Prime Labeling Of Grotzch Graph

S.Gowri ${ }^{1}$, S.Ruckmangadhan ${ }^{1}$, V .Ganesan ${ }^{2}$
${ }^{1}$ PG Department Of Mathematics, Sri Vinayaga College of Arts and Science, Ulunderpet.
${ }^{2}$ PG and Research Department Of Mathematics, Thiru Kolanjiappar Government Arts College, vriddhachalam.

Abstract

: A graph G with vertex set V is said to have a prime labeling if its vertices are labeled with distinct integers $1,2,3, \ldots$ $|V|$ Such that for each edge $x y$ the labels assigned to x and y are relatively prime. A graph which admits prime labeling is called a prime graph. In this paper, we investigate prime labeling of Grotzsch graph. We also discuss prime labeling in the context of some graph operations namely Fusion, Duplication, and Switching in Grotzsch graph.

Key Words: Grotzsch graph, Prime Labeling, Fusion, Duplication, Switching

1.Introduction:

In this paper, we consider only finite simple undirected graph. The graph G has vertex set $V=\mathrm{V}(G)$ and the edge set $E=\mathrm{E}(G)$. The set of vertices adjacent to a vertex u of G is denoted by $\mathrm{N}(u)$. For notations and terminology, we refer to J.A.Bondy and U.S.R. Murthy [1]. In the present work, G_{2} denotes the Grotzsch graph with 11 vertices and 20 edges. Enough literatures available in printed as well as electronics form on different types of graph labeling and more than 1000 research papers have been published so far in past four decades. A current survey of various graphs labeling problem can be found in [7] (Gallian J, 2015)

Following are the common features of any graph labeling problem.
A set of numbers from which vertex labels are assigned.
A rule that assigns value to each edge.
A condition that these values must satisfy.
The notion of prime labeling was introduced by Roger Entringer and was discussed in a paper by A. Tout (1982) [2]. Many researchers have studied prime graph, for example in H.C. Fu (1994 P 181-186) [5] have proved that path P_{n} on n vertices is a prime graph.
T.O Dertsky (1991) [4] have proved that the cycle C_{n} on n vertices is a prime graph. S.M. Lee (1998) [3] have proved that wheel W_{n} is a prime graph iff n is even. Around 1980 Roger Entringer conjectured that all tress have prime labeling, which is not settled till today. The prime labeling for planner grid is investigated by M. Sundaram (2006) [6]. In [8] S. K. Vaidhya and K. Kanmani have proved that the prime labeling for some cycle related graphs. In [9] S. Meena and K.Vaithilingam investigated Prime Labeling for some Helm related graphs. We will provide brief summary of definitions and other information which are necessary for the present investigations.

Definition: 1.1 If the vertices of the graph are assigned values subject to certain conditions then it is known as (vertex) graph labeling.

Definition: 1.2 Let $G=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices. A bijection $f: V(G) \rightarrow\{1,2, \ldots, \mathrm{n}\}$ is called a Prime labeling if for each edge $e=u v, g c d(f(u), f(v))=1$. A graph which admits prime labeling is called a prime graph.

Definition: 1.3 An independent set of vertices in a graph G is a set of mutually nonadjacent vertices.

Definition: 1.4 Let u and v be two distinct vertices of a graph G. A new graph G_{1} is constructed by fusing (identifying) two vertices u and v by a single vertex x in G_{1} such that every edge which was incident with either u (or) v in G now incident with x in G_{1}.

Definition: 1.5 Duplication of a vertex v_{k} of a graph G produces a new graph G_{1} by adding a vertex $v_{k}{ }^{\prime}$ with $\mathrm{N}\left(\mathrm{V}_{\mathrm{K}}\right)=\mathrm{N}\left(\mathrm{V}_{\mathrm{K}}\right)$. In other words, a vertex $v_{k}{ }^{\prime}$ is said to be a duplication of v_{k} if all the vertices which are adjacent to v_{k} are now adjacent to $v_{k}{ }^{\prime}$.

Definition : 1.6 A vertex switching G_{v} of a graph G is obtained by taking a vertex v of G, by removing the entire edges incident with v and adding edges joining v to every vertex which are not adjacent to v in G.

