Skolem difference Fibonacci mean labelling of some special class of graphs

L. Meenakshi sundaram ${ }^{1}$, A. Nagarajan ${ }^{2}$
${ }^{1}$ Assistant Professor of Mathematics, V. O. Chidambaram College, Thoothukudi- 628008 Tamil Nadu, India.
${ }^{2}$ Associate Professor of Mathematics, V. O. Chidambaram College, Thoothukudi - 628008 Tamil Nadu, India.

Abstract

The concept of Skolem difference mean labelling was introduced by K. Murugan and A. Subramanian[6]. The concept of Fibonacci labelling was introduced by David W. Bange and Anthony E. Barkauskas[1] in the form Fibonacci graceful. This motivates us to introduce skolem difference Fibonacci mean labelling and is defined as follows: "A graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from the set $\left\{1,2, \ldots, F_{p+q}\right\}$ in such a way that the edge $e=u v$ is labelled with $\left|\frac{f(u)-f(v)}{2}\right|$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting edge labels are distinct and are from $\left\{F_{1}, \quad F_{2}, \ldots, F_{q}\right\} . A$ graph that admits Skolem difference Fibonacci mean labelling is called a Skolem difference Fibonacci mean graph". In this paper, we prove that some special class of graphs are Skolem difference Fibonacci mean graphs.

AMS Classification 05C78

KEYWORDS

Skolem difference mean labelling, Fibonacci labelling, Skolem difference Fibonacci mean labelling, Fan F_{n}, F_{m} @ $2 P_{n}$, triangular snake graph $T S_{n}, r P_{n} \cup s P_{m}, \cup_{i=2}^{n} P_{i}$

1. INTRODUCTION

A graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from the set $\left\{1,2, \ldots, F_{p+q}\right\}$ in such a way that the edge $e=u v$ is labelled with $\left|\frac{f(u)-f(v)}{2}\right|$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(\mathrm{u})-\mathrm{f}(\mathrm{v})|$ is odd and the resulting Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, / 0 \leq \mathrm{i} \leq \mathrm{n}\right\}$
edge labels are distinct and are from $\left\{F_{1}, F_{2}, \ldots, F_{q}\right\}$. A graph that admits Skolem difference Fibonacci mean labelling is called a Skolem difference Fibonacci mean graph. It was found that standard graphs [7], special class of trees [8], H- class of graphs [9] and path related graphs [10] are Skolem difference Fibonacci mean graphs. The following definitions and notations are used in main results.

2. DEFINITIONS

Definition 2.1.

Let $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ be two graphs. Then their union $G=G_{1} \cup G_{2}$ is a graph with vertex set $V=V_{1} \cup V 2$ and edge set $E=E_{1} \cup$ E_{2}.

Definition 2.2.

The join $G_{1}+G_{2}$ of G_{1} and G_{2} consists of $G_{1} \cup G_{2}$ and all lines joining V_{1} with V_{2}. The graph $P_{n}+K_{1}$ is called a Fan.

Definition 2.3.

$\mathrm{G}_{1} @ \mathrm{G}_{2}$ is the one point union of G_{1} and G_{2}. One point union of G_{1} and G_{2} is obtained by identifying one vertex of G_{1} to a vertex of G_{2}.

Definition 2.3.

A triangular snake is obtained from a path $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ by joining v_{i} and $\mathrm{v}_{\mathrm{i}+1}$ to a new vertex w_{i} for $i=1,2, \ldots, n-1$.

3. RESULTS

3.1 Theorem :

Every fan $F_{n}=P_{n}+K_{1}$ is Skolem difference Fibonacci mean graph if $\mathrm{n} \geq 3$.

Proof:

Let G be the graph $F_{n}=P_{n}+K_{1}$.
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{0} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$
Then $|V(G)|=\mathrm{n}+1$ and $|E(G)|=2 \mathrm{n}-1$
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{3 n}\right\}$ be defined as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{0}\right)=1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~F}_{2 \mathrm{i}-1}+1,1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

