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L INTRODUCTION

After the introduction of the concept of fuzzy sets by Zadeh [12] several researches were conducted on
the generalizations of the notion of fuzzy sets. The idea of “intuitionistic fuzzy set” was first published by
Atanassov [1], as a generalization of the notion of fuzzy set. In 1995, Florentin Smarandache [2,3] initiated the
concept of neutrosophic set. Recently H.-Wang et.al [4] introduced an instance of neutrosophic set known as
single valued neutrosophic set which was motivated from the practical point of view and that can be used in real
scientific and engineering applications.
BCK/BCl-algebras are algebraic structures, introduced by K. Iseki [5,6] in 1966, that describe * fragments of the
propositional calculus involving implication known as BCK/BClI-logics. It is known that the class of BCK-
algebras is a proper subclass of the class of BCI-algebras.
Y. B. Jun (together with Hong, Kim, Meng, Roh, and Song) considered the fuzzification of ideals and sub-
algebras in BCK-algebras ([7, 8,9, 10, 11]). In this paper, we establish the single valued neutrosophication of
the concept of sub-algebras and ideals in BCK-algebras, and investigate some of their properties.

II. PRELIMINARIES

Definition 2.1
An algebra (X, *,0) of type (2, 0) is called a BCK-algebra if it satisfies the following axioms:

@) ((x*y)*(x*z))*(z*y) =0,

@2) (x*(x*y))*y=0,

@3) x*x=0,

(a4) x*y=0and y*x =0 imply that x = y

@5) Oxx=0 forall x,y,zeX .

Definition 2.2

A partial ordering “<” on X can be defined by x < y ifand onlyif x* y =0.

Definition 2.3
In any BCK-algebra X the following holds:

(P1) x*0=x

P2) x*y<x

(P3) (x*y)*z=(x*z)*y

(P4) (x*z)*(y*z)<x%*y

(P5) x*(x*(x*y))=x*y

P6) x<y=x*z<y*zand z*y<z*x, forall x,y,zeX.

Definition 2.4

A subset S of a BCK-algebra X is called a subalgebra of X if x * y €S whenever x,y €S .

Definition 2.5
A non-empty subset I of a BCK-algebra X is called an ideal of X if it satisfies:
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(CH 0el,
(C2) x*yeland ye limply xel
Proposition 2.6
In a BCK-algebra X, the following holds, for all x,y,ze X .

D) ((x*z)xz)*(y*z) <(x*y)*z
(i) (x*z)*(x*(x*z))=(x*z)*z
(i) (x* (y*(y*x))*(y*(x*(y*(y*x))) <x*y.
III .SINGLE VALUED NEUTROSOPHIC IDEALS
In what follows, let X denote a BCK-algebra unless otherwise specified.
Definition 3.1
AnSVNS A=(a,,B,.,7,) inXis called a single valued neutrosophic sub-algebra of X if it satisfies:

Lo, (x*y) 2minie, (x),0, ()}
2. By (x* y) 2min{f3,(x), B,(y);

3.74(x* y)<max{y,(x),y,(y)} forallxy€X.

Example 3.2
Consider a BCK-algebra X={0,a,b,c} with the following Cayley table:

N 0 a b ¢
0o, 0 0 0 O
al a 0 0 a
b| b a 0 b
c| ¢ ¢ ¢

Let A=(a,,[,,7,)beaSVNS in X defined by

a4(0) = a4(@) = a4(c) = 0.7 > 0.3 = a,(b),
Ba(0) = Pa(@) = fa(c) = 0.6 > 0.2 = fy(b),
74(0) = 74(@) = ya(c) = 0.2< 0.5 = y4(D).
Then A= <0£ By A> is a single valued neutrosophic sub-algebra of X.

Proposition 3.3
Every single valued neutrosophic sub-algebra A = <0£A,ﬁA, }/A> of X satisfies the inequalities a4(0) > o4(x) ,
L4(0) = Bu(x) and y,4(0) < yu(x) for all x € X.

