with time, we should use variance-stabilizing transformations and differencing. A series with non-constant 

variance often needs a logarithmic transformation. The next step is to identify preliminary values of autoregressive 

order ,p the order of differencing d , the moving average order q and their corresponding seasonal parameters P , 

D  and Q . Here, the autocorrelation function (ACF), the partial autocorrelation function (PACF) and inverse 

autocorrelation function (IACF) are the most important elements (Stoffer and Dhumway, 2010) [1]. The ACF 

measures the amount of linear dependence between observations in a time series that are separated by a lag q . The 

PACF helps to determine how many autoregressive terms p  are necessary. The IACF is useful for detecting over-

differencing [10] and if the data have been over-differenced [11] - [14], the IACF looks like an ACF from a non-

stationary process. The parameter d  is the order of difference frequency changing from non-stationary time series 
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to stationary time series. Furthermore, a time series plot and ACF of data will typically suggest whether any 

differencing is needed. If differencing is called for, the time plot will show some kind of linear trend.  

When preliminary values of D  and d   have been fixed, the next step is to check the ACF and PACF of 

4

D d

tx  to determine the values of P, Q, p and q. We can further choose parameters using minimum Akaike’s 

Information Criterion, called Bayesian Information Criterion (BIC) is computed as 2ln( ) ln( )L n k , where L  is 

the likelihood function and k is the number of parameters (Stoffer and Dhumway, 2010) [1]. 

2.3 Parameters Estimation 

Once the model is tentatively established, the parameters and the corresponding standard errors can be 

estimated using statistical techniques, such as Conditional Least Square Estimation (CLS) and Yule-Walker. The 

CLS estimates are conditional on the assumption that the past unobserved errors equal to 0. The series tx can be 

represented in terms of the previous observations, as 
1

i

t t i

i

x a B   . The weights ( ) are computed from the 

ratio of the  and  polynomials as
1

( )
1

( )

i

i

i

B
B

B
. The CLS method produces estimates minimizing 

2 2

1 1 1

ˆ ˆ( )
n n

t t i t

i i i

a x x i  where the unobserved past values of tx are set to 0 and ˆ
i are computed from the 

estimates of  and  at each iteration. The k -step forecast of t kx is computed as  

1

1

ˆ ˆ ˆ ˆ ˆ
k

t k i t k i i t k i

i i k

x x x  

2.4 Diagnostic Checking   

After parameter estimation, we have to assess model adequacy by checking whether the model assumptions 

are satisfied. The basic assumption is that they ia  are white noise. Generally, this step includes the analysis of 

the residuals as well as model comparisons. If the model fits well, the standardized residuals should behave as an 

independent and identically distributed sequence with zero mean and constant variance (Cryer and Chan, 2008) [2]. 

A standardized residuals plot or a   Q-Q plot can help in identifying the normality (Stoffer and Dhumway, 2010) [1]. 

The model should pass the parametric test and diagnostic check. 

2.5 Fitting and Prediction 

Once a model has been identified and all the parameters have been estimated, we can predict future values 

of a time series with this model. 

3. Data  

In this study, the time series is the weighted average seasonal rainfall data of India, from 1951-2014, obtainable 

from Open Government Data (OGD) Platform India.  Here there are 4 seasons; seasonal-I having months January & 

February, season-II having months March, April & May, season-III having months June, July, August & September 

and season-IV having the months October, November & December. The data processing tool is the SAS software. 

Time series plot is shown in Fig. 1. The descriptive statistics for our data are summarized in Table 1.  
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     Fig. 1. Time series of seasonal rainfall data for All India (1951-2014) 

 

      Fig. 2: Spectral Plot for weighted average seasonal rainfall series for All India (1951-2014) 

Basic Statistical Measures  and Moments 

No of observations   256 Range 1036 

Mean 292.53 Inter quartile Range 374.35 

Std Deviation 345.09 Skewness 1.1687 

Coefficient of  Variation 117.97 Kurtosis -0.4859 
 Table 1. Basic Statistics for weighted average seasonal rainfall (in mm) of India 
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Fig. 3: Trend and Correlation analysis, Autocorrelation (ACF), Partial Autocorrelation (PACF)   and Inverse 

Autocorrelation (IACF) for transformed time series of weighted rainfall data in India. 
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Fig.4: Autocorrelation (ACF), Partial Autocorrelation (PACF), Inverse Autocorrelation (IACF) and White Noise 

Probability for Residual and Correlation diagnostics for xlog (12). 

