Anti Q-fuzzy PMS- ideals in PMS-algebras

P.M.Sithar Selvam[#], K.T.Nagalakshmi²

[#] Professor and Dean, Department of Mathematics, R.V.S. School of Engineering and Technology, Dindigul- 624 001, Tamilnadu, India.

Abstract: In this paper, we introduce the concept of Anti Q-fuzzy PMS-ideals of PMS-algebras, lower level cuts of a fuzzy set and proved some results. We discussed few results of anti Q-fuzzy PMS-ideals of PMS-algebras in homomorphism and Cartesian product.

Keywords: *PMS-algebra, fuzzy PMS- ideal, Anti Q-fuzzy PMS-ideal, lower level cuts, homomorphism, Cartesian product.*

1. Introduction

The concept of fuzzy set was introduced by L.A.Zadeh in 1965 [19]. Since then these ideas have been applied to other algebraic structures such as groups, rings, modules, vector spaces and topologies. K.Iseki and S.Tanaka [2] introduced the concept of BCK-algebras in 1978 and K.Iseki [3] introduced the concept of BCI-algebras in 1980. It is known that the class of BCK –algebras is a proper subclass of the class of BCI algebras in 2002. P.M.Sithar Selvam and K.T.Nagalakshmi [5,6] introduced the concept of PMS-algebras , which is a generalization of BCK / BCI / TM / KUS / PS algebras in 2015.R.Biswas[1] introduced the concept of Anti fuzzy subgroups of groups. Modifying his idea, in this paper we applied the idea in PMS-algebras. We introduced the notion of Anti Q- fuzzy PMS-ideals of PMS-algebras and investigate how to deal with the homomorphic, Anti homomorphic and inverse image of Anti Q-fuzzy PMS-ideals of PMS-algebras.

2. Preliminaries

In this section we site the fundamental definitions that will be used in the development of this paper.

Definition 2.1 :[5,6] A nonempty set X with a constant 0 and a binary operation '*' is called

PMS – algebra if it satisfies the following axioms.

1.
$$0 * x = x$$

2. $(y * x) * (z * x) = z * y, \forall x, y, z \in X.$

In X, we define a binary relation \leq by : $x \leq y$ if and only if x * y = 0.

Definition 2.2:[5,6] Let X be a PMS - algebra and I be a subset of X, then I is called a PMS - ideal of X if it satisfies the following conditions:

- $1. \quad 0 \in I$
- 2. $z * y \in I$ and $z * x \in I \Rightarrow y * x \in I$ for all $x, y, z \in X$.

Example 2.3:[5,6] Let $X = \{0, a, b, c\}$ be the set with the following table.

*	0	а	b	с
0	0	а	b	с
a	b	0	а	b
b	а	b	0	с
с	с	с	а	0

Then (X, *, 0) is a PMS – algebra and $I = \{0,a,b\}$ is a PMS-ideal.

Definition 2.4:[7,8] : Let S be a non empty subset of a PMS -algebra X , then S is called a PMS-sub algebra of X if $x * y \in S$, for all $x, y \in S$.

Definition 2.5 [17,19] : Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping

 $\mu: X \rightarrow [0, 1].$

Definition 2.6 [11,12,13] : Let Q and G be any two sets. A mapping β : G x Q \rightarrow [0, 1] is called a Q –fuzzy set in G.

MAIN RESULTS

3. ANTI Q-FUZZY PMS – IDEALS OF PMS ALGEBRAS

Definition 3.1 : A Q- fuzzy set μ in X is called a Q-fuzzy PMS- ideal of X if

(i) $\mu(0, q) \ge \mu(x, q)$

(ii) $\mu(y * x, q) \ge \min \{\mu(z * y, q), \mu(z * x, q)\}$, for all x, y, $z \in X$ and $q \in Q$.

Definition 3.2: A Q-fuzzy set μ of X is called an anti Q-fuzzy PMS-ideal of X if

(i) $\mu(0, q) \le \mu(x, q)$

(ii) $\mu(y * x, q) \le \max \{\mu (z * y, q), \mu(z * x, q)\}$, for all x, y, $z \in X$ and $q \in Q$.

