Some Common Fixed Point Theorem in Fuzzy Metric Space

Kavita Shrivastava
Assistant Professor, Department of Mathematics \& Statistics, Dr. Harisingh Gour University Sagar, Madhya Pradesh, India.

Abstract - In this paper we are generalizing the results of Som [3,4] ,Mukherjee [2] and Shrivastava[1].
Keywords - semi-compatible and (B, T) is weak-compatible, Fuzzy Metric Space.

MAIN RESULT

Theorem 1. Let A, B, S and T be self mappings of a complete fuzzy metric space ($\mathrm{X}, \mathrm{M},{ }^{*}$) satisfying
(a) $\quad \mathrm{A}(\mathrm{X}) \subseteq \mathrm{T}(\mathrm{X}), \mathrm{B}(\mathrm{X}) \subseteq \mathrm{S}(\mathrm{X})$,
(b) one of A or S is continuous,
(c) the pair (A, S) is semi-compatible and (B, T) is weak-compatible,
(d) $\quad \mathrm{aM}(\mathrm{Ax}, \mathrm{By}, \mathrm{t})-\mathrm{bM}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{t}), \mathrm{M}(\mathrm{Sx}, \mathrm{Ax}, \mathrm{t}), \mathrm{M}(\mathrm{Sx}, \mathrm{By}, \mathrm{t}), \mathrm{M}(\mathrm{Ty}, \mathrm{Ax}, \mathrm{t}), \mathrm{M}(\mathrm{Ty}, \mathrm{By}, \mathrm{t})\}$,
where $\phi:\left(R^{+}\right)^{5} \rightarrow R^{+}$is continuous and strictly increasing in each co-ordinate variable such that for all $x, y \in X$, $\mathrm{a}<\mathrm{b}+1$ and for any $\mathrm{v}<1$,
$\phi\left(v, v, a, v, a_{2} v, v\right)>v, a_{1}+a_{2}=3$. Then A, B, S and T have a unique common fixed point in X.
Now, we are proving this theorem of shrivastava[1] for six mapping

Theorem 2. Let, A, B, S, T, P and Q be self mappings of a complete fuzzy metric space ($\mathrm{X}, \mathrm{M}, *$) satisfying
(a) $\quad \mathrm{A}(\mathrm{X}) \subseteq \mathrm{PT}(\mathrm{X}), \mathrm{B}(\mathrm{X}) \subseteq \mathrm{QS}(\mathrm{X})$,
(b) one of A or QS is continuous,
(c) the pair (A,QS) is semi compatible and (B, PT) is weak compatible,
(d) $\quad \mathrm{aM}(\mathrm{Ax}, \mathrm{By}, \mathrm{t})-\mathrm{bM}(\mathrm{QSx}, \mathrm{PTy}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{QSx}, \mathrm{PTy}, \mathrm{t}), \mathrm{M}(\mathrm{QSx}, \mathrm{Ax}, \mathrm{t})$,

$$
\mathrm{M}(\mathrm{QSx}, \mathrm{By}, \mathrm{t}), \mathrm{M}(\mathrm{PTx}, \mathrm{Ax}, \mathrm{t}), \mathrm{M}(\mathrm{PTy}, \mathrm{By}, \mathrm{t})\}
$$

where, ϕ is a continuous mapping $\phi:\left(\mathrm{R}^{+}\right)^{5} \rightarrow \mathrm{R}$ satisfying $\mathrm{U}<1$,
$\phi\left(U, U, a_{1} U, a_{2} U, U\right)>U, a_{1}+a_{2}=3$. Then A, B, S, T, P and Q have a unique common fixed point in X.

Proof. Proof of theorem 1 , let x_{0} be any arbitrary point. Since $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$ then there exists $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ such that

$$
\mathrm{Ax}_{\mathrm{o}}=\mathrm{Tx}_{1}=\mathrm{y}_{1}, \quad \mathrm{Bx}_{1}=\mathrm{Sx}_{2}=\mathrm{y}_{2} .
$$

Inductively, construct two sequences $\left\{y_{n}\right\}$ and $\left\{x_{n}\right\}$ in X such that

$$
\begin{aligned}
& \mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Tx}_{2 \mathrm{n}+1}, \\
& \mathrm{y}_{2 \mathrm{n}+2}=\mathrm{Bx}_{2 \mathrm{n}+1}=\mathrm{Sx}_{2 \mathrm{n}+2} ; \mathrm{n}=0,1,2,3, \ldots
\end{aligned}
$$

