Skolem difference Fibonacci mean labelling of some special class of graphs

L. Meenakshi sundaram¹, A. Nagarajan²

¹ Assistant Professor of Mathematics, V. O. Chidambaram College, Thoothukudi – 628 008 Tamil Nadu, India. ² Associate Professor of Mathematics, V. O. Chidambaram College, Thoothukudi – 628 008 Tamil Nadu, India.

ABSTRACT

The concept of Skolem difference mean labelling was introduced by K. Murugan and A. Subramanian[6]. The concept of Fibonacci labelling was introduced by David W. Bange and Anthony E. Barkauskas[1] in the form Fibonacci graceful. This motivates us to introduce skolem difference Fibonacci mean labelling and is defined as follows: "A graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to label the vertices $x \in V$ with distinct elements f(x) from the set $\{1, 2, ..., F_{p+q}\}$ in such a way that the edge e = uv is labelled with $\left|\frac{f(u)-f(v)}{2}\right|$ if |f(u) - f(v)| is even and $\frac{|f(u)-f(v)|+1}{2}$ if |f(u) - f(v)| is odd and the resulting edge labels are distinct and are from $\{F_1, F_2,...,F_a\}$. A graph that admits **Skolem** difference Fibonacci mean labelling is called a Skolem difference Fibonacci mean graph". In this paper, we prove that some special class of graphs are Skolem difference Fibonacci mean graphs.

AMS Classification 05C78

KEYWORDS

Skolem difference mean labelling, Fibonacci labelling, Skolem difference Fibonacci mean labelling, Fan F_n , F_m @ $2P_n$, triangular snake graph TS_n , $rP_n \cup sP_m$, $\bigcup_{i=2}^n P_i$

1. INTRODUCTION

A graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to label the vertices $x \in V$ with distinct elements f(x) from the set $\{1,2,...,F_{p+q}\}$ in such a way that the edge e = uv is labelled with $\left|\frac{f(u)-f(v)}{2}\right|$ if |f(u) - f(v)| is even and $\frac{|f(u)-f(v)|+1}{2}$ if |f(u) - f(v)| is odd and the resulting Let V (G) = $\{v_i, / 0 \le i \le n\}$

edge labels are distinct and are from $\{F_I, F_2,...,F_q\}$. A graph that admits Skolem difference Fibonacci mean labelling is called a Skolem difference Fibonacci mean graph. It was found that standard graphs [7], special class of trees [8], H- class of graphs [9] and path related graphs [10] are Skolem difference Fibonacci mean graphs. The following definitions and notations are used in main results.

2. DEFINITIONS

Definition 2.1.

Let G_1 (V_1 , E_1) and G_2 (V_2 , E_2) be two graphs. Then their union $G = G_1 \cup G_2$ is a graph with vertex set $V = V_1 \cup V2$ and edge set $E = E_1 \cup E_2$.

Definition 2.2.

The join $G_1 + G_2$ of G_1 and G_2 consists of $G_1 \cup G_2$ and all lines joining V_1 with V_2 . The graph $P_n + K_1$ is called a Fan.

Definition 2.3.

 $G_1 @ G_2$ is the one point union of G_1 and G_2 . One point union of G_1 and G_2 is obtained by identifying one vertex of G_1 to a vertex of G_2 .

Definition 2.3.

A triangular snake is obtained from a path v_1 , v_2 ,..., v_n by joining v_i and v_{i+1} to a new vertex w_i for i = 1, 2,..., n-1.

3. RESULTS

3.1 Theorem :

Every fan $F_n = P_n + K_1$ is Skolem difference Fibonacci mean graph if $n \ge 3$.

Proof:

Let G be the graph $F_n = P_n + K_1$.

$$E(G) = \{v_0v_i/1 \le i \le n\} \cup \{v_iv_{i+1}/1 \le i \le n-1\}$$

Then |V(G)| = n+1 and |E(G)| = 2n-1

Let f: V (G) \rightarrow {1,2,...,F_{3n}} be defined as follows

 $f(v_0) = 1$

$$f(v_i) = 2F_{2i-1} + 1, \ 1 \le i \le n$$

 $\begin{array}{lll} f^{*}(E) & = \{f(v_{0}v_{i})/l \leq \ i \ \leq n\} \ \cup \ \{ \ f(v_{i}v_{i+1})\!/ \ l \leq \ i \ \leq n{-}1\} \end{array}$