Theorem 3.1 : Every Anti Q - Fuzzy PMS- ideal μ of a PMS-algebra X is order preserving.

Proof : Let μ be an anti Q-Fuzzy PMS- ideal of a PMS-algebra X and let x, $y \in X$ and $q \in Q$ be such that $x \le y$, then x * y = 0.

Now $\mu(x, q) = \max \{\mu(0 * x, q)\}$ $\leq \max \{\mu(z * 0, q), \mu((x * y)* (z * y), q)\}$ $= \max \{\mu(z * 0, q), \mu(0 * (z * y), q)\}$ $= \max \{\mu(z * 0, q), \mu(z * y, q)\}$ $= \max \{\mu(0 * 0, q), \mu(0 * y, q)\} (Taking z = 0)$ $= \max \{\mu(0, q), \mu(y, q)\}$ $= \mu(y, q)$

 $\mu(\mathbf{x},\mathbf{q}) \leq \mu(\mathbf{y},\mathbf{q}).$

Theorem 3.2: μ is a Q-fuzzy PMS-ideal of a PMS-algebra X iff μ^c is an anti Q-fuzzy PMS-ideal of X.

Proof: Let μ be a Q-Fuzzy PMS- ideal of X and let x , y , $z \in X$ and $q \in Q$.

$$\begin{array}{ll} \mu\left(0,q\right) & \geq \mu(x,q) \\ 1 \text{-} \ \mu^{c}\left(0,q\right) & \geq 1 \text{-} \ \mu^{c}\left(x,q\right) \\ \mu^{c}\left(0,q\right) \leq \ \mu^{c}\left(x,q\right) \\ \text{and} & \mu^{c}\left(y^{*}x,q\right) = 1 \text{-} \ \mu(y^{*}x,q) \\ & \leq 1 \text{-} \min\left\{\mu\left(z^{*}y,q\right),\mu\left(z^{*}x,q\right)\right\} \\ & = 1 \text{-} \min\left\{1 \text{-} \ \mu^{c}\left(z^{*}y,q\right),1 \text{-} \ \mu^{c}\left(z^{*}x,q\right)\right\} \\ & = \max\left\{\mu^{c}\left(z^{*}y,q\right),\mu^{c}\left(z^{*}x,q\right)\right\} \end{array}$$

Thus μ^{c} is an anti Q-fuzzy PMS-ideal of X. The converse also can be proved similarly.

Theorem 3.3:Let X be a PMS-algebra. For any anti Q- fuzzy PMS-ideal μ of X, $N_{\mu} = \{x \in X \text{ and } q \in Q / \mu(x, q) = \mu(0,q) \}$ is a PMS-ideal of X.

Proof: Let z * y, $z * x \in N_{\mu}$. Then $\mu(z * y, q) = \mu(z * x, q) = \mu(0, q)$

Since μ is an anti Q-fuzzy PMS-ideal of X ,

 $\mu (y * x, q) \leq \max \{ \mu(z * x, q), \mu(z * y, q) \}$ = max { $\mu (0,q) , \mu (0,q) \}$ = $\mu (0,q)$

Hence $y * x \in N_{\mu}$. Therefore N_{μ} is a PMS-ideal of X.

Theorem 3.4 : If λ and μ are anti Q-fuzzy PMS ideals of a PMS-algebra X, then $\lambda \cap \mu$ is also an anti Q-fuzzy PMS-ideal of X.