Let $\mathrm{M}_{\mathrm{n}}=\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) ; \mathrm{n}=0,1,2,3, \ldots$
We claim that $\left\{\mathrm{M}_{\mathrm{n}}\right\}$ is a increasing sequence, suppose on the contrary that
$M_{2 n}>M_{2 n+1}$, for some n.
Putting $x=x_{2 n}$ and $y=x_{2 n+1}$ in (d), we get

$$
\begin{aligned}
& a M\left(A x_{2 n}, B x_{2 n+1}, t\right)-b M\left(S x_{2 n}, T x_{2 n+1}, t\right) \\
\geq & \phi\left\{M\left(S x_{2 n}, T x_{2 n+1}, t\right), M\left(S x_{2 n}, A x_{2 n}, t\right), M\left(S x_{2 n}, B x_{2 n+1}, t\right), M\left(T x_{2 n+1}, A x_{2 n}, t\right), M\left(T x_{2 n+1}, A x_{2 n+1}, t\right)\right\} \\
\Rightarrow & a M\left(y_{2 n+1}, y_{2 n+2}, t\right)-b M\left(y_{2 n}, y_{2 n+1}, t\right)
\end{aligned}
$$

$$
\geq \phi\left\{M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n}, Y_{2 n+1}, t\right), M\left(y_{2 n}, y_{2 n+2}, t\right)_{2} M\left(y_{2 n+1}, y_{2 n+1}, t\right), M\left(y_{2 n+1}, Y_{2 n+2}\right)\right\}
$$

$$
\Rightarrow \quad \mathrm{aM}_{2 \mathrm{n}+1}-\mathrm{bM}_{2 \mathrm{n}} \geq \phi\left\{\mathrm{M}_{2 \mathrm{n}}, \mathrm{M}_{2 \mathrm{n}}, \mathrm{M}_{2 \mathrm{n}}+\mathrm{M}_{2 \mathrm{n}+1}, 1, \mathrm{M}_{2 \mathrm{n}+1}\right\}
$$

$$
>\phi\left\{\mathrm{M}_{2 \mathrm{n}+1}, \mathrm{M}_{2 \mathrm{n}+1}, 2 \mathrm{M}_{2 \mathrm{n}+1}+\mathrm{M}_{2 \mathrm{n}+1}, \mathrm{M}_{2 \mathrm{n}+1}\right\}
$$

$$
>\quad M_{2 n+1}
$$

$$
\Rightarrow \quad M_{2 n+1}>\frac{b}{a-1} M_{2 n}
$$

$$
\Rightarrow \quad M_{2 n+1}>M_{2 n} \quad[\Theta a<b+1]
$$

which is a contradiction.

Thus $\left\{M_{n}\right\}$ is increasing sequence of positive real number in $[0,1]$ and therefore $\lim _{n \rightarrow \infty} M n=1$. Now, we show that
$\left\{y_{n}\right\}$ is a cauchy sequence. Since $\lim _{n \rightarrow \infty} M_{n}=1$, it is sufficient to show that $\left\{y_{2 n}\right\}$ is a cauchy sequence.
Suppose that it is not so, then there is an $\varepsilon>0$ such that for each integer 2 k
$(\mathrm{k}=0,1,2, \ldots)$ there exists even integer 2 nk and 2 mk with $2 \mathrm{k}<2 \mathrm{nk}<2 \mathrm{mk}$ such that

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t}\right) \leq 1-\varepsilon ; \text { for some } \mathrm{t}>0 . \tag{1}
\end{equation*}
$$

Let for each even integer 2 k , 2 mk be the least positive integer exceeding 2 nk satisfying (1),
then $\quad \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 m k-2}, \mathrm{t}\right)>1-\varepsilon$ and

$$
\begin{equation*}
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t}\right) \leq 1-\varepsilon \tag{2}
\end{equation*}
$$

As such, for each even integer 2 k , we have
$1-\varepsilon>M\left(y_{2 n k}, y_{2 m k}, t\right) \geq M\left(y_{2 n k}, y_{2 m k-2}, t / 3\right) * M\left(y_{2 m k-2}, y_{2 m k-1}, t / 3\right) * M\left(y_{2 m k-1}, y_{2 m k}, t / 3\right)$.
so by (2) and as $\mathrm{k} \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk},} \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t}\right)=1-\varepsilon \tag{3}
\end{equation*}
$$