Proof:

For any x € X, we have
,(0) = e, (x*x) 2 min{e,(x),0,(x)} = a ,(x) ,
B4(0) = f,(x*x) 2min{f,(x),,(x)} = B,(x).

V4 (0) =74 (x* x) < max {7A (x), V4 (x)} =74 (x) .

This completes the proof.
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Definition 3.4
An SVNS A4 = <a By A> in X is called a single valued neutrosophic ideal of X if it satisfies the following
inequalities:

L au(0) 2 au(x), fa(0) = Pax) and y4(0) < y4(%),

2. oy(x) = min{ay(x*y),04(v)},

3. Ba(x) = min{fa(x*y), fa(v)},

4. ya(x) <max{ys(x*y), ya(y)}, for all x,y € X.

Example 3.5

Let X={0,1,2,3,4} be a BCK-algebra with the following Cayley table:
1 0 1 2 3 4
00 0 0 O O
11 0 1 0 O
212 2 0 0 O
3/3 3 3 0 0
414 3 4 1 0

Define a SVNS 4 = <0£A,ﬁA,}/A>inXas follows:

a40)=04(2) =1, oy(1) = a4(3) = as(4) =1,
B40)=p4(2) =1, Bu(1) = B4(3) = fua(4) = s,
74(0) =74(2) = 0, yu(1) = yu(3) = yu(4) = ¢
where 7 € [0,1], s € [0,1],# € [0,1]and 7+ 5+ < 3. By routine calculation we know that 4 ={ct,,,,7,,)

is a single valued neutrosophic ideal of X.
Lemma 3.6

Leta SVNS A = <0£A,ﬁA,}/A> in X be a single valued neutrosophic ideal of X. If the inequality x+y < z holds in
X, then

a,(x)2min{a,(y),a,(2)}, B,(x) 2min{f,(y), 5,(2)} and y ,(x) <maxiy,(¥).y ,(2);

Proof:
Let x,,z € X be such that x*y < z. Then (x*y)*z = 0, and thus

a,(x) 2 minie, (x * y),a,,(y)}
2 min{min{a , ((x* y) *z),a,(2)},a,(¥)}
=min{min{e,(0),a,(z)},a,(»)}
=min{a,,(y),a,(2)}

B.(x)2min{f,(x* y), B,(¥)}
> min{min{f, ((x* y)*2), 8,(2)}, B, (»)}
= min{min{f3,(0),5,(2)}, B,(»)}
=min{f,(y), 8,(2)}.
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y4(0) <max{y, (x*y),y,(»);
< max{max{y ,((x* y)*2),y ,(2)},7,(»)}
= max{max{y ,(0),7,(2)},7.,(»)}

=max{y (1), 7 4(2);-
this completes the proof.

Lemma 3.7
Let A= <0£ By A>be a single valued neutrosophic ideal of X. If x <y in X, then

aa(x) = aa(y), Ba(x) = Ba(y), ya(x) <ya(y) that is, as and P are order-reserving and y, is order-preserving.

Proof:
Let x,y € X be such that x <y. Then x*y =0 and so

a,(x) 2 minja, (x*y), o, ()} = minie, (0), e, (y)} = &, (y)
B.(x) 2min{f, (x*y), B,(y); =min{f3,(0), B,(y)}; = B,(»)

7.4(x) <maxiy,(x*y),y,(y); =max{y,(0),y,(»);=7,(»)

This completes the proof.

Theorem 3.8

If A= <0£A,ﬁA, }/A> is a single valued neutrosophic ideal of X, then for any x,a,,a,,...,a, € X,
(- ((x*ay)xay)* ) *a,= 0 implies

o, (x) 2 min{a (@), a,(a,),...,a,(a,)} B,(x)2min{f,(a),,(a),...B.(a,);
74(x) <maxiy,(a),y ,(a),...7 ,(a,)}

Proof:
Using induction on » and Lemmas 3.6 and 3.7, the proof is straightforward.
Theorem 3.9

Every single valued neutrosophic ideal of X is a single valued neutrosophic sub-algebra of X.