Proof: Let $x, y, z \in X$ and $q \in Q$. Then

 $\begin{aligned} (\lambda \cap \mu) \ (0, q) &= \min \left\{ \begin{array}{l} \lambda \ (0, q) \ , \ \mu(0, q) \right\} \\ &\leq \min \left\{ \begin{array}{l} \lambda \ (x, q) \ , \ \mu(x, q) \right\} \end{aligned}$

 $= (\lambda \cap \mu) (x, q)$ $(\lambda \cap \mu) (y^*x, q) = \min \{\lambda (y^*x, q), \mu(y^*x, q) \}$ $\leq \min \{\max \{\lambda(z^*x, q), \lambda(z^*y, q)\}, \max \{\mu(z^*x, q), \mu(z^*y, q)\}\}$ $= \min \{\max \{\lambda(z^*x, q), \mu(z^*x, q)\}, \max \{\lambda(z^*y, q), \mu(z^*y, q)\}\}$ $\leq \max \{\min \{\lambda(z^*x, q), \mu(z^*x, q)\}, \min \{\lambda(z^*y, q), \mu(z^*y, q)\}\}$ $= \max \{(\lambda \cap \mu) (z^*x, q), (\lambda \cap \mu) (z^*y, q)\}.$

 \Rightarrow ($\lambda \cap \mu$) is also an anti Q-fuzzy PMS ideal of X.

Theorem 3.5: The union of any set of anti Q-fuzzy PMS-ideals in PMS-algebra X is also an anti Q-fuzzy PMS-ideal.

Proof : Let { μ_i } be a family of anti Q-fuzzy PMS-ideals of PMS-algebras X.

Then for any x , y , $z \in X$ and $q \in Q$.

$$(\cup \mu_{i}) (0, q) = \sup (\mu_{i}(0, q))$$

$$\leq \sup (\mu_{i}(x, q))$$

$$= (\cup \mu_{i}) (x, q)$$

$$(\cup \mu_{i}) (y * x, q) = \sup (\mu_{i}(y * x, q))$$

$$\leq \sup \{\max \{ \mu_{i}(z * y, q), \mu_{i}(z * x, q)\} \}$$

$$= \max \{ Sup (\mu_{i}(z * y, q)), Sup (\mu_{i}(z * x, q)) \}$$

$$= \max \{ (\cup \mu_{i}) (z * y, q), (\cup \mu_{i}) (z * x, q) \}$$

This completes the proof.

Definition 3.6: Let μ be a Q-fuzzy set of X. For a fixed $t \in [0, 1]$, the set $\mu_t = \{x \in X \mid \mu(x,q) \le t \text{ for all } q \in Q\}$ is called the lower level subset of μ . Clearly $\mu^t \cup \mu_t = X$ for $t \in [0,1]$ if $t_1 < t_2$, then $\mu_{t1} \subseteq \mu_{t2}$.

Theorem 3.7 : If μ is an anti Q-fuzzy PMS-ideal of PMS-algebra X, then μ_t is a PMS-ideal of X for every $t \in [0,1]$.

Proof : Let μ be an anti Q-fuzzy PMS-ideal of PMS-algebra X.

Clearly $0 \in \mu_t$.

 $\label{eq:Let z * x \in \mu_t and z * y \in \mu_t, for all \ x, y \in X and q \in Q.$

 $\Rightarrow \mu (z * x, q) \le t \text{ and } \mu (z * y, q) \le t.$

 $\mu \; (y \; {}^{*} \; x, \, q \;) \leq \; max \; \{ \; \mu \; (z \; {}^{*} \; y \; , \, q \;), \; \mu (\; z \; {}^{*} \; x, \, q \;) \} \leq max \; \{t, \, t\} = t.$

 $\Rightarrow y \ast x \in \mu_t.$

Hence μ_t is an PMS- ideal of X for every $t \in [0,1]$.

Theorem 3.8 : Let μ be a Q-fuzzy set of PMS- algebra X. If for each $t \in [0, 1]$, the lower level cut μ_t is a PMS-ideal of X, then μ is an anti Q- fuzzy PMS-ideal of X.

Proof : Let μ_t be a PMS-ideal of X.

If $\mu(0,q) > \mu(x, q)$ for some $x \in X$ and $q \in Q$, then $\mu(0, q) > t_0 > \mu(x, q)$ by taking

$$t_0 = \frac{1}{2} \{ \mu(0,q) + \mu(x,q) \}.$$

Hence $0 \notin \mu_{t0}$ and $x \in \mu_{t0}$, which is a contradiction.

Therefore, $\mu(0, q) \leq \mu(x, q)$.