Now, using (3) in the triangular inequalities

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 2\right) * \mathrm{M}\left(\mathrm{y}_{2 \mathrm{mk}}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t} / 2\right)
$$

and $\quad M\left(y_{2 n k+1}, y_{2 m k-1}, t\right) \geq M\left(y_{2 n k+1}, y_{2 n k}, t / 3\right) * M\left(y_{2 n k}, y_{2 m k}, t / 3\right) * M\left(y_{2 m k}, y_{2 m k-1}, t / 3\right)$.
Taking $\mathrm{k} \rightarrow \infty$, then

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq 1-\varepsilon * 1=1-\varepsilon
$$

and

$$
\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}-1}, \mathrm{t}\right) \geq 1 * 1-\varepsilon * 1=1-\varepsilon
$$

Then

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{mk}}\right) \geq \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{t} / 2\right) * \mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{y}_{2 \mathrm{mk}}, \mathrm{t} / 2\right) \\
& =\mathrm{M}\left(\mathrm{y}_{2 \mathrm{nk}}, \mathrm{y}_{2 \mathrm{nk}+1}, \mathrm{t} / 2\right) * \mathrm{M}\left(\mathrm{Bx}_{2 \mathrm{nk}}, \mathrm{Ax}_{2 \mathrm{mk}-1}, \mathrm{t} / 2\right) \\
& \geq M\left(y_{2 n k}, y_{2 n k+1}, t / 2\right) * \frac{1}{a} \phi\left\{M\left(\mathrm{Sx}_{2 m k-1}, \mathrm{Tx}_{2 \mathrm{nk}}, \mathrm{t} / 2\right), \mathrm{M}\left(\mathrm{Sx}_{2 m k-1}, \mathrm{Ax}_{2 \mathrm{mk}-1}, \mathrm{t} / 2\right), \mathrm{M}\left(\mathrm{Sx}_{2 m k-1}, B x_{2 n k}, \mathrm{t} / 2\right),\right. \\
& M\left(\operatorname{Tx}_{2 n k}, A x_{2 m k-1}, t / 2\right), M\left(\operatorname{Tx}_{2 n k}, B x_{2 n k}, t / 2\right\}+\frac{b}{a} M\left(\operatorname{Sx}_{2 m k-1}, T x_{2 n k}, t / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
\geq & M\left(y_{2 n k}, y_{2 n k+1}, t / 2\right) * \frac{1}{a} \phi\left\{M\left(y_{2 m k-1}, y_{2 n k}, t / 2\right), M\left(y_{2 m k-1}, y_{2 m k}, t / 2\right), M\left(y_{2 m k-1}, y_{2 n k+1}, t / 2\right),\right. \\
& M\left(y_{2 n k}, y_{2 m k}, t / 2\right),\left\{M\left(y_{2 n k}, y_{2 n k+1}\right\}+\frac{b}{a} M\left(y_{2 m k-1}, y_{2 n k}, t / 2\right) .\right.
\end{aligned}
$$

On taking k $\rightarrow \infty$

$$
\begin{aligned}
1-\varepsilon & \geq \frac{1}{a} \phi\{1-\varepsilon, 0,1-\varepsilon, 1-\varepsilon, 0\}+\frac{b}{a}(1-\varepsilon) \\
& >\frac{1}{a}(1-\varepsilon)+\frac{b}{a}(1-\varepsilon)=\frac{1+b}{a}(1-\varepsilon) \\
\Rightarrow 1-\varepsilon & >1-\varepsilon
\end{aligned}
$$

which is a contradiction.