Proof:

Let A= <0£A,ﬁA, }/A> be a single valued neutrosophic ideal of X. Since x*y < x for all x,y € X, it follows from
Lemma 3.7 that OcA(x* y)Z o, (x) ,ﬂA(x* y)Z B(x), }/A(x*y)é 7 4(x) so by Definition 3.4,

a,(x*y)2a,(x) 2 minfo,(x* y),a,(y)} = min{a,(x),a,(y)}
Bi(x*y)2 B, (x) 2min{,(x*y), 5,(y)} = min{B,(x), 5,(»)}
Ya(x* y) <y, (x) <maxiy, (x*y),y,(»)} <max{y,(x),y,,(»)}

This shows that 4 = <0£ By A> is a single valued neutrosophic sub-algebra of X.
The converse of Theorem 3.9 may not be true. For example, the single valued neutrosophic sub-algebra

A= <0£ By A> in Example 3.2 is not a single valued neutrosophic ideal of X since
7,(0)=0.5>0.2=max{y,(b*a),y(a)}.
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We now give a condition for a single valued neutrosophic sub-algebra to be a single valued neutrosophic ideal.
Theorem 3.10
Let A= <0£ B > be a single valued neutrosophic sub-algebra of X such that

a,(x)zmin{a,(y),a,(2)}, B,(x) 2min{f,(y), B,(2)},7,(x) <maxiy,(y),y,(2)} forallxy.z

€ X satisfying the inequality x+y <z. Then A = <0£ By A> is a single valued neutrosophic ideal of X.
Proof:
Let A= <0£ By A>be a single valued neutrosophic sub-algebra of X. Recall that

a,0)za,(x),B,0)zpB,(x) and y,(0) <y ,(x) for all X. Since x*(x*y) <y, it follows from the

hypothesis that o ,(x) > min{e  (x* y),o (¥)}, B, (x) = min{S,(x*y), B,(»)} and

7 ,,(x) <max{y ,(x*y),7,(y)} .Hence 4= <0£A,ﬂA, }/A> is a single valued neutrosophic ideal of X.
Lemma 3.11

ASVNS 4= <0£A,ﬂA, }/A> is a single valued neutrosophic ideal of X if and only if the fuzzy sets ¢ , . 3, and

7 , are fuzzy ideals of X.
Proof:

Let A= <0£A,ﬂA,}/A> be a single valued neutrosophic ideal of X. Clearly, o, . B, is a fuzzy ideal of X. For
every x, y € X, we have

740) =1=7,(0)21-y,(x)=7,(x), 7,(x) =1 =y, (x) 2 1 -max{y ,(x * y), 7, ()}
=min{l-y,(x*y),1-y,(y)} =min{y,(x*y),7,(»)}.Hence ¥, is a fuzzy ideal of X.
Conversely, assume that o, B ,and ¥, are fuzzy ideals of X. For every x,y € X, we get

(02 a,(x). f,(0)2 B,(x) 1-7,(0)=7,(0)>7,(x) =1~ 7,,(x) thatis,
74(0)<y,(x);a,(x)2min{a,(x*y),a,(y)} and

1=7,(0)=7,() 2 min{7, (x*).7,(:)} = min{l =y, (c* =7, ()}

= 1-max{y, (x* y),7,(»)} thatis, 7, (x) < max{y ,(x* »),7, (1)} . Henoe A=(a,, B,.7,)isa

single valued neutrosophic ideal of X.
Definition 3.12

For any 7,5,¢ € [0,1] and a single valued neutrosophic set 4 = <0£A,ﬂA, }/A> in a non-empty set X ,the set
U(A;<r, S,t>)= {x eX/la,(x)2r,B,(x)=2s,7,(x)< t} is called an upper <r,s,t> —level cut of 4

and the set L(A;<r,s,t>)= {x eX/loa,(x)Sr,B,(x)<s,7,(x)> t} is called a lower <r,S,t> —level

cutof A .
Definition 3.13

Let SVNS(X) be the family of all single valued neutrosophic ideals of X and let 7, s, ¢ & [0,1].Define
binary relations U and L") on SVNS(X) as follows:

