Preparation for mercury complexes [HgX₂SB]

Alok Gupta¹, Seema Singh² and Nizamul Haque Ansari³

¹Department of Chemistry, Bundelkhan University, Jhansi, U.P., India. ²Department of Chemistry, N.R.E.C. College, Khurja, Bulandshahar, U.P. India. ³Department of Chemistry, School of Basic Sciences, Arni University, Kathgarh, Himachal Pradesh, India.

Keywords: Mercury complexes; Synthesis; Acyclic Compounds and Schiff Bases

1. Introduction:

Interest in the metal complexes of acyclic compounds and macrocycles by template reactions developed rapidly due to their biological relevance¹. The synthesis of cyclic and acyclic organic substrates that preferentially interact with particular metal ions is of fundamental importance to many areas of chemistry²⁻³. The majority of the ligand systems employed in model studies are derived from Schiff bases'. Condensation between dicarbonyls and primary diamines, for example - have played an important role in the development of synthetic acyclic and macrocyclic ligands. However, compounds containing the pyrimidine ring are known to be biologically active⁷. Re-cently, Sonmez and Sekerci⁸⁻⁹ reported the synthesis and characterisation of heterocyclic complexes obtained from N-aminopyrimidine - 2 - one.

In this paper here the template reactions of N-aminopyrimidine -2 - one with benzyl or glyoxal or 2, 3-butanedione in the presence of HgX_2 (X = Cl, Br, NO₃) in 2:1:1 or 2:1:2 ratio have been done respectively.

2. Experimental

2.1 Preparation of HgX₂S₁3₁ Complexes:

1 -amino-5-benzoy1-4-pheny1-1-H-pyridine (2 mmol) in methanol was mixed with glyoxal or benzyl or 2, 3 butanedione (1 m mol) HgX_2 (X = Cl, Br, NO3) (1 mmol) was mixed in it with stirrering. This mixture solution was refluxed for 3-4 hours and resulting solid solution was washed with dry diethyl ether and dried under vacuo.

2. 2 Preparation of (HgX)SBJ Complexes:

1-amino-5-benzoy1-4-phenyl-1-H-pyridine (2 m mol) in methanol was mixed with glyoxal or benzyl or 2,3 butanedione (1 mmol) HgX₂ (X = Cl, Br, NO₃) (2 m mol) was mixed in it with stirring. This mixture solution was refluxed for 3-4 hours and resulting solid solution was washed with dry diethyl ether and dried under vacuo.

3. Result and Discussion:

The template condensation of 1-amino-5-benzoy1-4-pheny1-1-Hpyrimidine-2-one (L'H2) and glyoxal or 2-3 butanedione or benzil (L"02) in the presence of HgX₂ (X = Cl, Br, NO₃) in 2:1:1 or 2:1:2 ratio produced new complexes [HgXSB] and [(HgX₂)₂.S₁₃]. All the complexes are non-hygroscopic and stable at room temperature. These complexes are soluble in DMF and DMSO. The molar conductance of the solution of the complexes in DMF are in the 3-25 ohm⁻¹ om². These values are lower than those expected for an electrolyte. The elemental data and molar conductance are listed in table 1, concluding non-electrolyte nature of all prepared complexes¹⁰. The infrared spectra of the liand (L'H2 and L"02) and the metal complexes show the absence of the starting materials and the appearance of bands characteristic of the imine group ¹¹⁻¹².

The XpS data of $Hg_4p_{1,1,2}$, Nls and Ols of all the starting materials $HgX_2(X = Cl, Br \text{ or } NO_3)$ and their metal complexes are listed in table 1. It was observed that the binding energy of $Hg_4p_{1,2}$ is more in the starting material HgX_2 than in their molecular adducts, $[HgX_2.SB]$ or $[(HgX_2)_2.SB]$, due to increase of electron density on central metal ion i.e. Hg^{2^-} (due to lone pair coordination with mercury).

Preparation of (HgX)SBJ Complexes:

1-amino-5-benzoy1-4-phenyl-1-H-pyridine (2 m mol) in methanol was mixed with glyoxal or benzyl or 2,3 butanedione (1 m mol) HgX2 (X = Cl, Br, NO₃) (2mmol) was mixed in it with stirring. This mixture solution was refluxed for 3-4 hours and resulting solid solution was washed with dry diethyl ether and dried under vacuo.

Result and Discussion:

The template condensation of 1-amino-5-benzoy1-4-pheny1-1Hpyrimidine-2-one (L'H2) and glyoxal or 2-3 butanedione or benzil (L"02) in the presence of HgX₂ (X = Cl, Br, NO₃) in 2:1:1 or 2:1:2 ratio produced new complexes [HgXSB] and [(HgX₂)₂.S₁₃]. All the complexes are non-hygroscopic and stable at room temperature. These complexes are soluble in DMF and DMSO. The molar conductances of the solution of the complexes in DMF are in the 3-25 ohm⁻¹ om².