$\mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{v}_{0} \mathrm{v}_{\mathrm{i}}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) / 1 \leq \mathrm{i} \leq\right.$ n-1 $\}$
$=\left\{\mathrm{f}\left(\mathrm{v}_{0} \mathrm{v}_{1}\right), \mathrm{f}\left(\mathrm{v}_{0} \mathrm{v}_{2}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{0} \mathrm{v}_{\mathrm{n}}\right)\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right), \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right), \ldots\right.$, $\left.\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{~V}_{\mathrm{n}}\right)\right\}$
$=\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{0}\right)-\mathrm{f}\left(\mathrm{v}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{0}\right)-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{0}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right|\right\} \cup$ $\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{v}_{3}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right|\right\}$

$$
\begin{aligned}
& \quad=\left\{\left|\frac{1-2 \mathrm{~F}_{1}-1}{2}\right|,\left|\frac{1-2 \mathrm{~F}_{3}-1}{2}\right|, \ldots,\left|\frac{1-2 \mathrm{~F}_{2 n-1}-1}{2}\right|\right\} \\
& \cup \quad\left\{\left|\frac{2 \mathrm{~F}_{1}+1-2 \mathrm{~F}_{3}-1}{2}\right|, \quad\left|\frac{2 \mathrm{~F}_{3}+1-2 \mathrm{~F}_{5}-1}{2}\right|, \ldots,\right. \\
& \\
& \left.\qquad \left.\frac{2 \mathrm{~F}_{2 n-3}+1-2 \mathrm{~F}_{2 n-1}-1}{2} \right\rvert\,\right\}
\end{aligned}
$$

$$
\begin{gathered}
=\left\{\mathrm{F}_{1}, \mathrm{~F}_{3}, \ldots, \mathrm{~F}_{2 \mathrm{n}-1}\right\} \cup\left\{\mathrm{F}_{2}, \mathrm{~F}_{4}, \ldots, \mathrm{~F}_{2 \mathrm{n}-2}\right\} \\
=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{2 \mathrm{n}-1}\right\}
\end{gathered}
$$

Thus, the induced edge labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{2 \mathrm{n}-1}$.

Hence, the fan $F_{n}=P_{n}+K_{1}$ is skolem difference Fibonacci mean graph if $\mathrm{n} \geq 3$.

3.2 Example:

Skolem difference Fibonacci mean labelling of the graph $\quad \mathrm{F}_{6}=\mathrm{P}_{6}+\mathrm{K}_{1}$ is

Fig. 1: F_{6}

3.3 Theorem :

$\mathrm{F}_{\mathrm{m}} @ 2 \mathrm{P}_{\mathrm{n}}$ is Skolem difference Fibonacci mean graph

Proof:

Let G be $\mathrm{F}_{\mathrm{m}} @ 2 \mathrm{P}_{\mathrm{n}}$
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, \mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}, \mathrm{w}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right.$ and $1 \leq$ $\mathrm{j} \leq \mathrm{n}-1\}$

Let $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uv}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i}\right.$ $\leq \mathrm{m}-1\} \cup \quad\left\{\mathrm{v}_{\mathrm{m}} \mathrm{u}_{1}, \mathrm{u}_{\mathrm{j}} \mathrm{u}_{\mathrm{j}+1} / 1 \leq \mathrm{j} \leq \mathrm{n}-2\right\} \cup\left\{\mathrm{uw}_{1}\right.$, $\left.\mathrm{w}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}+1} / 1 \leq \mathrm{j} \leq \mathrm{n}-2\right\}$

Then $|V(G)|=\mathrm{m}+2 \mathrm{n}-1$ and $|E(G)|=2 \mathrm{~m}+2 \mathrm{n}-3$
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{3 \mathrm{~m}+4 \mathrm{n}-4}\right\}$ be defined as follows

$$
\mathrm{f}(\mathrm{u})=1
$$

$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~F}_{2 \mathrm{i}-1}+1,1 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{j}}\right)=2 \mathrm{~F}_{2 \mathrm{~m}+\mathrm{j}-1}+\mathrm{f}\left(\mathrm{u}_{\mathrm{j}-1}\right), 2 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{1}\right)=2 \mathrm{~F}_{2 \mathrm{~m}+1}+1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{j}}\right)=2 \mathrm{~F}_{2 \mathrm{~m}+\mathrm{n}+\mathrm{j}-2}+\mathrm{f}\left(\mathrm{w}_{\mathrm{j}-1}\right), 2 \leq \mathrm{j} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{1}\right)=2 \mathrm{~F}_{2 \mathrm{~m}+\mathrm{n}-1}+1$