(4,B)eU" o U(A;(r,s, t>) = U(B;(r, s,t))

(4,B) e L' & L(4;(r,5,0)) = L(B;(r,5,1)) respectively, for 4 =(a,,8,,7,) and

B = <0£B By, }/B> in SVN(X).Then clearly U™ and L™ are equivalence relations on SVN(X).
Definition 3.14

ASVNS 4= <0£ By A> in a BCK-algebra X is a single valued neutrosophic implicative ideal (SVNI-ideal)
of X if it satisfies

M) a,(0)za,(x),5,0)2p,(x)and y,(0)<y,(x)

2) e, (x) 2 min{a , ((x* (y * x)) * 2), @, (2)}
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3) f,(x) 2 min{f, ((x*(y*x))*2), ,(2)}

@) 7,(0) <maxiy, ((x*(y*x))*2),7,(2)}, forallx, y, z€ X.

Definition 3.15

AnSVNS 4= <0£ By A> in X is a single valued neutrosophic commutative ideal (SVNCl-ideal) of X if it

satisfies

M ay, (O) za, (x), ﬂA (O) 2 ﬂA (x) and ¥, (O) SV (x)
2) a,(x*(y*(y*x))) 2min{a,((x*y)*z),a,(2)}

3) B (x*(y*(y=*x))) 2min{f, ((x*y)*2),5,(2);

@ 7, (xx(y*(y*x))) <maxiy, ((x*y)*z),y,(2)}
for all x,y,z € X.
Definition 3.16

ASVNS 4= <0£ By A> in a BCK-algebra X is a single valued neutrosophic positive implicative ideal
(SVNPI-ideal) of X if it satisfies

M) a,(0)za,(x),5,0)2B,(x) and y,(0)<y,(x)

@ a,(x*2)> minfa, ((x* y) *2),0, (v *2)}

3) B,(x*2) 2min{f, ((x*y)*z), B,(y*2)}

@) 7,4(x*xz) <max{y,((x*y)*z),y,(y*2)}
for all x,y,z € X.
Theorem 3.17

A single valued neutrosophic ideal A = <0£ 4> B iV A> of X is a single valued neutrosophic implicative if and

only if 4 is both single valued neutrosophic commutative and single valued neutrosophic positive implicative.
Proof:

Assume that 4 = <a By A> is a single valued neutrosophic implicative ideal of X.
By Definition 2.6(i) and. Lemma 3.6, we have

min{e, ((x* y)*z), 0, (y* 2)} < e, ((x* 2) * 2)

= 0, ((x 2) % (x (x % 2))) by (2.6(ii))

=o,(x*2z)

min{f3, ((x* y)*2),5,(y*2)} < B, ((x*2) * 2)

= B 2) * (x* (x *2))) by (2.6(i)

=B(x*2)

and max iy, ((x*y)*z),y,(y*2); 2y ,((x*2)*z)

=y ,((x*2)*(x*(x*2))) by (2.6(ii)

=y4(x*z)

for all x,),z €X.

Then A= <06 By A> is a single valued neutrosophic positive implicative ideal of X.

o, (xx y) <o, (O (p* (v ex)) * (v * (o (v *(y*x))) = o, (x % (y * (¥ *x)))
B y) < B, (e (y*(y#x))) * (v (x# (v (y * X)) = B, (x * (y* (¥ *x)))

and
Yaxxy) 2y (xx(yx(y*x)*(y*(x*(yx(y*x))) =y, (x*(y*(y*x)))

Therefore, A = <0£ By A> is a single valued neutrosophic commutative.
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Conversely, suppose that 4 = <0£ 4> B iy A> is both single valued neutrosophic positive implicative and

single valued neutrosophic commutative.
Since, (y*(y* X))*(y* X) < x *(y* X), it follows from Lemma 3.7.

a,((yx(y*xx))*(y*x)) 2 a,(x*(y*x)),

B((y*(y*x)*(y*x))= B,(x*(y*x))and

Ya((*(y*x)*(y*x)) <y, (x*(y*x))

Then, we have @ ,(y*(y* x)*(y*x))= o, (y*(y* x))
B(y*(yxx)x(y*x))=B,(y*(y*x)

and ,(y*(y*x)*(y*x)) =y, (y*(y*x)).

