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Abstract— The availability of data for the size of the 

“Indian Underground Economy” is important for 

macroeconomic policy.  We use fuzzy set theory and 

fuzzy logic to construct an annual time-series for the 

Indian underground economy over the period 2010 

to 2016. Two input variables are used – the effective 

tax rate and an index of the degree of regulation.  

The resulting underground economy, time-series is 

compared with one previous a structural “Multiple 

Indicators, Multiple Causes” (MIMIC) model.  The 

two approaches each yield sensible, but somewhat 

different, pictures of the India underground economy 

over this period.  The fuzzy logic approach to this 

measurement problem involves several subjective 

judgements, but our results are quite robust to these 

choices. 
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I. INTRODUCTION 

      There is renewed interest internationally in the 

problem of the “Indian underground economy” and 

its implications for the “tax-gap”, the effectiveness 

of fiscal and monetary policy, economic growth, and 

for income distribution. The Indian underground 

economy involves activities and transactions which 

may themselves be legal or illegal, but which are not 

measured because they go unreported. The lack of 

reporting is generally to evade tax liabilities. 

Examples of these activities include unreported 

“cash” payments, extortion, smuggling, prostitution, 

narcotics sales, etc.. 

 

        By its very nature, the “Indian underground 

economy” (IUE) is not directly observable. However, 

various authors, to obtain measures of the UE in 

different countries, have used many different 

methods. For example, see [1] for a recent survey 

and some new results, and [2] for extensive 

international results. The empirical evidence, now 

available for many countries, is of varying quality. 

In addition, historical time series data on the UE 

have been constructed on a consistent basis for a few 

countries. 

       However, the available quantitative measures of 

the IUE point to one important fact – the size of the 

IUE is growing in all countries for which data have 

been constructed. This appears to be the case, not 

only in absolute (nominal) terms, but also in relative 

terms when we consider the ratio of the IUE to the 

measured GDP of each country. There is an urgent 

need for new and improved methods for measuring 

the size of the unobservable IUE. In this paper, we 

address this need by illustrating how the tools of 

fuzzy set theory and fuzzy logic can be used to 

generate a time-series measure of the IUE. This 

illustration takes the form of a rather limited, but 

very promising, application with India data. 

 

      The section-2 discusses some basic principles 

associated with fuzzy sets, and outlines our overall 

methodology. The step-by-step details of this 

methodology are provided in Section 3; and the 

results based on the Indian data are described in 

Section 4. The last section provides our conclusions, 

and a discussion of prospects for further research on 

this topic. 

II. BACKGROUND PRINCIPLES  

A. Historical Context 

        Fuzzy set theory and the associated fuzzy logic 

have found widespread application in many 

disciplines since the seminal contributions of Zadeh 

[3-4] and his followers. These applications are 

extensive in computer science, systems analysis, 

electrical and electronic engineering, and related 

fields. The construction and application of “expert 

systems” has touched most aspects of modern life, 

often without our knowledge. Examples include 

their inclusion in domestic appliances, vehicles, and 

the like. 
 

      While the use of fuzzy sets and logic has been 

widespread in the physical sciences (although not 

without criticism), the application of these tools in 

the social sciences appears to have been limited 

mainly to psychology. Applications in economics 

are few, some exceptions being [5-6] and others in 

the field of social choice. 

More specifically, the use of fuzzy set theory in 

Econometrics is virtually unknown. To our 

knowledge, the only other such contributions are 

those of [7]. The former authors use fuzzy sets in a 

regression context to model non-linearity’s, while 

Lindstrom uses fuzzy analysis to “predict” fixed 

investment behaviour on the basis of interest rate 
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levels and changes. Our own analysis here follows 

his methodology quite closely. 