Hence $\left\{y_{2 n}\right\}$ is a cauchy sequence in X. By completeness of $X,\left\{y_{n}\right\}$ converges to $z \in X$. Hence, the subsequences

$$
\begin{array}{ll}
\left\{\mathrm{Ax}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z}, & \left\{\mathrm{Sx}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z} \\
\left\{\mathrm{Tx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}, & \left\{\mathrm{Bx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z} \tag{5}
\end{array}
$$

Since the limit of a sequence in fuzzy metric space is unique we obtain that

$$
\mathrm{Az}=\mathrm{Sz}
$$

Step 1. Now, we will prove that $A z=z$. Suppose on the contrary $A z \neq z$.
By putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ in (d) we have

$$
\begin{aligned}
& a M\left(A z, B x_{2 n+1}, t\right)-b M\left(S z, T x_{2 n+1}, t\right) \\
\geq & \phi\left\{M\left(S z, T x_{2 n+1}, t\right), M(S z, A z, t), M\left(S z, B x_{2 n+1}, t\right), M\left(T x_{2 n+1}, A z, t\right), M\left(T x_{2 n+1}, B x_{2 n+1}, t\right)\right\} \\
\Rightarrow & a M(A z, z, t)-b M(A z, z, t)
\end{aligned}
$$

$\geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})\}$
$\geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), 1\}$
$\geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})\}$

$$
\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})>\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{t})
$$

which is a contradiction.

Hence $\mathrm{z}=\mathrm{Az}=\mathrm{Sz}$.

Step 2. Since $A(X) \subseteq T(X)$, there exists $u \in X$ such that

$$
\mathrm{z}=\mathrm{Az}=\mathrm{Tu} .
$$

Now, we have to prove that $z=B u$, suppose on the contrary that $z \neq B u$

Putting $x=x_{2 n}, y=u$ in (d) we get.

$$
\operatorname{aM}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bu}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tu}, \mathrm{t}\right)
$$

$\geq \phi\left\{M\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tu}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Bu}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Tu}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}(\mathrm{Tu}, \mathrm{Bu}, \mathrm{t})\right\}$.

On taking limit as $n \rightarrow \infty$ and using (4) we obtain that

$$
\begin{aligned}
& \mathrm{aM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})-\mathrm{bM}(\mathrm{z}, \mathrm{z}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})\} \\
& \Rightarrow \quad \mathrm{aM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})-\mathrm{b} \geq \phi\{1,1, \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}) 1, \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})\} \\
& \mathrm{aM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})-\mathrm{bM}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})>\phi\{\mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), 2 \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})\}
\end{aligned}
$$

$$
(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})>\mathrm{M}(\mathrm{z}, \mathrm{Bu}, \mathrm{t})
$$

which is a contradiction.

Hence $\mathrm{z}=\mathrm{Bu}=\mathrm{Tu}$ and the weak compatibility of (B, T) gives

$$
\mathrm{TBu}=\mathrm{BTu}
$$

$$
\text { i.e. } \mathrm{Tz}=\mathrm{Bz}
$$

Step 3. By putting $x=z, y=z$ in (d) and assuming $A z \neq B z$, we have.
$\mathrm{aM}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})-\mathrm{bM}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{t})$
$\geq \phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{Bz}, \mathrm{t})\}$
$\Rightarrow \quad \mathrm{aM}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})-\mathrm{b} \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})$
$\geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Bz}, \mathrm{Az}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{t})\}$

$$
\begin{aligned}
\Rightarrow(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}) & \geq \phi\{\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), 1,(\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), 1\} \\
& >\phi\{\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})\} \\
\Rightarrow(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t}) & >\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{t})
\end{aligned}
$$

Which is a contradiction. Hence $\mathrm{Az}=\mathrm{Bz}$.

Combining the result from Steps 1, 2, 3 we obtain that

$$
\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}
$$

Therefore z is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .
Case 2. S is continuous

As S is continuous and (A, S) is semi-compatible, we have.

$$
\begin{equation*}
\mathrm{SAx}_{2 \mathrm{n}} \rightarrow \mathrm{Sz}, \mathrm{~S}^{2} \mathrm{x}_{2 \mathrm{n}} \rightarrow \mathrm{Sz}, \mathrm{ASx}_{2 \mathrm{n}} \rightarrow \mathrm{Sz} \tag{6}
\end{equation*}
$$

Thus, $\lim _{n \rightarrow \infty} S A x_{2 n}=\lim _{n \rightarrow \infty} A S x_{2 n}=S z$
we prove $S z=z$, suppose on the contrary that $S z \neq \mathrm{z}$.
Step 4. Putting $x=\operatorname{Sx}_{2 n}, y=x_{2 n+1}$ in (d)

$$
\operatorname{aM}\left(\mathrm{ASx}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{SSx}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{t}\right)
$$