Therefore

a,(xx(y*x))<a,(y*(y*x)), B,(x*(y=x)<B,(y*(y*x)

and.yA(x*(y*x))ZyA(y*(y*x)) ............ )]

On the other hand since x * y < x *(y* X), we have, by Lemma 3.7

a,(xxy)za,(xx(y*x) , B,(x*y)= B, (x*(y*x)) and y,(x*y) <y, (x*(y*x)).
Since 4 = <0£ By A> is a single valued neutrosophic commutative ideal of X, then we have

a, (v y)=a,(xx(yx(yx))), B,0cxy)= B, (xx(y*(y*x)) and

7aCoey) =y (ox(yx(yrx))).

Hence ,(x % (y*x)) < et (x# (y * (y*x))). B, (v (y*x)) < B, (xx (y*(y*x))) and

v er(rx)zy, e(r(xx) )
Combining (1) and (2), we obtain

o, (x* (yx)) < minfar, (ex (v (v *x)ha, (v (v x))} < @ ()
Bix(y*x)) < min{fs, (v (v (v ). B, (v (v X))} < B, ()
and 7, (v* (y#x)) 2 max{y, (e (v 2 (v 22y, (v (v < x))h 2 7, ()
So A= <0£ By A> is a single valued neutrosophic implicative ideal of X .

The proof is complete.
Theorem 3.18

If A= <0£A,ﬁA, }/A> is a single valued neutrosophic ideal of X with the following conditions holds

—

@) a,(x*y)= min{aA(( x*y)*y)* z),aA(z)}
(if) Byexy)zmin{B, (x* y)*v)*2). B.,(2)
@@iM) y,(x*y)< max{yA (((x * y)* y)* Z), 7.4 (Z)} forall x,y,z € X .Then A is single valued

neutrosophic positive implicative ideal of X.
Proof:

—

Suppose A = <0£ By A> is single valued neutrosophic ideal of X.

with condition (i) , (ii) and (iii). Using (P3) and (P4), we have
((x *2)*2)*(y*z)) < (X *z)* y = (X * y)*z, for all X, y, z €X, therefore by Lemma 3.7

a,((x*z2)*z)*(y*z)) 2, ((x*y)*2)
Bi((xxz)xz)x(yxz))2 B, ((xxy)rz)ana  y,(xx2)*2)x(y*2) <y, ((x*r)*z)

Now o, (x*z)2min{a (v 2)* 2)* (y*2)).et, (v * 2)}

2 min{aA((x*y)*z),aA(y*z)},forall x,y,zeX

ﬂA(‘x* Z)Z min{ﬂA(((x* Z)* Z)* (y* Z))a ﬂA(y* Z)}
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>min{B,((x* y)*z), B,(y*z)}, forall x,y,z€ X
and

yaloxz)<maxfy, (v z)xz)x(vx2))y,(v+2))

< max{;/A((x *y)* z), ;/A(y * z)} forall x,y,ze X .

Hence 4= <0£ By A> is a single valued neutrosophic positive implicative ideal of X.