 

B. Fuzzy Definitions 

       “Fuzzy sets” deal with “concepts” and 

“linguistic variables”. For instance, “price” is a 

concept, and “rather low price” is a linguistic 

variable. A “fuzzy set” maps from a regular set to [0, 

1]. Membership of a fuzzy set is not “crisp”. An 

example of this mapping would be: “the price of this 

personal computer is Rs. 1,25,000. This is one of the 

most expensive such computers I have ever seen, so 

I rate its price at 0.98.” The number “0.98” is the 

“degree of membership”, and this value should not 

be confused with a probability. For instance, degrees 

of membership need not sum to unity. 

 

      Examples of “fuzzy logic” are: “if the price is 

high, then demand will be low”; or “if taxes are high, 

then tax evasion will be high”. The application of the 

inductive premise of fuzzy concepts poses some 

difficulties – not all of the usual set-theoretic laws 

are satisfied. In particular, the “law of the excluded 

middle” is violated, so a different group of operators 

must be adopted for instance, “union” is replaced by 

“max”, “intersection” is replaced by “min”, and 

“complement” is replaced by subtraction from unity. 

Then the commutative, associative, distributive, 

idempotency, absorption, excluded middle, 

involution, and De Morgan’s laws are satisfied. For 

example, if U={a, b, c, d} and the fuzzy sets A and 

B are defined as A={0.3/a, 0.6,c, 1/d} and B={0.1/a, 

0.5/b, 0.7/c, 0.9/d}, where the numbers are “degrees 

of membership”, then AՍB={0.3/a, 0.5/b, 0.7/c, 1/d} 

and AՈB={0.1/a, 0/b, 0.6/c, 0.9/d}. Similarly, 

B
c
={0.9/a, 0.5/b, 0.3/c, 0.1/d}. 

 

      The use of fuzzy sets and logic in Econometrics 

is an appealing possibility. For example, often our 

data are necessarily vague, we may have limited 

knowledge of the nature of the relationships between 

variables, and these relationships may be 

intrinsically non-linear. 

III.  OVERALL METHODOLOGY 

     Our task is the “measure” the size of the Indian 

underground economy, year by year. The following 

methodology is not inferential in the usual sense, 

and it differs from a regression-based approach 

using “indicators” and “causes”, as none of the 

former variables are used. For simplicity, our 

application uses only two causal variables that, 

based on both economic theory and widespread 

international empirical evidence, are widely believed 

to be the primary determinants of underground 

activity [1-2], [8-13] . 

 

      These variables are the effective tax rate (the 

ratio of total tax revenue to GDP), TR, and an index 

of the degree of regulation (REG) in India. Our 

primary sample period is 2010 to 2016 to match that 

of Giles [1], who also provides data sources. 

Somewhat earlier data on the causal variables are 

available and are used in the construction of certain 

moving averages in our analysis. The choice of these 

two input variables is of course itself somewhat 

subjective, and work in progress explores the 

implications of modifying the input set. In each case, 

we expect a positive association between the causal 

variable and the size of the Indian underground 

economy. In fuzzy parlance, “if taxes are high and if 

the degree of regulation in the economy is high, then 

we would expect the size of the Indian underground 

economy to be high”. 

 

       Not only is the choice of causal variables 

subjective, but so is the specification of the 

boundaries of the fuzzy sets. At what point do taxes 

change from “average” to “high”; and at what level 

does the degree of regulation change from being 

“low” to “very low”, etc. Accordingly, it is 

important to conduct a range of sensitivity tests to 

determine the robustness of our results to these and 

other choices. It is important to note, however, that 

there is no need to assume anything about the 

functional form of the hypothesized relationship 

between taxes and the degree of regulation on the 

one hand, and the size of the underground economy 

on the other. The basic approach we adopt, then, is 

to first define fuzzy sets associated with the values 

of the two causal variables. Then for each variable in 

each year, we assign association values with the 

subjective levels; and then we use decision rules to 

establish a level for the underground economic 

indicator (or index), using the fuzzy operators. The 

details of this procedure are presented in the next 

section. 