$$
\begin{aligned}
& f^{+}(E)=\left\{f\left(u v_{i}\right), f\left(v_{m} u_{1}\right), f\left(u_{j} u_{j+1}\right), f\left(u w_{1}\right), f\left(w_{j} w_{j+1}\right)\right. \\
& / 1 \leq \mathrm{i} \leq \mathrm{m}, \quad 1 \leq \mathrm{j} \leq \mathrm{n}-2\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) / 1 \leq\right. \\
& \mathrm{i} \leq \mathrm{m}-1\} \\
& =\left\{f\left(\mathrm{uv}_{1}\right), f\left(\mathrm{uv}_{2}\right), \ldots, f\left(\mathrm{uv}_{\mathrm{m}}\right), f\left(\mathrm{v}_{\mathrm{m}} \mathrm{u}_{1}\right), \mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{2}\right),\right. \\
& f\left(u_{2} u_{3}\right), \ldots, f\left(u_{n-1} u_{n}\right), f\left(u_{1}\right), f\left(w_{1} w_{2}\right), f\left(w_{2} w_{3}\right), \ldots, \\
& \left.\mathrm{f}\left(\mathrm{w}_{\mathrm{n}-1} \mathrm{w}_{\mathrm{n}}\right)\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right), \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1} \mathrm{v}_{\mathrm{m}}\right)\right\} \\
& =\left\{\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)}{2}\right|,\right. \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)-\mathrm{f}\left(\mathrm{u}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{2}\right)}{2}\right| \text {, } \\
& \left|\frac{\mathrm{f}\left(\mathrm{u}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{3}\right)}{2}\right|, \ldots, \quad\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-1}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)}{2}\right|, \quad\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{w}_{1}\right)}{2}\right| \text {, } \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{w}_{1}\right)-\mathrm{f}\left(\mathrm{w}_{2}\right)}{2}\right|, \quad\left|\frac{\mathrm{f}\left(\mathrm{w}_{2}\right)-\mathrm{f}\left(\mathrm{w}_{3}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{n}-1}\right)-\mathrm{f}\left(\mathrm{w}_{\mathrm{n}}\right)}{2}\right|\right\} \cup \\
& \left\{\left|\frac{f\left(v_{1}\right)-f\left(v_{2}\right)}{2}\right|,\left|\frac{f\left(v_{2}\right)-f\left(v_{3}\right)}{2}\right|, \ldots,\left|\frac{f\left(v_{m-1}\right)-f\left(v_{m}\right)}{2}\right|\right\} \\
& =\left\{\left|\frac{1-2 \mathrm{~F}_{1}-1}{2}\right|,\left|\frac{1-2 \mathrm{~F}_{3}-1}{2}\right|, \ldots,\left|\frac{1-2 \mathrm{~F}_{2 \mathrm{~m}-1}-1}{2}\right|,\right. \\
& \left|\frac{2 \mathrm{~F}_{2 \mathrm{~m}-1}+1-2 \mathrm{~F}_{2 \mathrm{~m}+1}-1}{2}\right|, \quad\left|\frac{\mathrm{f}\left(\mathrm{u}_{1}\right)-2 \mathrm{~F}_{2 \mathrm{m+1}}-\mathrm{f}\left(\mathrm{u}_{1}\right)}{2}\right| \text {, } \\
& \left|\frac{\mathrm{f}\left(\mathrm{u}_{2}\right)-2 \mathrm{~F}_{2 \mathrm{~m}+2}-\mathrm{f}\left(\mathrm{u}_{2}\right)}{2}\right|, \ldots, \quad\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-2}\right)-2 \mathrm{~F}_{2 \mathrm{~m}+\mathrm{n}-2}-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}-2}\right)}{2}\right| \text {, } \\
& \left|\frac{1-2 \mathrm{~F}_{2 \mathrm{~m}+\mathrm{n}-1}-1}{2}\right| \quad, \quad\left|\frac{\mathrm{f}\left(\mathrm{w}_{1}\right)-2 \mathrm{~F}_{2 \mathrm{~m}+\mathrm{n}-\mathrm{f}\left(\mathrm{w}_{1}\right)}^{2}}{2}\right| \text {, } \\
& \left|\frac{f\left(w_{2}\right)-2 F_{2 m+n+1}-f\left(w_{2}\right)}{2}\right| \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{w}_{\mathrm{n}-2}\right)-2 \mathrm{~F}_{2 \mathrm{~m}+2 \mathrm{n}-3}-\mathrm{f}\left(\mathrm{w}_{\mathrm{n}-2}\right)}{2}\right|\right\} \cup\left\{\left|\frac{2 \mathrm{~F}_{1}+1-2 \mathrm{~F}_{3}-1}{2}\right|\right. \text {, } \\
& \left.\left|\frac{2 \mathrm{~F}_{3}+1-2 \mathrm{~F}_{5}-1}{2}\right|, \ldots,\left|\frac{2 \mathrm{~F}_{2 \mathrm{~m}-3}+1-2 \mathrm{~F}_{2 \mathrm{~m}-1}-1}{2}\right|\right\} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{3}, \ldots, \mathrm{~F}_{2 \mathrm{~m}-1}, \mathrm{~F}_{2 \mathrm{~m}}, \mathrm{~F}_{2 \mathrm{~m}+1}, \mathrm{~F}_{2 \mathrm{~m}+2}, \ldots,\right. \\
& \left.F_{2 m+n-2}, F_{2 m+n-1}, F_{2 m+n}, F_{2 m+n+1}, \ldots, F_{2 m+2 n-3}\right\} \cup\left\{F_{2},\right. \\
& \left.\mathrm{F}_{4}, \ldots, \mathrm{~F}_{2 \mathrm{~m}-2}\right\} \\
& =\left\{F_{1}, F_{2}, F_{3}, F_{4}, \ldots, F_{2 m-2}, F_{2 m-1}, F_{2 m}, F_{2 m+1},\right. \\
& \left.F_{2 m+2}, \ldots, F_{2 m+n-2}, F_{2 m+n-1}, F_{2 m+n}, F_{2 m+n+1}, \ldots, F_{2 m+2 n-3}\right\} \\
& =\left\{F_{1}, F_{2}, \ldots, F_{2 m+2 n-3}\right\}
\end{aligned}
$$

