A Generalization of a fixed point theorem of HONG-KUN XU

Sujata Goyal Assistant Professor, Department of Mathematics, A.S. College Khanna-141401, India

Abstract: Xu. H. [1] introduced weakly asymptotic contraction and proved that if $T: X \to X$ is a continuous map where (X,d) is a complete metric space and $\phi: R^+ \to R^+$ a map ,which is continuous and $\phi(s) < s$ for all s > 0, $\phi(0) = 0$ such that given $\in > 0$, there exists $n_{\in} > 0$ such that $d(T^{n_{e}}x, T^{n_{e}}y) \leq \phi(d(x,y)) + \in$, for all x, y in X. It is also assumed that some orbit of T i.e. { $T^{n}x: n \in N$ } for some $x \in X$ is bounded. Then T has a unique fixed point y in X. Also $T^{n}x \to y$ as $n \to \infty$. In this paper ,it has been shown that result is still true if the function ϕ is assumed to be upper semicontinuous.

Keywords: complete metric space, Cauchy sequence, fixed point, continuous map, upper semicontinuous map, limit superior

Introduction

Let (X, d) be a complete metric space. A map T: $X \rightarrow X$ is said to be contraction map if there exists a constant c ,0 < c < 1 such that $d(Tx, Ty) \le c d(x, y)$ for all x, y in X. Banach proved that in this case, T has a unique fixed point. Due to its wide applications, the theorem has been extended in a number of ways; see, for example, [3],[4] and [5].

In this direction, Kirk [2] introduced the notion of asymptotic contraction which is an asymptotic version of fixed point theorem by Boyd and Wong [7] and proved the fixed point theorem for this class of mappings.

Definition : Let (M,d) be a metric space. A mapping T: $M \rightarrow M$ is said to be an asymptotic contraction if

 $d(T^n x, T^n y) \le \phi_n (d(x,y))$ for all $x, y \in M$, where $\phi_n : [0,\infty) \to [0,\infty)$ and $\phi_n \to \phi$ uniformly on the range of d.

where $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is continuous such that $\phi (s) < s$ for all s > 0, $\phi (0) = 0$.

Kirk [2] proved the following theorem:

Theorem: Suppose (M,d) is a complete metric space and suppose T : $M \to M$ is an asymptotic contraction for which the mappings ϕ_n are also continuous. Assume also that some orbit of T is bounded. Then T has a unique fixed point $z \in M$, and moreover the Picard sequence (Tⁿ(x)) converges to z for each $x \in M$.

The proof given by Kirk is nonconstructive, it uses ultrapower techniques and thus depends on the axiom of choice. Simple proofs of Kirk theorem has been given in [6] and further generalizations of the theorem have been given in [8], [9] and [10].

Xu. H.[1] generalized the result of kirk by introducing weakly asymptotic contractions.

Definition : A continuous mapping T from a complete metric space to itself is said to be weakly asymptotic contraction if given $\in > 0$, there exists $n_{\in} > 0$ such that $d(T^{n_{\in}} x, T^{n_{\in}} y) \leq \phi(d(x,y)) + \in$, for all x, y in X, where $\phi: R^+ \rightarrow R^+$ is a map ,which is continuous and $\phi(s) < s$ for all s > 0, $\phi(0) = 0$.

Xu. H. proved that if $T: X \rightarrow X$ is a weakly asymptotic contraction mapping, where (X,d) is a complete matric space .Also assume that some orbit of T i.e. { $T^n x : n \in N$ } for some $x \in X$ is bounded. Then T has a unique fixed point y in X. Also

 $T^n x \rightarrow y \text{ as } n \rightarrow \infty$

Main purpose of this paper is to show that result of Xu. H. [1] is still valid if the function ϕ is assumed to be upper semicontinuous only.

Main Theorem : Let (X,d) be a complete metric space . T: $X \rightarrow X$ be a continuous map. Suppose there exists a map

 $\phi: R^+ \rightarrow R^+$ which is upper semicontinuous and $\phi(s) < s$ for all s > 0, $\phi(0) = 0$.

If T satisfies the following condition:

Given $\in 0$, there exists $n_{e} > 0$ such that

 $d(T^{n_{\epsilon}} x, T^{n_{\epsilon}} y) \leq \phi(d(x,y)) + \in$

Assume that some orbit of T i.e. { $T^n x : n \in N$ } for some $x \in X$ is bounded. Then T has a unique fixed point y in X. Also

$$T^n x \rightarrow y as n \rightarrow \infty$$

To prove the theorem we need the following lemma :

Lemma : If $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is upper semicontinuous and $\phi(s) < s$ for all s > 0, $\phi(0) = 0$.