IV. ANALYTICAL DETAILS 

A. Data Break Points 

      There are several possible ways to create 

“benchmarks” to quantify what we mean by “high”, 

“low”, etc. in the present context. Here, we use a 

moving average value for each of the TR and REG. 

To take account of a possible electoral cycle in the 

data, a minimum of six years’ data has been 

incorporated into the moving averages. As we wish 

to have an IUE measure for the period 2010 to 2015. 

For each series, and for each year, the average in the 

history of data gives us a “normal” value. Therefore, 

in 2015, this value is the average of the data from 

2010 to 2015 inclusive. Once “normal” values have 

been established for each of the TR and REG in each 

year from 2010 to 2015, we then calculate 

quantitative associated levels of magnitude. This is 

done by taking one or two sample standard 

deviations around the “normal” value in each period: 
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TR: effective tax rate = Taxes /GDP 

 

Very 

Low 
Low Normal High Extreme 

(VL) (L) (N) (H) (EX) 

-2 SD -1 SD Mean@ 

time=1 

+1 SD +2 SD 

 

REG: level of regulation = an index 

 

Very 

Low 
Low Normal High Extreme 

(VL) (L) (N) (H) (EX) 

-2 SD -1 SD Mean@ 

time=1 

+1 SD +2  SD 

 

      In this way two sets, each of five numbers, 

corresponding to TR and REG, are generated for 

each year in question. These sets are termed “break-

points” in the subsequent discussion. For example, 

in 2010 the following break points emerge for TR: 

0.2167912, 0.2277076, 0.2386240, 0.2495404 and 

0.2604568. The highlighted value of 0.2386240 is 

the mean of TR over the period 2010 through 2015. 

Similarly, the value of 0.2167912 is the above mean 

value minus two times the standard deviation of this 

particular (moving) sample. 

B. Break-points and Level Association 

       We then associate data values with categories of 

magnitude. Consider the above data for 2010. The 

actual data value for TR in that year is 0.2400330, 

which places it somewhere between “normal” and 

“high” in that year. “Fuzzy” or “multi-valued” logic 

uses non-crisp sets whose members are defined by 

levels or degrees of association, rather than by strict 

“all-or-nothing” membership status. So, a particular 

value of TR or REG can be associated with more 

than one set (or relative level of magnitude in our 

case). 

 

       In the above example, the 2010 value of TR is 

both “normal” and “high”, but how “normal” and 

how “high” it is depends on its location relative to 

the break points in question. In fuzzy logic, the 

establishment of levels of association is governed by 

what are termed “membership functions”. These can 

take various forms, according to one’s prior beliefs, 

so another element of subjectivity enters the analysis. 

Here we use a simple linear or distance measure to 

assign levels of association. 

 

      For example, the value of TR in 2010 is closer to 

“normal” than to “high”, and a harmonic assignation 

is used – that is, the weights are inversely related to 

the distances: 

 

VL L N H EX 

0.0000 0.0000 0.8709 0.1291 0.0000 

      A fuzzy logic membership function of the type 

used here will associate observations with at most 

two magnitude levels, the weights for which sum to 

unity. Extreme observations that fall below the 

lowest break point, or above the highest breakpoint, 

are given an extreme association value equal to the 

relevant “outer boundary” level. A value of unity 

associated with any particular level indicates 

complete membership, while a zero value denotes no 

membership at all. 