Thus, the induced edge labels are distinct and are $F_{1}, F_{2}, \ldots, F_{2 m+2 n-3}$.

Hence, $\mathrm{F}_{\mathrm{m}} @ 2 \mathrm{P}_{\mathrm{n}}$ is a Skolem difference Fibonacci mean graph.

3.4 Example:

Skolem difference Fibonacci mean labelling of the graph $\quad \mathrm{F}_{4} @ 2 \mathrm{P}_{4}$ is

Fig. 2: $\mathrm{F}_{4} @ 2 \mathrm{P}_{4}$

3.5 Theorem:

The triangular snake graph TS_{n} is a Skolem difference Fibonacci mean graph.

Proof:

Let G be TS_{n}
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{n}+1\right.$ and $1 \leq \mathrm{j}$ $\leq \mathrm{n}\}$

Let $E(G)=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}} / 1 \leq\right.$ $\mathrm{j} \leq \mathrm{n}\} \cup\left\{\mathrm{v}_{\mathrm{j}} \mathrm{w}_{(\mathrm{j}-1)} / \quad 2 \leq \mathrm{j} \leq \mathrm{n}+1\right\}$

Then $|V(G)|=2 \mathrm{n}+1$ and $|E(G)|=3 \mathrm{n}$
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{5 n+1}\right\}$ be defined as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{1}\right)=3, \mathrm{f}\left(\mathrm{v}_{2}\right)=7, \mathrm{f}\left(\mathrm{w}_{1}\right)=1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{~F}_{3 \mathrm{i}}+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right), 2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=2 \mathrm{~F}_{4+3(\mathrm{i}-2)}+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right), 2 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

$$
\mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{j}} \mathrm{w}_{\mathrm{j}}\right) / 1 \leq \mathrm{j} \leq \mathrm{n}\right\}
$$

$$
\mathrm{U} \quad\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{j}} \mathrm{w}_{(\mathrm{j}-1)}\right) / 2 \leq \mathrm{j} \leq \mathrm{n}+1\right\}
$$