 $= \{f(v_0v_1), f(v_0v_2), ..., f(v_0v_n)\} \cup \{f(v_1v_2), f(v_2v_3), ..., f(v_{n-1}v_n)\}$

$$= \left\{ \left| \frac{f(v_0) - f(v_1)}{2} \right|, \left| \frac{f(v_0) - f(v_2)}{2} \right|, ..., \left| \frac{f(v_0) - f(v_n)}{2} \right| \right\} \cup \left\{ \left| \frac{f(v_1) - f(v_2)}{2} \right|, \left| \frac{f(v_2) - f(v_3)}{2} \right|, ..., \left| \frac{f(v_{n-1}) - f(v_n)}{2} \right| \right\} \\ = \left\{ \left| \frac{1 - 2F_1 - 1}{2} \right|, \left| \frac{1 - 2F_3 - 1}{2} \right|, ..., \left| \frac{1 - 2F_{2n-1} - 1}{2} \right| \right\} \\ \cup \left\{ \left| \frac{2F_1 + 1 - 2F_3 - 1}{2} \right|, \left| \frac{2F_3 + 1 - 2F_5 - 1}{2} \right|, ..., \left| \frac{2F_{2n-3} + 1 - 2F_{2n-1} - 1}{2} \right| \right\} \\ = \left\{ F_1, F_3, ..., F_{2n-1} \right\} \cup \left\{ F_2, F_4, ..., F_{2n-2} \right\}$$

$$= \{F_1, F_2, \dots, F_{2n-1}\}$$

Thus, the induced edge labels are distinct and are $F_1,\,F_2,...,F_{2n\text{-}1}.$

Hence, the fan $F_n = P_n + K_1$ is skolem difference Fibonacci mean graph if $n \ge 3$.

3.2 Example:

Skolem difference Fibonacci mean labelling of the graph $F_6 = P_6 + K_1$ is

Fig. 1: F₆

3.3 Theorem :

 $F_m \ @ \ 2P_n \ is \ Skolem \ difference \ Fibonacci \\ mean \ graph$

Proof:

Let G be F_m @ 2P_n

$$\label{eq:left} \begin{array}{l} \mbox{Let } V \ (G) = \{u, \, v_i, \, u_j, \, w_j/1 \leq i \leq m \ and \ 1 \leq j \leq n\mbox{-}1\} \end{array}$$

Then |V(G)| = m+2n-1 and |E(G)| = 2m+2n-3

Let f: V (G) \rightarrow {1,2,...,F_{3m+4n-4}} be defined as follows

$$\begin{split} f(u) &= 1 \\ f(v_i) &= 2F_{2i\cdot 1} + 1, \ 1 \leq \ i \leq m \\ f(u_j) &= 2F_{2m+j\cdot 1} + f(u_{j\cdot 1}), \ 2 \leq j \leq n-1 \\ f(u_1) &= 2F_{2m+1} + 1 \\ f(w_j) &= 2F_{2m+n+j\cdot 2} + f(w_{j\cdot 1}), \ 2 \leq j \leq n-1 \\ f(w_1) &= 2F_{2m+n-1} + 1 \end{split}$$

 $\begin{array}{ll} f^{*}(E) &= \{f(uv_{i}),\,f(v_{m}u_{1}),\,f(u_{j}u_{j+1}),\,f(uw_{1}),\,f(w_{j}w_{j+1})\\ /1\leq i\leq m, & l\leq j\leq n\text{-}2\} \ \cup \ \{f(v_{i}v_{i+1})/\ l\leq i\leq m\text{-}1\} \end{array}$

$$\begin{split} &=\{f(uv_1),\,f(uv_2),...,\,f(uv_m),\,f(v_mu_1),\,f(u_1u_2),\\ f(u_2u_3),\,\,...,\,\,f(u_{n-1}u_n),\ \ f(uw_1),\ \ f(w_1w_2),\,f(w_2w_3),\,\,...,\\ f(w_{n-1}w_n)\}\,\cup\,\{f(v_1v_2),\,f(v_2v_3),\,...,\,f(v_{m-1}v_m)\} \end{split}$$

 $= \{F_1, F_3, ..., F_{2m-1}, F_{2m}, F_{2m+1}, F_{2m+2}, ..., F_{2m+n-2}, F_{2m+n-1}, F_{2m+n}, F_{2m+n+1}, ..., F_{2m+2n-3}\} \cup \{F_2, F_4, ..., F_{2m-2}\}$