Let x, y, $z \in X$ and $q \in Q$ be such that μ (y * x, q) > max { μ (z * y, q), μ (z * x, q)}.

Taking $t_1 = \frac{1}{2} \{ \mu(y * x, q) + \max \{ \mu(z * y), q), \mu(z * x, q) \} \}$

 $\Rightarrow \ \mu (y * x, q) > t_1 > max \ \{\mu (z * y, q), \ \mu(z * x, q)\}.$

It follows that z * y, $z * x \in \mu_{t1}$ and $y * x \notin \mu_{t1}$. This is a contradiction.

Hence $\mu(y * x, q) \le \max \{\mu (z * y, q), \mu(z * x, q)\}$

Therefore µ is an anti Q-fuzzy PMS-ideal of X.

4. HOMOMORPHISM AND ANTI HOMOMORPHISM ON ANTI Q-FUZZY PMS- ALGEBRAS

In this section, we discussed about ideals in PMS-algebra under homomorphism and anti homomorphism and some of its properties.

Definition 4.1 : Let (X, *, 0) and $(Y, \Delta, 0)$ be PMS– algebras. A mapping f: $X \rightarrow Y$ is said to be a homomorphism if f(x * y) = f(x) * f(y) for all x, y \in X.

Definition 4.2 : Let (X, *, 0) and $(Y, \Delta, 0)$ be PMS-algebras. A mapping f: $X \rightarrow Y$ is said to be an anti homomorphism if $f(x * y) = f(y) \Delta f(x)$ for all $x, y \in X$.

Definition 4.3 : Let f: $X \to X$ be an endomorphism and μ be a fuzzy set in X. We define a new fuzzy set in X by μ_f in X as $\mu_f(x) = \mu(f(x))$ for all x in X.

Theorem 4.4 : Let f be an endomorphism of a PMS- algebra X. If μ is an anti Q- fuzzy PMS-ideal of X, then so is μ_f .

Proof: Let μ be an anti Q-fuzzy PMS-ideal of X.

Now, $\mu_f(0, q) = \mu(f(0,q))$

 $\leq \mu$ (f(x, q)) = $\mu_f(x, q)$, for all x, y $\in X$ and $q \in Q$.

Let x, y, $z \in X$ and $q \in Q$.

Then $\mu_{f}(y * x, q) = \mu (f(y * x, q))$ = $\mu (f(y, q) * f(x, q))$ $\leq \max \{ \mu(f(z, q) * f(y, q)), \mu(f(z, q) * f(x, q)) \}$ = $\max \{ \mu (f(z * y, q)), \mu(f(z * x, q)) \}$ = $\max \{ \mu_{f}(z * y, q), \mu_{f}(z * x, q) \}$ $\therefore \mu_{f}(y * x, q) \leq \max \{ \mu_{f}(z * y, q), \mu_{f}(z * x, q) \}$

Hence μ_f is an anti Q- fuzzy PMS-ideal of X.

Theorem 4.5 : Let f: $X \rightarrow Y$ be an epimorphism of PMS- algebra. If μ_f is an anti Q-fuzzy PMS-ideal of X, then μ is an anti Q-fuzzy PMS-ideal of Y.

Proof: Let μ_f be an anti Q-fuzzy PMS-ideal of X.

Let $y \in Y$ and $q \in Q$. Then there exists $x \in X$ such that f(x, q) = (y, q).

Now, $\mu(0, q) = \mu(f(0, q))$ $= \mu_f(0, q)$ $\leq \mu_f(x, q) = \mu(f(x, q)) = \mu(y, q)$ $\therefore \mu(0, q) \leq \mu(y, q)$ Let $y_1, y_2, y_3 \in Y$. $\mu(y_2 \Delta y_1, q) = \mu(f(x_2) \Delta f(x_1), q)$ $= \mu(f(x_2 * x_1, q))$ $= \mu_f(x_2 * x_1, q)$ $\leq \max \{\mu_f(x_3 * x_2, q), \mu_f(x_3 * x_1, q)\}$ $= \max \{\mu[f(x_3, q) \Delta f(x_2, q)], \mu[f(x_3, q) \Delta f(x_1, q)]\}$ $= \max \{\mu[(y_3, q) \Delta (y_2, q)], \mu[(y_3, q) \Delta (y_1, q)]\}$

 $\Rightarrow \mu$ is an anti Q- fuzzy PMS-ideal of Y.