C. Association Level and Decision Rules 

      Next, we create the decision rules that will 

determine how particular levels of association for 

each of TR and REG are combined to establish the 

levels of association for UE itself. These rules are 

necessarily rather arbitrary, but the method by which 

they are assigned may choose in the following table: 

 

Rule REGS TR UE Degree 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

E 

E 

E 

E 

E 

H 

H 

H 

H 

H 

N 

N 

N 

N 

N 

L 

L 

L 

L 

L 

VL 

VL 

VL 

VL 

VL 

E 

H 

N 

L 

VL 

E 

H 

N 

L 

VL 

E 

H 

N 

L 

VL 

E 

H 

N 

L 

VL 

E 

H 

N 

L 

VL 

 

VB 

VB 

S 

S 

A 

VB 

B 

B 

A 

S 

B 

B 

A 

S 

S 

B 

A 

S 

S 

VS 

A 

S 

S 

VS 

VS 

1.0 

0.8 

1.0 

0.8 

0.8 

1.0 

1.0 

0.8 

1.0 

1.0 

1.0 

0.8 

1.0 

0.8 

1.0 

1.0 

1.0 

0.8 

1.0 

1.0 

0.8 

0.8 

1.0 

0.8 

1.0 

 

E=Extreme, H=High, N=Normal, L=Low, 

VL=Very Low, VB=Very Big, B=Big, A=Average, 

S=Small, VS=Very Small 

 

 The above table is then interpreted using simple “if-

then” decision criteria. For example, recall that in 

2010 TR is associated with “Normal” AND with 

“High”, so using Rule 12 above, we say the IUE is 

“Big”. The construction of the rules in the table is 

rather arbitrary - the “benchmark” rules (1, 7, 13, 19, 

and 25) are straightforward to assign, and we then 

followed [11] in assigning the others symmetrically. 
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     The column labelled “Degree” in the above table 

provides a quantified degree of association for the 

UE series. For instance, continuing with 2010 as an 

example, Rule 12 associates UE with “Big” at a 

degree of 0.8. This indicates that UE is not perfectly 

associated with “Big” in that year, but only 

associated with the extent of 8/10ths. Again, a 

judgement is exercised in the assigning of these 

degrees. 

D. Derivation of the IUE Series 

     The last stage of the analysis involves deriving 

the numerical series for IUE.  This is achieved by 

attaching the values of 0.0, 0.25, 0.5, 0.75, and 1.0 to 

the levels “Very Small”, “Small”, “Average”, “Big”, 

and “Very Big” for IUE, weighted by the relevant 

levels of association.  Recall that for each  

observation on TR and REG there are at most two 

association values, so there are at most (2 x 2) = 4 

decision rules active for each IUE value generated.  

Here, the fuzzy “MIN”, “MAX” operators act in 

place of the usual “AND”, “OR” operators.  

Therefore, in 2010, the associating values for the 

four different levels of magnitude are: 

 

TR 
Normal High 

0.8709 0.1291 

REG 
Low Normal 

0.7339 0.2661 

 

For 2010, there are four levels of magnitude to form 

four possible combinations with: 

 

TR/REG Rule IUE level 
IUE 

Association 

1.  N/L 18 S:  0.8 x 0.7339 0.5871 

2.  N/N 13 A: 1.0 x 0.1291 0.1291 

3.  H/L 17 A: 1.0 x 0.2661 0.2661 

4.  H/N 12 B: 0.8 x 0.1291 0.1033 

 

From the previously listed decision rules, each 

combination of TR and REG level is associated with 

a level of magnitude for IUE, along with a degree.  

The first combination considered in this example (1) 

associates “Normal” for TR AND “Low” for REG to 

produce a level of “small” with a degree of 0.8 for 

the IUE series. The “Normal” level for TR is 0.8709 

and the “Low” level for REG is 0.7339 using the 

AND operator results in choosing the smaller value 

of 0.7339 to multiply against the degree value for 

“small” IUE level.  The third column under the 

heading level summarizes the calculations to this 

point.  The last column incorporates the use of the 

OR fuzzy operator. For 2010, decision rule 13 and 

17 are activated, both resulting in a level of A, 

raising the question as to which “Average” should be 

chosen, as they both cannot be true simultaneously.  

The final task is to attach values for the IUE levels. 