Lemma 3.19

Let A={ct,,3,,7,) be a fuzzy ideal of X, then A is a single valued neutrosophic positive implicative ideal
of X if and only ;faA((x*z)*(y*z))Z aA((x*y)* Z) , ﬂA((x*z)*(y*z))Z ﬁA((x*y)* Z) and
7a((or2)x(yxz)) <y, ((or p)*2) forall x,y,z € X

Proof:

Suppose that 4 = <0£A,ﬂA,;/A> is a fuzzy ideal of X and aA((x * Z)* (y * Z)) > aA((x* y)* Z),
Billxxz)x(yxz))2 B,((xs y)*z) and y,(xx2)* (y*2)) <y, ((x* y)#2) forail x,y,z € X
Therefore ¢z, (% z) > minder (v % 2)* (y * 2)).er, (v * 2)p 2 minfa, (v y) ¥ 2) @, (v * 2)}
Bl z)zmin{B,((cxz)x (v x2)). B, (v * 2) = min{B, (v y)* 2) B, (v * 2)}

w2 < maxdy, (2 (v s 2 < maxl, () 2), v 2) doran

X,y,z€ X . Thus A is a single valued neutrosophic positive implicative ideal of X . Conversely, assume

that A = <0£ By A> is a single valued neutrosophic positive implicative ideal of X implies that

A= <0¢ By A> is a single valued neutrosophic ideal of X.

Let a=x*(y*z)and b=x*y,

Since ((x *(y*z))*(x * y)) < y*(y*z) , we have that

a,((axb)*z)=a,((xx(y*2))* ((cxy)*2))2 @, (v #(y*2))* 2) = 2, (0)

and so, aA((x*Z)*(y*z))z OtA((x*(y*Z))*Z)= aA(a *Z)Z min{aA((a *b)*z),aA(b*z)}
> min{e,((a*b)*z),a (b *z)}> min{e, (0,0, (b*z)} = , (b * z)
=a,((x*y)*z).
Therefore aA((x*z)*(y*z))ZaA((x*y)*z), forall x,y,ze X .
Similarly ﬂA((x*z)*(y*z))Z ﬁA((x*y)* Z), forall x,y,ze X

and y,((axb)xz)=y, (0 (v 2))# ((ox y)r2)) <, (v * (v *2)) 2) = 7, (0)

andso, 7, ((xxz)x(y*z))=y,((x*(y*2))xz)=y (a=z)<maxiy,((a*b)*z)7,(b*2))
<max{y ,((a*b)*z),y (b*z)} < max{y,(0),y,(b*2)}=7y,(b*2)
=7.((cxy)*2).

Therefore j/A((x*Z)*(y*Z))S yA((x*y)* Z), forall x,y,ze X .

Thus @, (v 2)* (v 2)) 2 e, ((x# 9)*2). B, ((x* 2)* (v 2))2 B, ((x * y)# 2) and

yA((x*z)*(y*z))S yA((x*y)*z), forall x,y,ze X .
Theorem 3.20

If A= <0£ By A> is a single valued neutrosophic positive implicative ideal of X, then

@)  Forany x,y,a,be X,((x*y)*y)*a<b= a,(x*y)>minfa,(a),a,(b)}
B, (x*y)2min{B,(a), B,(b)} . 7,(x*y) <max{y ,(a),y ,(b)}.
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(i)  Forany x,y,z,a,be X,((x*y)*z)*a<b=a,((x*z)*(y*z))> min{aA(a),aA(b)}
Ba((ex 2)% (y*2)) 2 min{B,(a), B,(B)} . 7, ((x*2)* (v *z)) < max{y,, (a), ¥ ,(b)}.

Proof:

Suppose A = <0£ By A> is single valued neutrosophic positive implicative ideal of X .

Let x,y,z € X be such that ((x * y)* y)* a < b .Using Lemma 3.6, we have
a,((x* y)* y)= minfer, (). (B)}. B, ((x y) y) = min{B ,(a), B , ()} and

74 (xx y)x y) < maxly ,(a),7.,(B)}.
It follows that

a,(x*y)zminfe, (e y)* y) e, (v y)} = minfe, (x = y)* y). e, (0)}
=a,((x*y)*y)>minla (),a, )}

B y)zmin{B, ((x* y)* y). B, (v y)i = min{B, ((x* y)* »). B, ()}

= B,((x*y)* y)=min{B, (a), B ,(b);.

