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1. Introduction 
 The concept of fuzzy set was introduced by L.A.Zadeh in 1965 [19]. Since then these ideas have 

been applied to other algebraic structures such as groups, rings, modules, vector spaces and topologies. K.Iseki and 

S.Tanaka [2 ] introduced the concept of BCK-algebras in 1978 and K.Iseki [3] introduced the concept of BCI-

algebras in 1980. It is known that the class of BCK –algebras is a proper subclass of the class of BCI algebras in 

2002. P.M.Sithar Selvam and K.T.Nagalakshmi [5,6] introduced the concept of PMS-algebras , which is a 

generalization of BCK / BCI / TM / KUS / PS algebras in 2015.R.Biswas[1] introduced the concept of Anti fuzzy 

subgroups of groups. Modifying his idea, in this paper we applied the idea in PMS-algebras. We introduced the 

notion of Anti Q- fuzzy PMS-ideals of PMS-algebras and investigate how to deal  with the homomorphic, Anti 

homomorphic  and inverse image of Anti Q-fuzzy PMS-ideals of PMS-algebras. 

 

2. Preliminaries 
In this section we site the fundamental definitions that will be used in the development of this paper. 

 

Definition 2.1 :[5,6] A nonempty set X with a constant 0 and a binary operation ‘ * ’ is called  

PMS – algebra if it satisfies the following axioms. 

1. 0 * x  = x 

2. (y * x) * (z * x) = z * y ,   x , y, z  X. 

In X, we define a binary relation    by :  x  y if and only if x * y = 0. 

Definition 2.2:[5,6]  Let X be a PMS - algebra and I be a subset of X, then I is called a PMS - ideal of X if it 

satisfies the following conditions: 

1. 0   I 

2. z * y  I and z * x  I  y * x  I for all x, y, z  X. 

 

Example 2.3:[5,6] Let X = {0, a, b, c} be the set with the following table. 

* 0 a b c 

0 0 a b c 

a b 0 a b 

b a b 0 c 

c c c a 0 

Then (X, * , 0 ) is a PMS – algebra and I = {0,a,b} is a PMS-ideal. 

Definition 2.4:[7,8] : Let S be a non empty subset of a PMS -algebra X , then S is called a PMS-sub algebra of X  if   

x * y  S ,for all x ,y  S. 

Definition 2.5 [17,19] : Let X be a non-empty set.  A fuzzy subset  of the set  X  is a mapping 

  : X [0, 1]. 
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Definition 2.6 [11,12,13] : Let Q and G be any two sets. A mapping : G x Q [0, 1] is called a Q –fuzzy set in G. 

 

MAIN RESULTS 

3. ANTI Q-FUZZY PMS – IDEALS OF PMS ALGEBRAS 

Definition 3.1 : A Q- fuzzy set  in X is called a Q-fuzzy PMS- ideal of X if  

  (i) (0, q) ≥ (x, q) 

  (ii) (y * x, q) ≥ min { (z * y, q), (z * x, q)}, for all x, y, z  X and q ∈ Q. 

Definition 3.2 : A Q-fuzzy set  of  X is called an anti Q-fuzzy PMS-ideal of X  if  

 (i)   (0, q) ≤ (x, q) 

      (ii)  (y * x, q) ≤ max {  (z * y, q), (z * x, q)}, for all x, y, z  X and q ∈ Q. 

Theorem 3.1 : Every Anti Q - Fuzzy PMS- ideal   of a PMS-algebra X is order preserving. 

Proof : Let  be an anti Q-Fuzzy PMS- ideal of a PMS-algebra X and let x, y  X and q ∈ Q be such that x  y, then 

x * y = 0. 

Now    (x, q) = max { (0 * x, q)} 

 max { (z * 0, q), ((x * y)* (z * y), q)} 

= max { (z * 0, q), (0 * (z * y), q)} 

= max { (z * 0, q), (z * y, q)} 

= max { (0 * 0, q), (0 * y, q)} (Taking z = 0) 

= max { (0, q), (y, q)} 

= (y, q) 

(x,q) ≤  (y,q). 

Theorem 3.2 :  is a Q-fuzzy PMS-ideal of a PMS-algebra X iff µ
c
 is an anti Q-fuzzy PMS-ideal of X. 

Proof: Let µ be a Q-Fuzzy PMS- ideal of X and let x , y , z  X and q ∈ Q. 

         µ (0, q)   ≥  µ(x, q) 

     1- µ
c
 (0, q)  ≥ 1 - µ

c
 (x, q) 

   µ
c
 (0, q)   µ

c
 (x, q)  

and   µ
c
 (y * x, q) = 1 - µ(y * x, q) 

                       ≤ 1 – min {µ (z * y, q), µ (z * x, q)} 

  = 1 – min {1 - µ
c
 (z * y, q), 1 - µ

c
 (z * x, q)} 

  = max {µ
c
 (z * y, q), µ

c
 (z * x, q)}  

Thus µ
c
 is an anti Q-fuzzy PMS-ideal of X. The converse also can be proved similarly.    