$=\left\{f\left(\mathrm{v}_{1} \mathrm{v}_{2}\right), \quad \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right), \ldots, \quad \mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}+1}\right)\right\} \quad \mathrm{U}\left\{\mathrm{f}\left(\mathrm{v}_{1} \mathrm{w}_{1}\right)\right.$, $\left.\mathrm{f}\left(\mathrm{v}_{2} \mathrm{w}_{2}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}} \mathrm{w}_{\mathrm{n}}\right)\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{2} \mathrm{w}_{1}\right), \mathrm{f}\left(\mathrm{v}_{3} \mathrm{w}_{2}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1} \mathrm{w}_{\mathrm{n}}\right)\right\}$
$=\left\{\quad\left|\frac{f\left(v_{1}\right)-f\left(v_{2}\right)}{2}\right|, \quad\left|\frac{f\left(v_{2}\right)-f\left(v_{3}\right)}{2}\right|, \ldots\right.$,
$\left.\left|\frac{f\left(v_{n}\right)-f\left(v_{n+1}\right)}{2}\right|\right\} \cup\left\{\left|\frac{f\left(v_{1}\right)-f\left(w_{1}\right)}{2}\right|,\left|\frac{f\left(v_{2}\right)-f\left(w_{2}\right)}{2}\right|, \ldots\right.$,
$\left.\left|\frac{f\left(v_{n}\right)-f\left(w_{n}\right)}{2}\right|\right\} \cup \quad\left\{\left|\frac{f\left(v_{2}\right)-f\left(w_{1}\right)}{2}\right|,\left|\frac{f\left(v_{3}\right)-f\left(w_{2}\right)}{2}\right|, \ldots\right.$,
$\left.\left|\frac{f\left(v_{n+1}\right)-f\left(w_{n}\right)}{2}\right|\right\}$
$=\left\{\left|\frac{3-7}{2}\right|, \quad\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{6}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right| \quad, \ldots\right.$, $\left.\left|\frac{\mid\left(v_{n}\right)-2 F_{3 n}-f\left(v_{n}\right)}{2}\right|\right\} \cup\left\{\left|\frac{3-1}{2}\right|,\left|\frac{f\left(v_{2}\right)-2 F_{4}-f\left(v_{2}\right)}{2}\right|, \ldots\right.$, $\left.\left|\frac{f\left(v_{n}\right)-2 F_{3 n-2}-f\left(v_{n}\right)}{2}\right|\right\} \quad \cup \quad\left\{\quad\left|\frac{7-1}{2}\right|\right.$, $\left.\left|\frac{2 \mathrm{~F}_{6}+\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{4}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots,\left|\frac{2 \mathrm{~F}_{3 n}+\mathrm{f}\left(\mathrm{v}_{n}\right)-2 \mathrm{~F}_{3 n-2}-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right|\right\}$
$=\left\{2, F_{6}, \ldots, F_{3 n}\right\} \cup\left\{1, F_{4}, \ldots, F_{3 n-2}\right\} \cup\{3$, $\left.\left|F_{6}-F_{4}\right|, \ldots, \quad\left|F_{3 n}-F_{3 n-2}\right|\right\}$
$=\left\{F_{2}, F_{6}, \ldots, F_{3 n}\right\} \cup\left\{F_{1}, F_{4}, \ldots, F_{3 n-2}\right\} \cup$ $\left\{\mathrm{F}_{3}, \mathrm{~F}_{5}, \ldots, \mathrm{~F}_{3 n-1}\right\}$
$=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}, \mathrm{~F}_{4}, \mathrm{~F}_{5}, \mathrm{~F}_{6}, \ldots, \mathrm{~F}_{3 \mathrm{n}-2}, \mathrm{~F}_{3 \mathrm{n}-1}, \mathrm{~F}_{3 \mathrm{n}}\right\}$
$=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{3 \mathrm{n}}\right\}$
Thus, the induced edge labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{3 \mathrm{n}}$.

Hence, the triangular snake graph TS_{n} is a Skolem difference Fibonacci mean graph.

3.6 Example:

Skolem difference Fibonacci mean labelling of the graph TS_{5} is

Fig. 3: TS_{5}

3.7 Theorem:

The graph $r P_{n} \cup s P_{m}$ is skolem difference Fibonacci mean for all $\mathrm{r}, \mathrm{s} \geq 1$ and $\mathrm{m}, \mathrm{n} \geq 2$.

Proof:

Let $\mathrm{V}\left(r P_{n} \cup s P_{m}\right)=\left\{\mathrm{u}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{r}\right.$ and $1 \leq$ $\mathrm{j} \leq \mathrm{n}\} \cup \quad\left\{\mathrm{v}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{s}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{m}\right\}$
$\mathrm{E}\left(r P_{n} \cup s P_{m}\right)=\left\{\mathrm{u}_{\mathrm{ij}} \mathrm{u}_{\mathrm{i}(\mathrm{j}+1)} / 1 \leq \mathrm{i} \leq \mathrm{r}\right.$ and $1 \leq \mathrm{j} \leq \mathrm{n}-1\} \cup\left\{\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}(\mathrm{j}+1)} / 1 \leq \mathrm{i} \leq \mathrm{s}\right.$ and $\quad 1 \leq \mathrm{j}$ $\leq \mathrm{m}-1\}$