 $=\{F_1,\,F_2,\,F_3,\,F_4,...,\,F_{2m-2},\,F_{2m-1},\,F_{2m},\,F_{2m+1},\\F_{2m+2},...,\,F_{2m+n-2},\,F_{2m+n-1},\,F_{2m+n},\,F_{2m+n+1},...,\,F_{2m+2n-3}\}$

 $= \{F_1, F_2, ..., F_{2m+2n-3}\}$

Thus, the induced edge labels are distinct and are $F_1, F_2, ..., F_{2m+2n-3}$.

Hence, $F_m @ 2P_n$ is a Skolem difference Fibonacci mean graph.

3.4 Example:

Skolem difference Fibonacci mean labelling of the graph $F_4 @ 2P_4$ is

3.5 Theorem:

The triangular snake graph TS_n is a Skolem difference Fibonacci mean graph.

Proof:

 $\leq n^{2}$

Let G be TS_n

Let V (G) = {v_i, w_j /
$$1 \le i \le n+1$$
 and $1 \le j$ }

 $\begin{array}{l} \mbox{Let }E \ (G) = \{v_i v_{i+1} \ / \ 1 \leq i \leq n\} \ \cup \ \{v_j w_{j} / \ 1 \leq j \leq n\} \ \cup \ \{v_j w_{(j-1)} / \ 2 \leq j \leq n+1\} \end{array}$

Then |V(G)| = 2n+1 and |E(G)| = 3n

Let f: V (G) \rightarrow {1, 2,...,F_{5n+1}} be defined as follows

$$\begin{split} f\left(v_{1}\right) &= 3, \, f\left(v_{2}\right) = 7, \, f\left(w_{1}\right) = 1 \\ f\left(v_{i+1}\right) &= 2F_{3i} + f(v_{i}), \, 2 \leq i \leq n \\ f\left(w_{i}\right) &= 2F_{4+3(i-2)} + f(v_{i}), \, 2 \leq i \leq n \end{split}$$

 $\begin{array}{ll} f^{\text{+}}(E) &= \{f(v_iv_{i+1}) \; / \; 1 \leq i \leq n\} \; \cup \; \{ \; f(v_jw_j)/1 \leq j \leq n\} \\ \cup & \quad \{f(v_jw_{(j-1)})/ \; 2 \leq j \leq n{+}1\} \end{array}$

 $= \{f(v_1v_2), f(v_2v_3), ..., f(v_nv_{n+1})\} \cup \{f(v_1w_1), f(v_2w_2), ..., f(v_nw_n)\} \cup \{f(v_2w_1), f(v_3w_2), ..., f(v_{n+1}w_n)\}$

$$= \left\{ \left| \frac{f(v_1) - f(v_2)}{2} \right|, \left| \frac{f(v_2) - f(v_3)}{2} \right|, ..., \\ \left| \frac{f(v_n) - f(v_{n+1})}{2} \right| \right\} \cup \left\{ \left| \frac{f(v_1) - f(w_1)}{2} \right|, \left| \frac{f(v_2) - f(w_2)}{2} \right|, ..., \\ \left| \frac{f(v_n) - f(w_n)}{2} \right| \right\} \cup \left\{ \left| \frac{f(v_2) - f(w_1)}{2} \right|, \left| \frac{f(v_3) - f(w_2)}{2} \right|, ..., \\ \left| \frac{f(v_{n+1}) - f(w_n)}{2} \right| \right\}$$

$$= \left\{ \left| \frac{1}{2} \right|, \left| \frac{E^{2} - 2}{2} \right|, ..., \left| \frac{f(v_{2}) - 2F_{3n} - f(v_{n})}{2} \right| \right\} \cup \left\{ \left| \frac{3 - 1}{2} \right|, \left| \frac{f(v_{2}) - 2F_{4} - f(v_{2})}{2} \right|, ..., \left| \frac{f(v_{n}) - 2F_{3n-2} - f(v_{n})}{2} \right| \right\} \cup \left\{ \left| \frac{7 - 1}{2} \right|, ..., \left| \frac{2F_{6} + f(v_{2}) - 2F_{4} - f(v_{2})}{2} \right|, ..., \left| \frac{2F_{3n} + f(v_{n}) - 2F_{3n-2} - f(v_{n})}{2} \right| \right\}$$