Theorem 3.3:Let X be a PMS-algebra.  For any anti Q- fuzzy PMS-ideal  of X, N  = {x X and q ∈ Q / (x, q) =  

(0,q) } is a PMS-ideal of X.  

Proof: Let z * y, z * x  N  . Then (z * y, q) = (z * x, q) =  (0, q) 

Since   is an anti Q-fuzzy PMS-ideal  of X ,  

     (y * x, q)   max { (z * x, q), (z * y, q)} 

= max {  (0,q) ,  (0,q) } 

=  (0,q) 

Hence y * x  N . Therefore N  is a PMS-ideal of X. 

Theorem 3.4 : If  and  are anti Q-fuzzy PMS ideals of a PMS-algebra X, then    is also an anti Q-fuzzy PMS-

ideal of X.   

Proof : Let  x, y, z  X and q ∈ Q. Then  

  (   ) (0, q) = min {  (0, q) , (0, q)} 

                           min {  (x, q) , (x, q)} 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 39 Number 1- November2016 

ISSN: 2231-5373                      http://www.ijmttjournal.org                                      Page 3 

                         = (   ) (x, q) 

(  ) (y*x, q) = min {  (y * x, q) , (y * x, q) } 

                            min {max { (z * x, q), (z * y, q)}, max { (z * x, q), (z * y, q)}} 

            = min {max { (z * x, q), (z * x, q)}, max { (z * y, q), (z * y, q)}} 

                           max { min { (z * x, q), (z * x, q)}, min { (z * y, q), (z * y, q)}} 

                          = max {( ) (z *x, q), ( ) (z * y, q)}. 

 ( ) (y * x, q)  max {( ) (z * y, q), ( ) (z * x, q)}.  

 (   ) is also an anti Q-fuzzy PMS ideal of X. 

Theorem 3.5:  The union of any set of anti Q-fuzzy PMS-ideals in PMS-algebra X is also an anti Q-fuzzy PMS-

ideal. 

Proof  : Let {  i } be a family of  anti Q-fuzzy PMS-ideals of  PMS-algebras X. 

Then for any x , y , z  X  and q ∈ Q. 

     (   i  ) (0, q)  = sup (  i (0 , q) )  

    sup (  i (x , q) ) 

   = (   i  ) (x, q) 

     (    i ) (y * x, q) = Sup (  i (y * x ,q) ) 

                          Sup {max {  i (z * y, q) ,  i (z * x, q)}} 

        = max {Sup (  i (z * y, q)), Sup (  i (z * x, q))} 

        = max {(   i  ) (z * y, q) , (   i  ) ( z * x, q)} 

This completes the proof. 

Definition 3.6: Let  be a Q-fuzzy set of X. For a fixed t  [0, 1], the set t ={x  X (x,q) ≤ t for all q ∈ Q} is 

called the lower level subset of . Clearly 
t
    t = X for t [0,1] if t1 < t2 , then t1   t2. 

Theorem 3.7 : If µ is an anti Q-fuzzy PMS-ideal of PMS-algebra X, then µt
 
 is a PMS-ideal of X for every t  [0,1] . 

Proof : Let µ be an anti Q-fuzzy PMS-ideal of PMS-algebra X. 

 Clearly 0 ∈ µt. 

Let z * x ∈ µt
 
and z * y ∈ µt , for all  x, y  X and q ∈ Q. 

       µ (z * x ,q ) ≤  t and µ (z * y, q ) ≤  t. 

 µ (y * x, q ) ≤  max {  (z * y , q ), ( z * x, q )} ≤ max {t, t} = t. 

 y * x ∈ µt. 

Hence µt
 
is an PMS- ideal of X for every t  [0,1]. 

Theorem 3.8 : Let µ be a Q-fuzzy set of PMS- algebra X. If for each t ∈ [0, 1], the lower level cut µt is a PMS-ideal 

of X, then µ is an anti Q- fuzzy PMS-ideal of X.   

Proof : Let µt be a PMS-ideal of X. 

If µ(0,q) >  µ(x, q) for some x ∈ X and q ∈ Q, then µ(0, q) > t0 > µ(x, q) by taking  

          t0=  { µ(0,q) + µ(x, q)}. 

Hence 0 ∉  µt0 and x ∈ µt0 , which is a contradiction. 

Therefore, µ(0, q) ≤ µ(x, q). 

Let x, y, z ∈ X and q ∈ Q be such that µ (y * x, q) > max {µ (z * y, q), µ(z * x, q)}.   

Taking t1 =   {µ(y * x, q) + max {µ (z * y) , q), µ(z * x, q)}}  

  µ (y * x, q) > t1 > max {µ (z * y, q), µ(z * x, q)}. 