And ¥ (x# y) < max{y , (e y) y)y, (v y)h = maxdy (e )= )7, ()}

= 74((exy)x y) < maxiy  (a).y, (b))

(i))Now let x,y,z € X be such that ((x *y)*y)* a<b Since A= <X,0£A,ﬂA,;/A> is single valued
neutrosophic ~ positive  implicative ideal of X , it follows from the Lemma 3.19,
a,((x*z)*(y*z))2 0, ((x+y)*z) 2 minfa, ()., (B)},

Bllxxz)x(yx2))2 B,((cx y)*2) 2 min{B ,(a). B.,(b)]

and 7, (e 2)* (v*2)) <7, (e y)* 2) < max{y (@), 7, (0}
This completes the proof.

Theorem 3.21
Let A=<X NN N4 A> be a single valued neutrosophic set in X satisfying the condition

(x*y)*y)*a<b=a,(x*y)2min{a,(a),a,®)},B,(x*y)=min{B,(a),B, )}
And ¥ (x*y) < max{}/A(a),}/A(b)} for any x,y,a,b e X, then 4= <X,0£A,ﬂA,;/A> is single valued

neutrosophic positive implicative ideal of X .
Proof:

First we prove that 4 = <X NN N4 A> is a single valued neutrosophic ideal of X .
Let x,y,z€ X be such that x*y <z .Then (((x*O)* 0)*y)*z = (x*y)*z =0 , that is
((x+0)0)s y)rz<z.

Since, for

x,y,a,be X,

(r*y)ey)ra<b=a,(x+y)=minfa,(a),a,®)})f,(x*y) 2 min{f,(@).5, )]

And 7, (x* y) < max{y ,(a),7,(b)}.

Put y=0,a=y,b=z,

weget o, (x)=a,(x*0)>min{a,(y),a,(2)}B,(x) = B,(x*0)>min{B,(y),8,(2)}
7,(x)=7, (x*O)S max{yA )74 (Z)} . Tt follows that A= <X,0£A,ﬂA,}/A> is a single valued
neutrosophic ideal of X .

Note that (((x* y)* y)* ((x * y)* y))* 0 =0 implies (((x * y)* y)* ((x * y)* y)) <0,x,y € X .From
hypothesis we have o , (x * y)> min{aA (x*y)*y)a, (0)} =a,((x*y)*y)
a,(x*y)>minfe, (v y)* yha, )} =a,((x*y)*y)

B.(xxy)zmin{B, ((x*y)*y), B,(0)}=B,((x* y)* y) and
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7o y) <maxfy, (e v)* y)y, Of =7, (e )+ y).
Andso 4= <X Ay, B PEy4 A> is single valued neutrosophic positive implicative ideal of X .

Theorem 3.22
Let A= <X,0£A,ﬁA,}/A> be a single valued neutrosophic set in X satisfying ((x *y)* Z)*a < b imply

o, ((cxy)* (v )z minfe (@, B)) . B, ((cxy)*(yx2)z min{B, (a).5,(B)}  and
¥ ((x*y)*(y*z))<max{y ,(a),y ,(b)} for any x,y,z,a,b € X .Then A=<X,aA,ﬂA,yA> is a

single valued neutrosophic positive implicative ideal of X .
Proof:

Let x,y,a,be X be such that ((x*y)* Z)*a <b , that is (((x* y)* y)* a)*b =0 therefore
a,(x*y)=a,((x*y)*0)=a,((x*y)*(y* )2 minia, (a).a, (b))

Bi(xx )= B (% y)*0)= B, ((xx y)* (v *y)) = min{B, (a), B, (b))

Y4 (x * y) =¥y ((x * y)* 0) =¥, ((x* y)* (y * y)) < max{yA (a),7, (b)} It follows from Theorem 3.21,
A= <X NN N4 A>is a single valued neutrosophic positive implicative ideal of X .
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