Define the function $\psi(t) = \max \{ \phi(\tau) : \tau \in [0, t] \}$ then

- 1) ψ is increasing
- 2) $\psi(s) < s$ for all s > 0
- 3) ψ is upper semicontinuous.
 (Note here that every upper semicontinuous map on a compact set assumes its maximum)

Proof : clearly ψ is increasing . Now if s > 0 then

 ψ (s) = ϕ (τ°) for some $\tau^{\circ} \in [0, s]$, so that ψ (s) < s.

Now we show that ψ is upper semicontinuous :

Let $\in > 0$ be given :

Case 1: $t > t_0 > 0$

 ψ (t) - ψ (t₀) = max { ϕ (τ) : $\tau \in [0, t]$ } - max { ϕ (τ) : $\tau \in [0, t_0]$ }

$$\leq \max \{ \phi(\tau) : \tau \in [t_0, t] \} - \phi(t_0)$$
$$= \max \{ \phi(\tau) - \phi(t_0) : \tau \in [t_0, t] \}$$

Now since ϕ is upper semicontinuous, therefore there exists $\delta > 0$ such that

 $\phi(\mathbf{t}) < \phi(\mathbf{t}_0) + \in \text{ whenever } |\mathbf{t} \cdot \mathbf{t}_0| < \delta \text{ . Thus } \psi(\mathbf{t}) - \psi(\mathbf{t}_0) < \in \text{ whenever } |\mathbf{t} \cdot \mathbf{t}_0| < \delta$

Case 2 : $0 < t < t_0$

$$\psi (t) - \psi(t_0) = \max \{ \phi(\tau) : \tau \in [0, t] \} - \max \{ \phi(\tau) : \tau \in [0, t_0] \}$$
$$\leq \max \{ \phi(\tau) : \tau \in [t, t_0] \} - \phi(t_0)$$

$$= \max \{ \phi(\tau) - \phi(t_0) : \tau \in [t, t_0] \}$$

Now since ϕ is upper semicontinuous, therefore there exists $\delta > 0$ such that

$$\phi(\mathbf{t}) < \phi(\mathbf{t}_0) + \in \text{ whenever } |\mathbf{t} \cdot \mathbf{t}_0| < \delta \text{ . Thus } \psi(\mathbf{t}) - \psi(\mathbf{t}_0) < \in \text{ whenever } |\mathbf{t} \cdot \mathbf{t}_0| < \delta$$

Case 3 :
$$t_0 = 0$$
, $t > t_0$

$$\psi(\mathsf{t}) - \psi(\mathsf{t}_0) = \max \left\{ \phi(\tau) : \tau \in [0, \mathsf{t}] \right\} - \phi(\mathsf{t}_0) \le \max \left\{ \phi(\tau) - \phi(\mathsf{t}_0) : \tau \in [0, \mathsf{t}] \right\}$$

Now since ϕ is upper semicontinuous at t₀ = 0, therefore there exists $\delta > 0$ such that

$$\phi$$
 (t) < ϕ (t₀) + \in whenever t-t₀ < δ . Thus ψ (t) - ψ (t₀) < \in whenever t-t₀ < δ

Proof of main theorem : Put d $n,m = d(T^n x, T^m y)$

Let
$$d_{\infty} = \lim_{n,m\to\infty} d_{n,m} = \lim_{k\to\infty} \sup \{ d_{n,m} : n, m \ge k \} < \infty$$

Let $\in > 0$ be given :

Now
$$d_{n,m} = d(T^{n_{\epsilon}}(T^{n-n_{\epsilon}}x), T^{n_{\epsilon}}(T^{m-n_{\epsilon}}y)) \le \phi(d(T^{n-n_{\epsilon}}x), (T^{m-n_{\epsilon}}y)) + \in$$

$$\le \psi(d(T^{n-n_{\epsilon}}x), (T^{m-n_{\epsilon}}y)) + \in$$

Taking limit superior we get :

$$\lim_{n,m\to\infty} d_{n,m} \leq \lim_{n,m\to\infty} [\psi(d(T^{n-n_{\varepsilon}}x), (T^{m-n_{\varepsilon}}y)) + \epsilon]$$

$$= \lim_{n,m\to\infty} \psi(d(T^{n-n_{\varepsilon}}x), (T^{m-n_{\varepsilon}}y)) + \epsilon$$