 $= \{2, \ F_6, ..., \ F_{3n}\} \cup \{1, \ F_4, ..., \ F_{3n-2}\} \cup \ \{3, \ |F_6 - F_4|, ..., \ |F_{3n} - F_{3n-2}|\}$

 $= \{F_2, \ F_{6}, ..., \ F_{3n}\} \ \cup \ \{F_1, \ F_4, ..., \ F_{3n-2}\} \ \cup \\ \{F_3, \ F_5, ..., \ F_{3n-1}\}$

$$= \{F_1, F_2, F_3, F_4, F_5, F_6, ..., F_{3n-2}, F_{3n-1}, F_{3n}\}$$
$$= \{F_1, F_2, ..., F_{3n}\}$$

Thus, the induced edge labels are distinct and are $F_1, F_2, ..., F_{3n}$.

 $\label{eq:Hence} \mbox{Hence, the triangular snake graph } TS_n \mbox{ is a Skolem difference Fibonacci mean graph.}$

3.6 Example:

Skolem difference Fibonacci mean labelling of the graph TS_5 is

3.7 Theorem:

The graph $rP_n \cup sP_m$ is skolem difference Fibonacci mean for all r, s ≥ 1 and m, n ≥ 2 .

Proof:

Let V
$$(rP_n \cup sP_m) = \{u_{ij} / 1 \le i \le r \text{ and } 1 \le j \le n\}$$

 $j \le n\} \cup \{v_{ij} / 1 \le i \le s \text{ and } 1 \le j \le m\}$

 $\begin{array}{lll} E \ (rP_n \ \cup \ sP_m) \ = \ \{u_{ij}u_{i(j+1)} / \ 1 \ \leq \ i \ \leq \ r \\ \text{and} \ 1 \ \leq \ j \ \leq \ n-1 \ \} \ \cup \ \{v_{ij}v_{i(j+1)} / \ 1 \ \leq \ i \ \leq \ s \ and \\ & 1 \ \leq \ j \\ \ \leq \ m-1 \ \} \end{array}$

Then $|V(rP_n \cup sP_m)| = \text{nr} + \text{ms}$ and $|E(rP_n \cup sP_m)| = r (n-1) + s(m-1)$

Let f: V (G) \rightarrow {1, 2,..., $F_{2(nr\,+\,ms)\text{-r-s}}\}$ be defined as follows

$$f(u_{1j}) = 2F_{j+1}, \ 1 \le j \le n$$

$$f(u_{i1}) = f(u_{(i-1)n})+1, 2 \le i \le r$$

 $f(u_{ij}) = 2F_{n(i-1)+j-i} + f(u_{i(j-1)}), \ 2 \leq i \leq r \ and \quad 2 \leq j \leq n$

 $f(v_{11}) = f(u_{rn}) + 1$

 $f\left(v_{1j}\right)=2F_{r(n\text{-}1)+j\text{-}1}+f(v_{1(j\text{-}1)}),\,2\leq j\leq m$

$$f(v_{i1}) = f(v_{(i-1)m}) + 1, 2 \le i \le s$$

 $\begin{array}{ll} f\left(v_{ij}\right) = 2F_{r(n-1) \ + \ m(i-1) \ + \ j-i} + f(v_{i(j-1)}), & 2 \leq i \ \leq s \\ \& \ 2 \leq j \leq m \end{array}$

 $\begin{array}{ll} f^{+}\left(E\right) &= \{f\left(u_{ij}\;u_{i(j+1)}\!/\; 1\!\leq i\leq r \text{ and } & 1\!\leq j\leq n\!-\!1 \;\} \; \cup \\ \{f\left(v_{ij}\;v_{i(j+1)}\!/\! 1\!\leq i\leq s \text{ and } & 1\leq j\leq m\!-\!1 \} \end{array}$

 $= \{f(u_{11}, u_{12}), f(u_{12} u_{13}), ..., f(u_{1(n-1)} u_{1n}), f(u_{12} u_{22}), f(u_{22} u_{23}), ..., f(u_{2(n-1)} u_{2n}), ..., f(u_{r1} u_{r2}), f(u_{r2} u_{r3}), ..., f(u_{r(n-1)} u_{rn})\} \cup \{f(v_{11} v_{12}), f(v_{12} v_{13}), ..., f(v_{1(m-1)} v_{1m}), f(v_{21} v_{22}), f(v_{22} v_{23}), ..., f(v_{2(m-1)} v_{2m}), ..., f(v_{s1} v_{s2}), f(v_{s2} v_{s3}), ..., f(v_{s(m-1)} v_{sm})\}$