These values are lower than those expected for an electrolyte. The elemental data and molar conductance are listed in table 1, concluding non-electrolyte nature of all prepared complexes¹⁰. The infrared spectra of the ligand (L'H2 and L"02) and the metal complexes show the absence of the starting materials and the appearance of bands characteristic of the imine group ¹¹⁻¹². The XpS data of Hg₄p₁₁₂, NIs and Ols of all the starting materials HgX₂(X = Cl, Br or NO₃) and their metal complexes are listed in table 2. It was observed that the binding energy of Hg₄p_{1,2} is more in the starting material HgX₂ than in their molecular adducts, [HgX₂.SB] or [(HgX₂)₂.SB], due to increase of electron density on central metal ion i.e. Hg²⁻ (due to lone pair coordination with mercury metal ion). The N₁S photoelectron peak of [HgX₂SB] [(HgX₂)₂.SB] have shown two N₁ S photoelectron peaks at 400.8ev and 402.6 eV, suggesting one due to nitrogen from ring and other with higher BE i.e. 402.6eV due to coordinated nitrogen of C=N group nitrogen'. The 01 s photoelectron peak of [HgX₂ S₁₃] have shown two 01S one at 531.6 and other 532.8ev but in [(HgX₂)₂.S₁₃] complexes these two 01S photoelectron peaks are observed at 531.6eV and 533.8eV; suggesting one lower BE Ols photoelectron peak is due to uncoordinated oxygen atom with metal ion and higher BE photoelectron peaks are due to coordinated oxygen with metal ion¹³⁻¹⁴. In case of [(HgX₂)₂S₁₃], the value of Ols due to coordinated oxygen with metal ion is more than in [HgX₂SB] suggesting more than one coordination in [(HgX₂)₂.S₁₃] complexes through one oxygen atom¹⁵.

On the basis of elemental analysis, molar conductance IR and XPS data it is possible to conclude that prepared molecular adducts $[HgX_2SB]$ and $[(HgX_2)_2SB]$ have octahedral and octahedral with tetrahedral geometry.

S. No.	Compound			
		С	Н	Ν
1.	$HgCl_2SB_1$	49.2	2.6	9.4
2.	$HgC1_2SB_2$	5.0	3.2	9.0
3.	$HgC1_2SB_3$	56.2	3.0	8.0
4.	$HgBr_2.SB_1$	44.2	2.2	8.4
5.	HgBr ₂ .SB ₂	45.6	2.4	8.2

Table 1: Elemental molar conductivity of [11gX2S13], and [(HgX₂)₂SBJ, complexes.

References:

- [1] Reedijik, Pure appl Chem; **59**, 181 (1987).
- [2] Henri L, Kama Wah tangerine J and Gupta B. M., Ind. J. Chem; 40A, 999 (2001).
- [3] Senapati S, Dash P K, Mishra B K and Behera G B, Ind J Chem; 34A, 278 (1995).
- [4] Kipke C A, Scott M J, Gbdes J W and Armstrong A W. Inorg. Chem; 29, 2197 (1990).
- [5] Dialey G C, Horwitz C P and Lisek C A. Inorg Chem; 31, 5325 (1992).
- [6] Ashmawy F M, Mc Auliffle C A Parish R V and Tames J. J Chem. Soc. Chem. Commun; 14(1984).
- [7] Malcolm Bersohn and J.C. Baird. An Introduction to electron paramagnetic resonance-W A Benjamin Inc. New York (1966)
- [8] Shakir M and Varkey S P. Polyhedron 13, 791 (1994).
- [9] Singh B, Maurya P L, Agarwal B V and Dey A K, J Ind Chem. Soc; 59, 29 (1982).
- [10] Mishra L, Ram V J and Kushawaha D S, Trans. Met Chem; 14, 384 (1989).
- [11] Singh N. K., Srivastiva A, Sodhi A and Ranjan P, Trans. Met. Chem., 25, 133 (2000).
- [12] Shookry H. M., Abdel Hadi A. K., Hosny W. M and Shouhrib S. M. Ind. J. Chem. 34A(1995)
- [13] Davies A. G. and Smith P., J in comprehensive Organo metallic chemistry-I, II, Vol 2 edited by G. Wilkinson F. G. A., Stone and E. W. Abel-Pergamon Press Oxford (1982).
- [14] Ghadwal R.S., Singh A and Mehrotra R.C. J. Chem. Res; 352 (2005).
- [15] Singh A and Mehrotra R.C. Cood. Chem. Rev; 248, 101(2004).