Then $\left|V\left(r P_{n} \cup s P_{m}\right)\right|=\mathrm{nr}+\mathrm{ms}$ and $\mid E\left(r P_{n} \cup\right.$ $\left.s P_{m}\right) \mid=\mathrm{r}(\mathrm{n}-1)+\mathrm{s}(\mathrm{m}-1)$

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{2(\mathrm{nr}+\mathrm{ms}) \text {--s }}\right\}$ be defined as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{lj}}\right)=2 \mathrm{~F}_{\mathrm{j}+1}, 1 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i} 1}\right)=\mathrm{f}\left(\mathrm{u}_{(\mathrm{i}-1) \mathrm{n}}\right)+1,2 \leq \mathrm{i} \leq \mathrm{r}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{ij}}\right)=2 \mathrm{~F}_{\mathrm{n}(\mathrm{i}-1)+\mathrm{j}-\mathrm{i}}+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}(\mathrm{j}-1)}\right), 2 \leq \mathrm{i} \leq \mathrm{r}$ and $2 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{11}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{rn}}\right)+1$
$\mathrm{f}\left(\mathrm{v}_{1 \mathrm{j}}\right)=2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{j}-1}+\mathrm{f}\left(\mathrm{v}_{1(\mathrm{j}-1)}\right), 2 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 1}\right)=\mathrm{f}\left(\mathrm{v}_{(\mathrm{i}-1) \mathrm{m}}\right)+1,2 \leq \mathrm{i} \leq \mathrm{s}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}}\right)=2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}(\mathrm{i}-1)+\mathrm{j}-\mathrm{i}}+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}(\mathrm{j}-1)}\right), \quad 2 \leq \mathrm{i} \leq \mathrm{s}$
$\& 2 \leq \mathrm{j} \leq \mathrm{m}$
$\mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{u}_{\mathrm{ij}} \mathrm{u}_{\mathrm{i}(\mathrm{j}+1)} / 1 \leq \mathrm{i} \leq \mathrm{r}\right.\right.$ and $\left.\quad 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\} \cup$ $\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}(\mathrm{j}+1)} / 1 \leq \mathrm{i} \leq \mathrm{s}\right.\right.$ and $\left.\quad 1 \leq \mathrm{j} \leq \mathrm{m}-1\right\}$
$=\left\{f\left(u_{11}, u_{12}\right), f\left(u_{12} u_{13}\right), \ldots, f\left(u_{1(n-1)} u_{1 n}\right), f(\right.$ $\left.u_{21} u_{22}\right), f\left(u_{22} u_{23}\right), \ldots \quad f\left(u_{2(n-1)} u_{2 n}\right) \ldots, f\left(u_{r 1} u_{r 2}\right), f$ $\left.\left(\mathrm{u}_{\mathrm{r} 2} \mathrm{u}_{\mathrm{r} 3}\right), \ldots, \mathrm{f}\left(\mathrm{u}_{\mathrm{r}(\mathrm{n}-1)} \mathrm{u}_{\mathrm{rn}}\right)\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{11} \mathrm{v}_{12}\right)\right.$, f $\left(v_{12} v_{13}\right), \ldots, f\left(v_{1(m-1)} v_{1 m}\right), \quad f\left(v_{21} v_{22}\right), f\left(v_{22} v_{23}\right), \ldots, f$ $\left(v_{2(m-1)} v_{2 m}\right), \ldots, \quad f\left(v_{s 1} v_{s 2}\right), f\left(v_{s 2} v_{s 3}\right), \ldots f\left(v_{s(m-}\right.$ $\left.\left.{ }_{1)} \mathrm{v}_{\mathrm{sm}}\right)\right\}$
$=\left\{\left|\frac{\mathrm{f}\left(\mathrm{u}_{11}\right)-\mathrm{f}\left(\mathrm{u}_{12}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{12}\right)-\mathrm{f}\left(\mathrm{u}_{13}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{u}_{1(\mathrm{n}-1)}\right)-\mathrm{f}\left(\mathrm{u}_{1 \mathrm{n}}\right)}{2}\right|\right.$, $\left|\frac{\mathrm{f}\left(\mathrm{u}_{21}\right)-\mathrm{f}\left(\mathrm{u}_{22}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{22}\right)-\mathrm{f}\left(\mathrm{u}_{23}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{u}_{2(\mathrm{n}-1)}\right)-\mathrm{f}\left(\mathrm{u}_{2 \mathrm{n}}\right)}{2}\right|, \ldots$, $\left.\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{r} 1}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{r} 2}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{r} 2}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{r} 3}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{r}(\mathrm{n}-1)}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{rn}}\right)}{2}\right|\right\} \cup$ $\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{11}\right)-\mathrm{f}\left(\mathrm{v}_{12}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{12}\right)-\mathrm{f}\left(\mathrm{v}_{13}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1(\mathrm{~m}-1)}\right)-\mathrm{f}\left(\mathrm{v}_{1 \mathrm{~m}}\right)}{2}\right|\right.$,