$\geq \phi\left\{M\left(\operatorname{SSx}_{2 n}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{SSx}_{2 \mathrm{n}}, \mathrm{AS} \mathrm{x}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{SSx}_{2 \mathrm{n}}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{ASx}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Tx}_{2 \mathrm{n}+1}, B x_{2 n+1}, \mathrm{t}\right)\right\}$
$\Rightarrow \mathrm{aM}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})-\mathrm{bM}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})$
$\geq \phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{Sz}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Sz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})\}$
$\geq \phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), 1, \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), 1\}$
$>\phi\{\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})\}$
$\Rightarrow(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})>\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{t})$
which is a contradiction. Hence $\mathrm{Sz}=\mathrm{z}$.
Step 5. By putting $x=z, y=x_{2 n+1}$ in (d)


```
am(Az, z, t) - bM(z, z, t) \geq\phi{M(z, z, t),M(z,Az, t),M(z, z, t),M(z, Az, t),M(z, z, t)}
aM(Az, z, t) - b \geq 
=> aM(Az, z, t) -b (Az, z, t)>\phi > M(Az, z, t), M(Az, z, t), 2M(Az, z, t),M(Az, z, t),M(Az, z, t)}
# (a-b)M(Az, z, t)> M(Az, z, t)
```

Which is a contradiction.

Hence $\mathrm{Az}=\mathrm{z}=\mathrm{Sz}$.

Also $\mathrm{Bz}=\mathrm{Tz}=\mathrm{z}$ follows from step 1,2 we get that

$$
\mathrm{z}=\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}
$$

Hence z is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .

Uniqueness

Let z_{1} and z_{2} be two common fixed points of the $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .
Then $\mathrm{z}_{1}=\mathrm{Az}_{1}=\mathrm{Bz}_{1}=\mathrm{Sz}_{1}=\mathrm{Tz}_{1}$ and $\mathrm{z}_{2}=\mathrm{Az}_{2}=\mathrm{Bz}_{2}=\mathrm{Sz}_{2}=\mathrm{Tz}_{2}$.
Suppose $\mathrm{z}_{1} \neq \mathrm{z}_{2}$. From (d), we have
$\mathrm{aM}\left(\mathrm{Az}_{1}, \mathrm{Bz}_{2}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{Sz}_{1}, \mathrm{Tz}_{2}, \mathrm{t}\right) \geq \phi\left\{\mathrm{M}\left(\mathrm{Sz}_{1}, \mathrm{Tz} z_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Sz}_{1}, \mathrm{Az}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Sz}_{1}, \mathrm{~B} z_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{Tz}_{2}, A z_{1}, \mathrm{t}\right)\right.$,

$$
\begin{aligned}
&\left.\mathrm{M}\left(\mathrm{Tz}_{2}, \mathrm{~B} z_{2}, \mathrm{t}\right)\right\} \\
& \Rightarrow \quad \operatorname{aM}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right) \geq \phi\left\{\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{2}, \mathrm{z}_{1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{2}, \mathrm{z}_{2}, \mathrm{t}\right)\right\} \\
& \geq \phi\left\{\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), 1, \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{2}, \mathrm{z}_{1}, \mathrm{t}\right), 1\right\} \\
&> \phi\left\{\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), 2 \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{2}, \mathrm{z}_{2}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)\right\} \\
& \Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)>>\mathrm{M}\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{t}\right)
\end{aligned}
$$

which is a contradiction. Hence $\mathrm{z}_{1}=\mathrm{z}_{2}$.

Thus z is a unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T .

By Theorem (1) the self mappings A, B, QS and PT have a unique
common fixed point i.e. $\mathrm{Az}=\mathrm{Bz}=\mathrm{QSz}=\mathrm{PTz}=\mathrm{z}$.

Similarly from (4) and (5)

$$
\begin{gather*}
\left\{\mathrm{Ax}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z}, \quad\left\{\mathrm{QSx}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z} \tag{8}\\
\left\{\mathrm{PTx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}, \quad\left\{\mathrm{Bx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z} \tag{9}
\end{gather*}
$$

By putting $x=Q z$ and $y=x_{2 n+1}$ in (d) and on assuming $Q z \neq z$, we have

$$
\mathrm{aM}\left(\mathrm{AQz}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{QSQz}, \mathrm{PTx}_{2 \mathrm{n}+1}, \mathrm{t}\right)
$$

$\geq \phi\left\{M\left(Q S Q z, \operatorname{PTx}_{2 n+1}, t\right), M(Q S Q z, A Q z, t), M\left(Q S Q z, B x_{2 n+1}, t\right), M(P T Q z, A Q z, t), M\left(P T x_{2 n+1}, B x_{2 n+1}, t\right)\right\}$.