$$= \lim_{n,m\to\infty} \psi(d_{n-n_{\varepsilon},m-n_{\varepsilon}}) + \epsilon$$

$$\dots (1)$$

$$\text{Claim} := \lim_{n,m\to\infty} \psi(d_{n-n_{\varepsilon},m-n_{\varepsilon}}) \leq \psi(\lim_{n,m\to\infty} d_{n-n_{\varepsilon},m-n_{\varepsilon}})$$

$$\text{Let} \lim_{n,m\to\infty} d_{n-n_{\varepsilon},m-n_{\varepsilon}} = L$$

$$\Rightarrow \lim_{k\to\infty} \sup\{d_{n-n_{\varepsilon},m-n_{\varepsilon}} : n, m \geq k\} = L$$

Now as ψ is upper semicontinuous , this implies that

$$\lim_{k \to \infty} \ \psi \left(\sup \left\{ \ \mathrm{d} \ _{n-n_{\in},m-n_{\in}} \ : \mathrm{n} \ , \ \mathrm{m} \ge \mathrm{k} \ \right\} \right) \le \psi \left(\mathrm{L} \right)$$

 $\text{Clearly sup } \{ \psi (d_{n-n_{\in},m-n_{\in}}): n , m \geq k \} \leq \psi \text{ (sup } \{ d_{n-n_{\in},m-n_{\in}} : n , m \geq k \})$

Thus we have

$$\lim_{k \to \infty} \sup \{ \psi(d_{n-n_{\epsilon},m-n_{\epsilon}}) : n, m \ge k \} \le \psi(L)$$

$$\Rightarrow \lim_{n,m \to \infty} \psi(d_{n-n_{\epsilon},m-n_{\epsilon}}) \le \psi(\lim_{n,m \to \infty} d_{n-n_{\epsilon},m-n_{\epsilon}}), \text{ this proves the claim.}$$

Thus from eq. (1), we get :

 $\lim_{n,m\to\infty} \stackrel{\rightarrow}{\to} d_{n,m} = \psi(\lim_{n,m\to\infty} \stackrel{\rightarrow}{\to} d_{n-n_{\varepsilon}}, m-n_{\varepsilon}) + \in$ $\Rightarrow d_{\infty} \leq \psi(d_{\infty}) + \in$

Since $\in > 0$ is arbitrary, therefore $d_{\infty} \leq \psi(d_{\infty})$

$$\implies$$
 d_∞ = 0

 \Rightarrow (Tⁿ(x)) is Cauchy sequence. Since X is complete, (Tⁿ(x)) will converge to unique fixed point y of X

References:

- Xu, H. K. (2005), "Asymptotic and weakly asymptotic contractions", Indian Journal of Pure and Applied Mathematics, Vol. 36, No. 3, pp. 145-150.
- [2] Kirk, W.A. (2004), "Fixed points of asymptotic contractions", Journal of Mathematical Analysis and Applications, Vol. 277, No. 2, pp. 645-650.
- [3] Edelstein, M. (1961), "An Extension of Banach's Contraction Principle", Proceedings of the American Mathematical Society, Vol. 12, No. 1, pp. 7-10.
- [4] Meir, A. and Keeler, E. (1969), "A theorem on contraction mappings", Journal of Mathematical Analysis and Applications, Vol. 28, No. 2, pp. 326-329.
- [5] Ćirić, L.B. (1974), "A generalization of Banach's contraction principle", Proceedings of the American Mathematical Society, Vol. 45, No. 2, pp. 267-273.
- [6] Arandelovic, I.D. (2005), "On a fixed point theorem of Kirk", Journal of Mathematical Analysis and Applications, Vol. 301, No. 2, pp. 384-385.
- [7] Boyd, D.W. and Wong, J.S.W. (1969), "On Nonlinear Contractions", Proceedings of the American Mathematical Society, Vol. 20, No. 2,pp 458-464.
- [8] Chen, Y.Z. (2005), "Asymptotic fixed points for nonlinear contractions" Fixed Point Theory and Applications, Vol. 2, pp. 213–217.
 [9] Jachymski J. and Jóźwik I. (2004), "On Kirk's asymptotic contractions" Journal of Mathematical Analysis and Applications, Vol. 300, No. 1, pp. 147-159.
- [10] Suzuki, T. (2007), "A definitive result on asymptotic contractions" Journal of Mathematical Analysis and Applications, Vol. 335, No. 1, pp. 707-715.