$$
\left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{s}(\mathrm{~m}-1)}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}(\mathrm{~s}-1)+\mathrm{m}-\mathrm{s}}-\mathrm{f}\left(\mathrm{v}_{\mathrm{s}(\mathrm{~m}-1)}\right)}{2}\right|\right\}
$$

$f^{+}(E) \quad=\left\{F_{1}, F_{2}, \ldots F_{n-1}, F_{n}, F_{n+1}, \ldots F_{2 n-2}, \ldots F_{n(r-1)}+2-r\right.$, $\left.\mathrm{F}_{\mathrm{n}(\mathrm{r}-1)+3-\mathrm{r}}, \ldots, \mathrm{F}_{\mathrm{r}(\mathrm{n}-1)}\right\} \cup$

$$
\left\{\mathrm{F}_{\mathrm{r}(\mathrm{n}-1)+1}, \quad \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+2, \ldots,}, \quad \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}-1}, \quad \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}}, \quad \mathrm{~F}_{\mathrm{r}(\mathrm{n}-}\right.
$$

$$
{ }_{1)+m+1}, \ldots \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+2 \mathrm{~m}-2}, \ldots, \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}(\mathrm{~s}-1)+2-\mathrm{s}}, \quad \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}(\mathrm{~s}-1)+3-}
$$

$$
\left.s, \ldots, F_{r(n-1)+s(m-1)}\right\}
$$

$=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{s}(\mathrm{m}-1)}\right\}$
Thus, the induced edge labels are distinct and $\operatorname{areF}_{1}, \mathrm{~F}_{2}, \ldots$,

$$
\mathrm{F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{s}(\mathrm{~m}-1)} .
$$

$$
\begin{aligned}
& \left|\frac{f\left(v_{21}\right)-f\left(v_{22}\right)}{2}\right|,\left|\frac{f\left(v_{22}\right)-f\left(v_{23}\right)}{2}\right|, \ldots,\left|\frac{f\left(v_{2(m-1)}\right)-f\left(v_{2 m}\right)}{2}\right|, \ldots, \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 1}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 2}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 2}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 3}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{s}(\mathrm{~m}-1)}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{sm}}\right)}{2}\right|\right\} \\
& \mathrm{f}^{+}(\mathrm{E}) \quad= \\
& \left\{\left|\frac{2 \mathrm{~F}_{2}-2 \mathrm{~F}_{3}}{2}\right|, \quad\left|\frac{2 \mathrm{~F}_{3}-2 \mathrm{~F}_{4}}{2}\right| \quad, \ldots, \quad\left|\frac{2 \mathrm{~F}_{\mathrm{n}}-2 \mathrm{~F}_{\mathrm{n}+1}}{2}\right|\right. \text {, } \\
& \left|\frac{\mathrm{f}\left(\mathrm{u}_{21}\right)-2 \mathrm{~F}_{\mathrm{n}}-\mathrm{f}\left(\mathrm{u}_{21}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{22}\right)-2 \mathrm{~F}_{\mathrm{n}+1}-\mathrm{f}\left(\mathrm{u}_{22}\right)}{2}\right|, \ldots, \\
& \left|\frac{\mathrm{f}\left(\mathrm{u}_{2(\mathrm{n}-1)}\right)-2 \mathrm{~F}_{2 \mathrm{n}-2}-\mathrm{f}\left(\mathrm{u}_{2(\mathrm{n}-1)}\right)}{2}\right| \\
& \left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{r} 1}\right)-2 \mathrm{~F}_{\mathrm{n}(\mathrm{r}-1)+2-\mathrm{r}^{-f}}\left(\mathrm{u}_{\mathrm{r} 1}\right)}{2}\right|, \ldots \\
& \left|\frac{f\left(u_{r 2}\right)-2 F_{n(r-1)+3-r^{-f}\left(u_{r 2}\right)}^{2}}{2}\right| \quad, \ldots,
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{11}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+1}-\mathrm{f}\left(\mathrm{v}_{11}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{12}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+2}-\mathrm{f}\left(\mathrm{v}_{12}\right)}{2}\right|, \ldots,\right. \\
& \left|\frac{f\left(v_{1(m-1)}\right)-2 F_{r(n-1)+m-1}-f\left(v_{1(m-1)}\right)}{2}\right| \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{21}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}}-\mathrm{f}\left(\mathrm{v}_{21}\right)}{2}\right|, \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{22}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}+1}-\mathrm{f}\left(\mathrm{v}_{22}\right)}{2}\right| \\
& \text {,...., } \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{2(\mathrm{~m}-1)}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}+\mathrm{m}-2}-\mathrm{f}\left(\mathrm{v}_{2(\mathrm{~m}-1)}\right)}{2}\right|, \ldots, \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{S} 1}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}(\mathrm{~s}-1)+2-\mathrm{s}}-\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 1}\right)}{2}\right| \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 2}\right)-2 \mathrm{~F}_{\mathrm{r}(\mathrm{n}-1)+\mathrm{m}(\mathrm{~s}-1)+3-\mathrm{s}}-\mathrm{f}\left(\mathrm{v}_{\mathrm{s} 2}\right)}{2}\right|, \ldots,
\end{aligned}
$$