As $A Q=Q A, Q S=S Q$, we have
$\mathrm{aM}\left(\mathrm{QAz}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{QQSz}, \mathrm{PTx}_{2 \mathrm{n}+1}, \mathrm{t}\right)$
$\geq \phi\left\{\mathrm{M}\left(\mathrm{QQSz}, \mathrm{PTx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}(\mathrm{QQSz}, \mathrm{QAz}, \mathrm{t}), \mathrm{M}\left(\mathrm{QQSZ}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}(\mathrm{QPTz}, \mathrm{QAz}, \mathrm{t}), \mathrm{M}\left(\mathrm{PTx}_{2 \mathrm{n}+1}, \mathrm{Bx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$

Taking limit as $n \rightarrow \infty$ using (6), and (9) we have

$$
\mathrm{aM}(\mathrm{Qz}, \mathrm{z}, \mathrm{t})-\mathrm{bM}(\mathrm{Qz}, \mathrm{z}, \mathrm{t})
$$

$\geq \phi\{\mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})\}$
$\Rightarrow(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), 2 \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t})\}$
$\Rightarrow(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t})>\mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t})$
which is a contradiction. Hence $\mathrm{Qz}=\mathrm{z}$.

Now $\quad \mathrm{QSz}=\mathrm{SQz}=\mathrm{Sz}$, gives $\mathrm{Sz}=\mathrm{z}=\mathrm{Q} \mathrm{z}$.

Again assuing $\mathrm{Pz} \neq \mathrm{z}$ and by putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}$ and $\mathrm{y}=\mathrm{Pz}$ in (4)
$\mathrm{aM}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{BPz}, \mathrm{t}\right)-\mathrm{bM}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{PTPz}\right)$
$\geq \phi\left\{\left(\mathrm{M}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{PTPz}_{\mathrm{t}} \mathrm{t}\right), \mathrm{M}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{BPz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{PTx}_{2 \mathrm{n}}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}(\mathrm{PTPz}, \mathrm{BPz}, \mathrm{t})\right\}\right.$.

As $\mathrm{PT}=\mathrm{TP}$ and $\mathrm{BP}=\mathrm{PB}$, we get that

```
    aM(Ax 
```

$\geq \phi\left\{\mathrm{M}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{PPTz}_{\mathrm{t}} \mathrm{t}\right), \mathrm{M}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{QSx}_{2 \mathrm{n}}, \mathrm{PBz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{PTx}_{2 \mathrm{n}}, \mathrm{Ax}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}(\mathrm{PPTz}, \mathrm{PBz}, \mathrm{t})\right\}$

Taking $\mathrm{n} \rightarrow \infty$, we get

$$
\mathrm{aM}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})-\mathrm{bM}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})
$$

$\geq \phi\{\mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\}$
$\Rightarrow \quad(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{z}, \mathrm{pz}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{z}, \mathrm{pz}, \mathrm{t}), 2 \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\}$

$$
(\mathrm{a}-\mathrm{b}) \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t})>\mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})
$$

which is a contradiction. Hence $\mathrm{Pz}=\mathrm{z}$.

Now, $\mathrm{PTz}=\mathrm{TPz}=\mathrm{Tz}$ gives $\mathrm{pz}=\mathrm{Tz}=\mathrm{z}$.

Combining all these result, we obtain that

$$
\mathrm{Az}=\mathrm{Bz}=\mathrm{Sz}=\mathrm{Tz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{z}
$$

Hence z is a common fixed point of the mapping $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$ and Q .

We can prove uniqueness of z on the same line as in theorem 5.2.

This complete the proof.

References

[1] K.Shrivastava ; Some common fixed point theorem in fuzzy metric space, International Research Journal of Pure Algebra,6(10), 413435(2016).
[2] R.N. Mukherjee, : Indian J. pure Appl. Math. 12(8), 930(1981),.
[3] T.Som : Few common fixed points for comparative mappings, Bull. Cal. Math. Soc., 95(4), 307-312(2003).
[4] T.Som and R.N. Mukherjee : A fixed point theorems for two non-self mapping, Proc. Acad. Sci. India, 56(111), (1986).