Theorem 4.6 : Let f: $X \rightarrow Y$ be a homomorphism of PMS- algebra. If μ is an anti Q-fuzzy PMS-ideal of Y then μ_f is an anti Q-fuzzy PMS-ideal of X.

Proof: Let μ be an anti Q- fuzzy PMS-ideal of Y.

Let x, y, z \in X. $\mu_{f}(0, q) = \mu (f(0, q))$ $\leq \mu (f(x, q)) = \mu_{f} (x, q)$ $\Rightarrow \mu_{f}(0, q) \leq \mu_{f}(x, q).$ $\mu_{f}(y * x, q) = \mu [f (y * x, q)]$ $= \mu [f(y, q) \Delta f(x, q)]$ $\leq \max \{\mu (f(z, q) \Delta f(y, q)), \mu (f (z, q) \Delta f(x, q))\}$ $= \max \{\mu (f (z * y, q)), \mu (f (z * x, q))\}$ $= \max \{\mu_{f} (z * y, q), \mu_{f} (z * x, q)\}$ $\therefore \mu_{f} (y * x, q) \leq \max \{\mu_{f} (z * y, q), \mu_{f} (z * x, q)\}.$

Hence μ_f is an anti Q-fuzzy R-closed PMS-ideal of X.

5. CARTESIAN PRODUCT OF ANTI Q-FUZZY PMS-IDEALS OF PMS-ALGEBRAS

In this section, we introduce the concept of Cartesian product of anti Q-fuzzy PMS-ideals of PMS-algebra.

Definition 5.1 :Let μ and δ be the fuzzy sets in X. The Cartesian product $\mu \ge \delta : X \ge X \ge [0,1]$ is defined by

 $(\mu x \delta)(x, y) = \min \{\mu(x), \delta(y)\}, \text{ for all } x, y \in X.$

Definition 5.2: Let μ and δ be the anti fuzzy sets in X. The Cartesian product $\mu \ge \delta : X \ge X \ge [0,1]$ is defined by $(\mu \ge \delta) (x, y) = \max \{\mu(x), \delta(y)\}$, for all $x, y \in X$.

Definition 5.3:Let μ and δ be the anti Q-fuzzy sets in X. The Cartesian product $\mu \ge \delta : X \ge X \ge [0,1]$ is defined by $(\mu \ge \delta) ((x, y), q) = \max \{\mu(x, q), \delta(y, q)\}$, for all $x, y \in X$ and $q \in Q$.

Theorem 5.4 : If μ and δ are anti Q-fuzzy PMS-ideals in a PMS- algebra X, then $\mu \ x \ \delta$ is an anti Q-fuzzy PMS-ideal in X x X.

Proof: Let $(x_1, x_2) \in X \times X$ and $q \in Q$.

$$(\mu \ x \ \delta)((x_1 * 0, x_2 * 0), q) = \max \{\mu \ (x_1 * 0, q), \delta \ (x_2 * 0, q) \}$$

$$\leq \max \{\mu \ (x_1, q), \delta \ (x_2, q) \}$$

$$= (\mu \ x\delta) \ ((x_1, x_2), q)$$

$$\therefore \ (\mu \ x \ \delta)((x_1 * 0, x_2 * 0), q) \leq (\mu \ x\delta) \ ((x_1, x_2), q)$$

Let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$.