 

 
    Fig.5: The Histogram and QQ-Plot for Residual Normality diagnostics for xlog (12). 
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Fig.6: Forecasting the seasonal Rainfall patterns in India based on the Seasonal ARIMA 4(0,0,0) (0,1,1)  model 

4. Results and Discussions 

Fig. 1 show a seasonal fluctuation occur every 4 seasons, namely seasonal-I having months January & February, 

season-II having months March, April & May, season-III having months June, July, August & September and 

season-IV having the months October, November & December resulting in s = 4. For satisfying the stationary 

condition, we take logarithmic transformation. The ACF, PACF and IACF of the transformed data, log( )tx , t = 1, 

2,…, 256, are shown in Fig. 3. The model parameters are estimated using Conditional Least Square Estimation 

(CLS). It can be observed that the parameters of model Seasonal ARIMA 4(0,0,0) (0,1,1)  are all significant. 

The result indicates that we consider the model and choose this is the best model based on minimum AIC known as 

BIC criteria. From Fig.5, the Histogram and QQ-Plot for Residual Normality diagnostics for log (12)x shows us 

the model fit is well although a small amount of autocorrelations still remains. Then from equations (1) & (2) the 

fitted form of the model in this case is 

4 4(1 )(1 )log( ) (1 )(1 )t tB B x B B a        (3) 

This implies 1 4 5 1 4 5log log log logt t t t t t t tx x x x a a a a  

Therefore the fitted Seasonal ARIMA 4(0,0,0) (0,1,1)  model for this region is  

 
4 4(1 )(1 )log( ) 0.0004 (1 )(1 0.8660 )t tB B x B B a      (4) 
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i.e., 1 4 5 1 4 5log log log log 0.0004 0.8660 0.8660t t t t t t t tx x x x a a a a  

Therefore,  

1 4 5 1 4 5
ˆ (log log log 0.0004 0.8660 0.8660 )t t t t t t t tx Exp x x x a a a a   (5) 

With the white noise variance 
2ˆ 0.0618e

and with AIC=15.0201and BIC=22.01443.  

   Finally, forecasting’s based on the fitted model for the next three years and also the comparison between actual 

values and the forecast values are shown in Fig. 6. Fig. 2 shows the Spectral Plot for weighted average of seasonal 

rainfall series for All India (1951-2014). Practically from the stochastic environmental factors, such as geographic 

location, climate and temperature, the model state of rainfall is a complicated dynamical system. The time series 

model in study does not model the extreme values well. Further extensions of study may be undertaken by 

considering X-12 ARIMA seasonal adjustment method. This procedure makes additive or multiplicative adjustments 

and creates an out data set that contains the adjusted time series and intermediate calculations.  

5. Conclusions 

     In this study, an ARIMA model incorporates the seasonality of time series. Using the time series of seasonal 

rainfall data in India, we build a Seasonal ARIMA 4(0,0,0) (0,1,1)  model. The model fitted the data well and 

the stochastic seasonal fluctuation was successfully modeled except some extreme values. The predictions based on 

this model indicate that the rainfall patterns in India almost same in the next three years. The increasing trend is 

consistent and this changing trend reminds us to make proper strategies for planning the agro sector and drinking 

water purposes.  
 

6. Summary 

   We proposed a suitable Seasonal ARIMA model for forecasting average monthly rainfall in the Indian region by 

using logarithmic transformation. All the parameters have been estimated by Seasonal ARIMA 4(0,0,0) (0,1,1)  

model and also we can predict future values of a time series with this model.  
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