HG- Primes

Hara Gopal Rajanala

School Assistant in Mathematics, Municipal High School (Main), Near Old Control Room, Kurnool, Andhra Pradesh, India

Abstract: In this article I am going to introduce a prime number with a peculiar property.

Keywords - Primes, Permutations and arrangements.

I. Introduction

A HG-Prime is a prime which satisfies the following conditions

1. Sum of its digits is a prime
2. Product of its digits is a prime
3. Every permutation of digits is also primes

For example: 113 is HG-prime because

1. Sum of its digits $1+1+3=5$ is prime
2. Product of its digits $1 \times 1 \times 3=3$ is prime
3. And every permutation of digits $113,131,311$ is also prime.

So $\mathbf{1 1 3}$ is HG prime.

[Of course 311, 131 are also HG primes but as they are the arrangements of digits of 113 only, we need not consider as the separate HG-Primes]

There is no another such prime up to 10^{42}.
[As on 18th Sept 2016]
On the careful observation I made following conclusions on HG-Primes.

1. HG-Prime doesn't contain any even digit in any place of it.
2. HG- Prime doesn't contain the digit 5, as 5 in unit place is not a prime.
3. HG-Prime doesn't contain the digit 9 as the product of digits contains 3 as a factor.
4. HG-Prime should contain only one either 3 or 7 grouped with even number of 1 's.
i.e. A HG-Prime is of the form

Where $2 n+3$ and $2 n+7$ should be primes. And every permutation of digits above should be a prime.

Testing Conditions of HG-Primes:

To check the given prime whether HG-Prime or not.

Preliminary test for HG - Primes:

1. It should be in any of the above mentioned form.
2. In first form $10^{(2 n+1)}+17$ should contain a factor other than 9 .
3. In second form $10^{(2 \mathrm{n}+1)}+53$ should contain a factor other than 9 .

Main test for HG-Primes:

If any prime clear the above tests, then it has to pass $(2 n+1)$ steps of primality test for it's $(2 n+1)$ arrangements of digits.

Conclusion Remarks:

Probably there won't another such prime. This would be a new challenge to everyone to search for such primes.

References

[1] Structure and randomness in the prime numbers, A small selection of results in number theory, Terence Tao (UCLA)
[2] Elementary Number Theory: Primes, Congruence's, and Secrets, William Stein