 $(\mu x \delta)[(y_1, y_2)^*(x_1, x_2), q] = (\mu x \delta) [(y_1^* x_1, y_2^* x_2), q]$

$$= \max \{ \mu(y_1 * x_1, q), \delta(y_2 * x_2, q) \}$$

$$\leq \max \{ \max \{ \mu(z_1 * y_1, q), \mu(z_1 * x_1, q) \}, \max \{ \delta(z_2 * y_2, q) \}$$

 $= \max \{ \max \{ \mu(z_1^*y_1, q), \delta(z_2^*y_2, q) \}, \max \{ \mu(z_1^*x_1, q), \delta(z_2^*x_2, q) \} \}$

 $= \max \{ (\mu x \delta) ((z_1 * y_1, q), (z_2 * y_2, q)), (\mu x \delta) ((z_1 * x_1, q), (z_2 * x_2, q)) \}$

 $q)\delta(z_2 x_2, q)\}$

 $= \max \{(\mu \ x \ \delta) \ [((z_1, z_2), q) \ *((y_1, y_2), q)], (\mu \ x \ \delta) \ [((z_1, z_2), q) \ *((x_1, x_2), q)]\}$

Hence, $\mu x \ \delta$ is an anti Q-fuzzy PMS- ideal in X x X.

Theorem 5.5: Let $\mu \& \delta$ be fuzzy sets in a PMS-algebra X such that $\mu x \delta$ is an anti Q-fuzzy PMS-ideal of X x X. Then (i) Either $\mu(0,q) \le \mu(x, q)$ (or) $\delta(0,q) \le \delta(x, q)$ for all $x \in X$ and $q \in Q$.

(ii) If $\mu(0,q) \le \mu(x,q)$ for all $x \in X$ and $q \in Q$, then either $\delta(0,q) \le \mu(x,q)$ (or) $\delta(0,q) \le \delta(x,q)$

(iii) If $\delta(0,q) \leq \delta(x,q)$ for all $x \in X$ and $q \in Q$, then either $\mu(0,q) \leq \mu(x,q)$ (or) $\mu(0,q) \leq \delta(x,q)$.

Proof: Straightforward.

Theorem 5.6: Let $\mu \& \delta$ be fuzzy sets in a PMS-algebra X such that $\mu x \delta$ is an anti Q-fuzzy PMS-ideal of X x X. Then either μ or δ is an anti Q-fuzzy PMS-ideal of X.

Proof: First we prove that δ is an anti Q- fuzzy PMS-ideal of X.

Since by 5.5(i) either $\mu(0,q) \le \mu(x, q)$ or $\delta(0,q) \le \delta(x, q)$ for all $x \in X$ and $q \in Q$.

Assume that $\delta(0,q) \leq \delta(x, q)$ for all $x \in X$ and $q \in Q$. It follows from 6.2(iii) that either

 $\mu(0,q) \le \mu(x,q)$ (or) $\mu(0,q) \le \delta(x,q)$.

If $\mu(0,q) \leq \delta(x, q)$, for any $x \in X$ and $q \in Q$, then

 $\delta(x, q) = \max \{ \mu(0,q), \, \delta(x, q) \} = (\mu x \, \delta) \, ((0, x),q)$

$$\begin{split} \delta &(y * x, q) = (\mu x \, \delta) \left[(0, y * x), q \right] \\ &\leq \max \left\{ (\mu x \, \delta) \left[((0, z), q) * ((0, y), q) \right], (\mu x \, \delta) \left[((0, z), q) * ((0, x), q) \right] \right\} \\ &= \max \left\{ (\mu x \, \delta) \left[(0^{*}0, z^{*}y), q \right], (\mu x \, \delta) \left[(0 * 0, z * x), q \right] \right\} \\ &= \max \left\{ (\mu x \, \delta) \left[(0, z^{*}y), q \right], (\mu x \, \delta) \left[(0, z^{*}x), q \right] \right\} \\ &= \max \left\{ \delta (z * y, q), \delta (z * x, q) \right\} \end{split}$$

 $\Rightarrow \delta(y * x, q) \le \max \{ \delta (z * y, q), \delta (z * x, q) \}$

Hence δ is an anti fuzzy PMS-ideal of X.

Similarly we will prove that μ is an anti Q- fuzzy PMS-ideal of X.

6. CONCLUSION

In this article we have discussed anti Q-fuzzy PMS- ideal of PMS-algebras and its lower level cuts in detail. We hope that this work would lay other foundations for further study of the theory of PMS-algebras. In our future study of fuzzy structure of PMS-algebra, can be extended to the topics, intuitionistic fuzzy set, interval valued fuzzy sets, for more interesting results.