It follows that z * y, z * x ∈ µt1 and   y * x ∉ µt1. This is a contradiction. 

Hence µ(y * x, q) ≤ max {µ (z * y, q), µ(z * x, q)}   
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Therefore µ is an anti Q-fuzzy PMS-ideal of X. 

 

4. HOMOMORPHISM AND ANTI HOMOMORPHISM ON ANTI Q-FUZZY PMS- ALGEBRAS 

 In this section, we discussed about ideals in PMS-algebra under homomorphism and anti homomorphism 

and some of its properties.  

Definition 4.1 :  Let (X,*,0) and ( Y ,  ,0 ) be PMS– algebras. A mapping f: X  Y is said to be a homomorphism 

if f( x * y) =  f(x) * f(y) for all x, y  X. 

Definition 4.2 : Let (X,*, 0) and ( Y, ,0) be PMS–algebras. A mapping f: X  Y is said to be an anti 

homomorphism if  f( x * y) =  f(y)  f(x) for all x, y  X. 

Definition 4.3 : Let f: X  X be an endomorphism and µ be a fuzzy set in X. We define a new fuzzy set in X by µf  

in X as µf (x) = µ (f(x)) for all x in X. 

Theorem 4.4 : Let f be an endomorphism of a PMS- algebra X. If µ is an anti Q- fuzzy PMS-ideal of X, then so is 

µf . 

Proof: Let µ be an anti Q-fuzzy PMS-ideal of X. 

Now,           µf (0, q) = µ ( f (0,q )) 

                                  ≤ µ (f(x, q)) = µf (x, q) ,  for all x, y  X and q Q. 

Let x, y, z  X and q  Q. 

Then       µf (y * x, q) = µ (f(y * x, q)) 

        = µ (f(y, q) * f(x, q)) 

                                    max {µ(f(z, q) *  f(y, q)), µ(f (z, q) * f(x, q))} 

                                   = max {µ (f(z * y, q)) , µ(f (z * x, q))} 

      = max {µf (z * y, q) , µf (z * x, q)} 

            µf (y * x, q)  max { µf (z * y, q) , µf (z * x, q)} 

Hence µf is an anti Q- fuzzy PMS-ideal of X.   

Theorem 4.5 : Let f: X  Y be an epimorphism of PMS- algebra. If µf is an anti Q-fuzzy PMS-ideal of X, then µ is 

an anti Q-fuzzy PMS-ideal of Y. 

Proof: Let µf be an anti Q-fuzzy PMS-ideal of X. 

Let y  Y and q  Q. Then there exists x  X such that f(x, q) = (y, q). 

Now, µ (0, q)  =  µ ( f (0, q) ) 

                        = µf (0, q)  

           µf (x, q) = µ (f(x, q)) = µ (y, q)  

   (0, q)  µ (y, q ) 

Let y1, y2 ,y3   Y.    

  (y2 ∆ y1, q) =  (f (x2)  f(x1), q)  

                        =  (f (x2 * x1, q)  

= f (x2 * x1, q) 

                         max { f  (x3* x2, q ), f  (x3* x1, q)} 

           = max {  [f (x3 * x2, q)],  [f(x3* x1, q)]} 

                        = max {  [f(x3, q)  f(x2, q)],  [f(x3, q)  f(x1, q)]}  

                        = max {
 
[(y3, q)  (y2, q)],  [(y3, q)  (y1, q)]} 

   µ is an anti Q- fuzzy PMS-ideal of Y. 

Theorem 4.6 : Let f: X  Y be a homomorphism of PMS- algebra. If µ is an anti Q-fuzzy PMS-ideal of Y then µf 

is an anti Q-fuzzy PMS-ideal of X. 
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Proof: Let µ be an anti Q- fuzzy PMS-ideal of Y. 

Let x, y, z  X. 

      f (0, q)  =  (f(0, q))  

         (f(x, q))= f (x, q)    

   f (0, q)  f (x, q). 

         f (y * x, q)  =  [f (y * x , q)] 

  = µ [f(y, q)   f(x, q)] 

                 max {µ (f(z, q)   f(y, q)), µ (f (z, q)  f(x, q))}  

                             = max {µ (f (z * y, q)), µ (f (z * x, q))} 

                             = max { f (z * y, q), f (z * x, q)} 

 f (y * x, q)   max { f (z * y, q), f (z * x, q) }.  

Hence µf is an anti Q-fuzzy R-closed PMS-ideal of X. 

 

5. CARTESIAN PRODUCT OF ANTI Q-FUZZY PMS-IDEALS OF PMS–ALGEBRAS 

In this section, we introduce the concept of Cartesian product of anti Q-fuzzy PMS-ideals of PMS-algebra.  