 $\frac{\left|\frac{f(v_{s1})-2F_{r(n-1)+m(s-1)+2-s}-f(v_{s1})}{2}\right|}{\left|\frac{f(v_{s2})-2F_{r(n-1)+m(s-1)+3-s}-f(v_{s2})}{2}\right|,...,$

 $\left|\frac{f(v_{s(m-1)})-2F_{r(n-1)+m(s-1)+m-s}-f(v_{s(m-1)})}{2}\right|$

 $\begin{array}{ll} f^{+}(E) & = \; \{F_{1},\!F_{2},\!...F_{n\!-\!1},\!F_{n},\!F_{n+1},\!...F_{2n\!-\!2},\!...\;F_{n(r\!-\!1)\;+\;2\text{-r}},\\ F_{n(r\!-\!1)\!+\;3\text{-r}},\!...,\!F_{r(n\!-\!1)}\} \; \cup \end{array}$

 $= \{F_1, F_{2,...,} F_{r(n-1)+s(m-1)}\}$

Thus, the induced edge labels are distinct and are $F_1,\,F_2,...,\,\,F_{r(n\text{-}1)+s(m\text{-}1)}.$

Hence, $rP_n \cup sP_m$ is a skolem difference Fibonacci mean graph for all r, $s \ge 1$ and m, $n \ge 2$.

3.8 Example:

Skolem difference Fibonacci mean labelling of the graph $2P_4 \cup 3P_5$ is

Fig. 4: $2P_4 \cup 3P_5$

3.9 Theorem:

The graph $\bigcup_{i=2}^{n} P_i$ is skolem difference Fibonacci mean graph for all $n \ge 2$.

Proof:

i-1}

Let G be the graph $\bigcup_{i=2}^{n} P_i$

Let V (G) =
$$\{v_{ij} / 2 \le i \le n \text{ and } 1 \le j \le i\}$$

$$E(G) = \{v_{ij}v_{i(j+1)} / 2 \le i \le n \text{ and } 1 \le j \le j \le n \}$$

Then $|V(G)| = \frac{n^2 + n - 2}{2}$ and $|E(G)| = \frac{n^2 - n}{2}$

Let f: V (G) $\rightarrow \{1, 2, \dots, F_{n^2-1}\}$ be defined as follows

$$f(v_{1j}) = 2F_{j+1}, j = 1, 2$$

$$f(v_{i1}) = f(v_{(i-1)i}) + 1, 2 \le i \le n$$

 $f(v_{ij}) = 2F_{\sum_{k=2}^{i}(k-1)+j-1} + f(v_{i(j-1)}), \ 2 \le i \le n \text{ and } 2 \le j \le (i+1)$

It can be easily verified that the edge set labels are distinct and are $F_1, F_2, ..., F_{\frac{n^2-n}{2}}$.

Hence, the graph $\bigcup_{i=2}^{n} P_i$ is skolem difference Fibonacci mean graph for all $n \ge 2$.

3.10 Example:

Skolem difference Fibonacci mean labelling of the graph $\bigcup_{i=2}^{5} P_i$ is

Fig. 5: $\bigcup_{i=2}^{5} P_i$

REFERENCES

[1] David W. Bange and Anthony E. Barkauskas, "Fibonacci graceful graphs" (1980).

[2] Harary, Graph Theory, Addison Welsley (1969).

[3] J.A.Bondy and U.S.R.Murthy, "Graph Theory and Applications" (North-Holland), Newyork, 1976.

[4] J.A.Gallian, A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 18(2014), #DS6.

[5] Kathiresan K. and Amutha S., Fibonacci graceful graphs, Ph.D. Thesis, Madurai Kamaraj University, (October 2006).

[6] K. Murugan and A. Subramanian, Skolem difference mean labelling of H- graphs, *International Journal of Mathematics and Soft Computing*, Vol.1, No. 1, (August 2011), p115-129.

[7] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of standard (communicated).

[8] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of special class of trees (communicated).

[9] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of H- class of graphs (communicated).

[10] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of path related graphs (communicated).