7. ACKNOWLEDGEMENT

Authors wish to thank Dr.T.Priya, Faculty of Mathematics, Omen and to anonymous referees for their comments, suggestions and ideas to improve and make this paper as successful one.

REFERENCES

- [1] Biswas R., Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and systems, 35,(1990),121-124.
- [2] Iseki K. and S.Tanaka, An introduction to the theory of BCK algebras, Math Japonica 23(1978),1-20
- [3] Iseki K., On BCI-algebras, Math.Seminar Notes 8(1980), 125-130.
- [4] Megalai K.and Tamilarasi A., Fuzzy Subalgebras and Fuzzy T-ideals in TM-algebra, Journal of Mathematics and Statistics 7(2), (2011), 107-111.
- [5] P.M.Sithar Selvam , K.T.Nagalakshmi, On PMS-algebras, Transylvanian Review, 24(10),(2016),1622-1628.
- [6] P.M.Sithar Selvam, K.T.Nagalakshmi, Homomorphism and Cartesian Product on Fuzzy α-translation and Fuzzy α-Multiplication of PMS-algebras, Transylvanian Review, 24(10),(2016),1632-1638.
- [7] P.M.Sithar Selvam, K.T.Nagalakshmi, Fuzzy PMS-ideals in PMS- algebras, Annals of Pure and Applied Mathematics, In Press.
- [8] P.M.Sithar Selvam, T.Priya and T.Ramachandran, Anti fuzzy Sub algebras and Homomorphism of CI-algebras, International Journal of Engineering Research & Technology,1(5),(2012),1-6.
- [9] P.M.Sithar Selvam and K.T.Nagalakshmi, A study on normalization of fuzzy PMS-Algebras, International Journal of Trend in Research and Development, 3(6),(2016),49-55.
- [10] P.M.Sithar Selvam, K.T.Nagalakshmi, Fuzzy dot PMS-algebras, Research Journali's Journal of Mathematics, Communicated.
- [11] P.M.Sithar Selvam, T.Priya, K.T.Nagalakshmi and T.Ramachandran, A note on anti Q- fuzzy KU-sub algebras and Homomorphism of KU-algebras, Bulletin of Mathematics and Statistics Research, 1(1), (2013), 42-49.
- [12] P.M.Sithar Selvam, T.Priya and T.Ramachandran, Anti Q-fuzzy KU–ideals in KU-algebras and its lower level cuts, International journal of Engineering Research & Applications, 2(4), (2012), 1286-1289.
- [13] P.M.Sithar Selvam, T.Priya, K.T.Nagalakshmi, T.Ramachandran, Anti Q-fuzzy R-Closed KU- ideals in KUalgebras and its lower level cuts, International journal of fuzzy Mathematical archive, 4(2),(2014), 61-71.
- [14] P.M.Sithar Selvam, K.T.Nagalakshmi, Role of Homomorphism and Cartesian Product over Fuzzy PMSalgebras, International Journal of Fuzzy Mathematical Archive, Accepted for Publication.

- [15] Samy M. Mostafa, Mokhtar A.Abdel Naby, Fayza Abdel Halim, Areej T. Hameed, On KUS-Algebras, International Journal of Algebra,7(3),(2013),131–144.
- [16] Samy M. Mostafa, Areej T. Hameed, Anti-fuzzy KUS-ideals of KUS-algebras, International Journal of Computer Applications 70(9),2013, 24-28.
- [17] T.Priya and T.Ramachandran , A note on Fuzzy PS –Ideals in PS-Algebra and its level subsets, International Journal of Advanced Mathematical Sciences, 2(2),(2014),101-106.
- [18] T.Priya and T.Ramachandran, Some characterization of anti fuzzy PS-ideals of PS-algebras in Homomorphism and cartesian Products, International Journal of juzzy Mathematical Archive,4(2),(2014),72-79.
- [19] Zadeh. L.A. Fuzzy sets, Information and Control.8, (1965), 338-353.