Definition 5.1 :Let µ and  be the fuzzy sets in X. The Cartesian product µ x  : X x X  [0,1] is defined by  

( µ x  ) ( x, y) = min { (x), (y)},  for all x, y  X.  

Definition 5.2 :Let µ and  be the anti fuzzy sets in X. The Cartesian product µ x  : X x X  [0,1] is defined by  

( µ x  ) ( x, y) =  max { (x), (y)} , for all x, y  X.  

Definition 5.3:Let µ and  be the anti Q-fuzzy sets in X. The Cartesian product µ x  : X x X  [0,1] is defined by  

( µ x  ) (( x, y),q) =  max { (x, q), (y, q)} , for all x, y  X and q Q.  

Theorem 5.4 : If µ and  are anti Q-fuzzy PMS-ideals in a PMS– algebra X, then µ x  is an anti Q-fuzzy PMS-

ideal in X x X. 

Proof: Let ( x1, x2)  X x X and q  Q. 

           (µ x )((x1 * 0, x2 * 0), q) = max {µ (x1 * 0, q),  (x2 * 0,q) } 

                                                    ≤  max {µ (x1, q),  (x2, q)} 

                                                    = (µ x ) ((x1, x2), q) 

         (µ x )((x1 * 0, x2 * 0), q) ≤ (µ x  ) ((x1, x2), q) 

Let (x1, x2), (y1, y2), (z1, z2)   X x X. 

(  x )[(y1, y2)*(x1, x2), q] = (  x ) [ (y1 * x1 , y2 * x2), q] 

              = max { (y1 * x1, q), (y2 * x2, q)} 

                                            max {max {µ(z1* y1, q), µ(z1* x1, q)},max { (z2*y2, q), (z2*x2 , q)}}  

                                           = max {max { (z1*y1, q), (z2*y2, q)}, max { (z1*x1, q), (z2* x2, q)}}               

                                           = max {(  x ) ((z1 * y1, q),(z2* y2 , q)),(  x ) (( z1 * x1, q),( z2 * x2 , q) )}                                      

                                           = max {(  x ) [((z1 , z2),q) *((y1, y2), q)], (  x ) [((z1 , z2),q)*((x1, x2), q)]}                                           

Hence, µ x  is an anti Q-fuzzy  PMS- ideal in X x X. 

Theorem 5.5: Let   &   be fuzzy sets in a PMS-algebra X such that  x  is an anti Q-fuzzy PMS-ideal of X x X. 

Then (i) Either (0,q) ≤ (x, q) (or) (0,q) ≤ (x, q) for all x  X and q Q. 

         (ii) If (0,q) ≤  (x, q) for all x  X and q Q, then either (0,q)  ≤  (x, q) (or) (0,q)  ≤  (x, q) 

         (iii) If (0,q)  ≤  (x, q) for all x  X and q Q, then either (0,q) ≤  (x, q)  (or)  (0,q) ≤ (x, q). 
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Proof: Straightforward. 

Theorem 5.6: Let   &   be fuzzy sets in a PMS-algebra X such that  x  is an anti Q-fuzzy PMS-ideal of X x X. 

Then either  or  is an anti Q-fuzzy PMS-ideal of X.  

Proof: First we prove that  is an anti Q- fuzzy PMS-ideal of X.  

Since by 5.5(i) either (0,q) ≤ (x, q) or (0,q) ≤ (x, q) for all x  X and q Q.  

Assume that (0,q) ≤ (x, q) for all x  X and q Q. It follows from 6.2(iii) that either 

 (0,q) ≤  (x,q)  (or) (0,q) ≤ (x,q). 

If (0,q) ≤ (x, q), for any x  X and q Q ,then 

 (x, q) = max { (0,q), (x, q)}= (  x ) ((0, x),q)   

   (y * x, q) = (  x ) [ (0, y * x), q ] 

                     max {(  x ) [((0,z),q) * ((0,y), q)], (  x ) [((0,z), q) * ((0, x), q)]} 

                    = max {(  x ) [(0*0, z*y), q], (  x ) [(0 * 0,z * x), q]} 

                    = max {(  x ) [(0,z*y), q], (  x )  [(0, z*x),q]} 

                    = max {  (z * y, q),  (z * x, q)} 

 (y * x, q)  max {  (z * y, q ),   (z * x, q )} 

Hence  is an anti fuzzy PMS-ideal of X.  

 Similarly we will prove that  is an anti Q- fuzzy PMS-ideal of X. 

 

6. CONCLUSION 

In this article we have discussed anti Q-fuzzy PMS- ideal of PMS-algebras and its lower level cuts in detail. 

We hope that this work would lay other foundations for further study of the theory of PMS-algebras. In our future 

study of fuzzy structure of PMS-algebra, can be extended to the topics, intuitionistic fuzzy set, interval valued fuzzy 

sets, for more interesting results. 
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