Hence, $r P_{n} \cup s P_{m}$ is a skolem difference Fibonacci mean graph for all $\mathrm{r}, \mathrm{s} \geq 1$ and $\mathrm{m}, \mathrm{n} \geq 2$.

3.8 Example:

Skolem difference Fibonacci mean labelling of the graph $2 P_{4} \cup 3 P_{5}$ is

Fig. 4: $2 P_{4} \cup 3 P_{5}$

3.9 Theorem:

The graph $\bigcup_{i=2}^{n} P_{i}$ is skolem difference
Fibonacci mean graph for all $\mathrm{n} \geq 2$.

Proof:

Let G be the graph $\bigcup_{i=2}^{n} P_{i}$
Let $V(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{ij}} / 2 \leq \mathrm{i} \leq \mathrm{n}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{i}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}(\mathrm{j}+1)} / 2 \leq \mathrm{i} \leq \mathrm{n}\right.$ and $1 \leq \mathrm{j} \leq$
i-1 $\}$
Then $|V(G)|=\frac{n^{2}+n-2}{2}$ and $|E(G)|=\frac{n^{2}-n}{2}$
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, F_{n^{2}-1}\right\}$ be defined as follows
$f\left(v_{1 j}\right)=2 F_{j+1}, \quad j=1,2$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 1}\right)=\mathrm{f}\left(\mathrm{v}_{(\mathrm{i}-1) \mathrm{i}}\right)+1,2 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}}\right)=2 F_{\sum_{k=2}^{i}(k-1)+j-1}+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}(\mathrm{j}-1)}\right), 2 \leq \mathrm{i} \leq$ n and $2 \leq \mathrm{j} \leq(\mathrm{i}+1)$

It can be easily verified that the edge set labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, F_{\frac{n^{2}-n}{2}}$.

Hence, the graph $\bigcup_{i=2}^{n} P_{i}$ is skolem difference Fibonacci mean graph for all $\mathrm{n} \geq 2$.

3.10 Example:

Skolem difference Fibonacci mean labelling of the graph $\bigcup_{i=2}^{5} P_{i}$ is

Fig. 5: $\mathrm{U}_{i=2}^{5} P_{i}$

REFERENCES

[1] David W. Bange and Anthony E. Barkauskas, "Fibonacci graceful graphs" (1980).
[2] Harary, Graph Theory, Addison Welsley (1969).
[3] J.A.Bondy and U.S.R.Murthy, "Graph Theory and Applications" (North-Holland), Newyork, 1976.
[4] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18(2014), \#DS6.
[5] Kathiresan K. and Amutha S., Fibonacci graceful graphs, Ph.D. Thesis, Madurai Kamaraj University, (October 2006).
[6] K. Murugan and A. Subramanian, Skolem difference mean labelling of H- graphs, International Journal of Mathematics and Soft Computing, Vol.1, No. 1, (August 2011), p115-129.
[7] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of standard (communicated).
[8] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of special class of trees (communicated).
[9] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of H - class of graphs (communicated).
[10] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of path related graphs (communicated).