 

Level Value Weight 

S 0.5871 0.25 

A 0.2661 0.50 

B 0.1033 0.75 

 

WTGU derivation 

 

(0.5871 x 0.25) + (0.2661 x 0.5) + (0.1033 x 0.75) 

 

                      (0.5871 + 0.2661 + 0.1033) 

 

= 0.3737 = IUE index value of 2010. 

 

For the index value for IUE to lie in the interval [0, 1] 

the sum of the weights must equal 1.0, which is 

accomplished by dividing by their sum. The IUE 

index value of 0.3737 indicates that for 2010 in India 

the willingness of agents to “go underground” was 

less than neutral. An average agent, on balance, 

would tend towards working openly and above 

board. 

V. FINAL RESULTS 

      The resulting index values for each year have 

been scaled so that the “Fuzzy UE” series is 

comparable to that generated by Giles [1] - he used 

MIMIC model analysis, and levelled the resulting 

index by using a currency-demand model. The two 

different time-series of the Indian underground 

economy for 2010 to 2015 appear in Figure-1. We 

see there that although the two series follow a 

similar upward trend over time, their cyclical 

movements differ quite sharply. Of course, the true 

series of values for IUE is unknown, so which of 

these two measures is the more accurate cannot be 

determined. 

 

     We have examined the robustness of our “Fuzzy 

IUE” series to changes in the various subjective 

assumptions that have been made in its construction. 

We have found the results to be quite insensitive to 

the choice of the decision-rule “degrees”; to the use 

of the mean or the median as the “benchmark” for 

the break-points; and to the number of standard 

deviations used about these “benchmarks”. We have 

also constructed corresponding “Fuzzy IUE” series 

using other causal variables that have been adopted 

in other analyses of the underground economy. For 

instance, the use of the inflation rate in conjunction 

with TR or REG yields strikingly similar results. 
 

      The most likely explanation for the different 

cyclical patterns of the MIMIC and FUZZY series is 

that the former is based on ten causal variables, and 

not just two.  Extending the above fuzzy logic 

analysis to incorporate more than two causal 

variables is not straightforward in terms of the 

subjective judgements that need to be made. 
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Figure-1: Two measures of the Indian Underground 

Economy 

 

 

 

 

 

 

 

 

 

 

 

     As an approximation to a full such analysis, we 

have experimented with “hierarchical” structures of 

two-variable models.  For instance, the resulting 

series for the IUE here can be taken as one new 

“composite” causal variable.  A second such 

composite causal variable can be obtained in an 

analogous manner by using two quite different basic 

causal variables to generate a separate time path for 

the UE.  Then, the methodology outlined here for the 

two-variable case can be applied to these composite 

inputs.  This assumes, of course, an inherent 

“separability” of the effects of the two pairs of basic 

input variables, and this may be unrealistic.  Our 

work to date along these lines has not yielded 

significantly different results to those reported in 

Figure-1. 

VI. CONCLUSIONS 

     Clearly, much remains to be done to refine the 

procedures outlined in this paper.  However, the 

preliminary results reported here are extremely 

encouraging, and do not appear to be especially 

sensitive to the various subjective prior judgements 

that have to be made in applying this methodology. 

 

      The size of the Indian underground economy is 

unobservable, but it is important for policy-makers 

to have reliable measures of its magnitude, trend, 

and cyclical characteristics.  The recent resurgence 

of interest among policy-makers in Europe, the U.S., 

Canada, the U.K. and New Zealand on this topic 

makes it all the more timely to explore alternative 

methods for measuring the underground economy 

internationally. 

 

     Our use of fuzzy set theory and fuzzy logic in the 

novel in this context, and among other things it 

provides useful crosschecks on other measures that 

are available.  Work in progress is extending this 

analysis in various ways, notably to incorporate a 

more comprehensive array of causal variables, and 

to consider alternative “membership functions”.  

Finally, this same type of analysis can be used to 

measure other interesting, but intrinsically 

unobservable, economic variables.  Examples 

include capacity utilization and price (and other) 

expectations. 
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