Definition: 1.7 The Grotzsch graph G_{Z} is a triangle - free graph with 11 vertices and 20 edges. It contains a star K 1,5 in which each pendant vertex of $\mathrm{K}_{1,5}$ is connected with two rim vertices of the cycle C_{5} whose vertex set, $\mathrm{V}\left(\mathrm{G}_{\mathrm{Z}}\right)=\left\{\quad w, v_{1}, v_{2,}, v_{3,}, v_{4}, v_{5} ; u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \quad$ and the edge set, $\mathrm{E}\left(\mathrm{G}_{\mathrm{Z}}\right)=$
$\left\{w v_{i} / 1 \leq i \leq 5\right\} \cup\left\{u_{i} u_{i+1} / 1 \leq i \leq 4, u_{5} u_{1}\right\} \cup$
$\left\{v_{1} u_{2}, v_{1} v_{5}, v_{2} u_{1}, v_{2} u_{3}, v_{3} u_{2}, v_{3} u_{4}, v_{4} u_{3}, v_{4} u_{5}, v_{5} u_{4}, v_{5} u_{1}\right\}$

Illustration: 1.8

Figure 1.1 depicts the specimen copy of Grotzsch graph

Figure 1.1 The Grotzsch graph

2 Main results:

Theorem: 2.1

The Grotzsch graph admits prime labeling

Proof:

Let G_{Z} be the Grotzsch graph with 11 vertices and 20 edges
$\mathrm{V}\left(\mathrm{G}_{\mathrm{Z}}\right)=\left\{w, v_{1}, v_{2}, v_{3,} v_{4}, v_{5} ; u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
Then $\left|\mathrm{V}\left(\mathrm{G}_{\mathrm{Z}}\right)\right|=11$
Define a function $f: \mathrm{V}\left(G_{Z}\right) \rightarrow\{1,2, \ldots, 11\}$ defined as follows.
$f(w)=1$
$f\left(v_{1}\right)=2$
$f\left(v_{2}\right)=4$
$f\left(v_{3}\right)=8$
$f\left(v_{4}\right)=6$
$f\left(v_{5}\right)=10$
and $f\left(u_{i}\right)=2 \mathrm{i}+1$, for $1 \leq i \leq 5$
For verify the relative prime of adjacent vertices, we consider the following three type of edges.
i. For $w v_{i} \in G_{2}, \operatorname{gcd}\left(f(w), f\left(v_{i}\right)\right)=\operatorname{gcd}(1,2 i)=1$
ii. For $\quad u_{i} u_{i+1} \in G_{Z}, \operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(2 i+1,2 i+3)=1 \quad$ and

$$
u_{5} u_{1} \in G_{Z}, \operatorname{gcd}\left(f\left(u_{5}\right), f\left(u_{1}\right)\right)=\operatorname{gcd}(11,3)=1
$$

iii. For $v_{1} u_{2} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(u_{2}\right)\right)=\operatorname{gcd}(2,5)=1$

$$
\begin{aligned}
& v_{1} u_{5} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{1}\right), f\left(u_{5}\right)\right)=\operatorname{gcd}(2,11)=1 \\
& v_{2} u_{1} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{2}\right), f\left(u_{1}\right)\right)=\operatorname{gcd}(4,3)=1 \\
& v_{2} u_{3} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{2}\right), f\left(u_{3}\right)\right)=\operatorname{gcd}(4,7)=1 \\
& v_{3} u_{2} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{3}\right), f\left(u_{2}\right)\right)=\operatorname{gcd}(8,5)=1 \\
& v_{3} u_{4} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{3}\right), f\left(u_{4}\right)\right)=\operatorname{gcd}(8,9)=1 \\
& v_{4} u_{3} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{4}\right), f\left(u_{3}\right)\right)=\operatorname{gcd}(6,7)=1 \\
& v_{4} u_{5} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{4}\right), f\left(u_{5}\right)\right)=\operatorname{gcd}(6,11)=1 \\
& v_{5} u_{1} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{5}\right), f\left(u_{1}\right)\right)=\operatorname{gcd}(10,3)=1 \\
& v_{5} u_{4} \in G_{Z}, \operatorname{gcd}\left(f\left(v_{5}\right), f\left(u_{4}\right)\right)=\operatorname{gcd}(10,9)=1
\end{aligned}
$$

Therefore, f satisfy the condition of prime labeling.
G_{Z} admits prime labeling.
Hence G_{Z} is a prime graph
Illustration : 2.2
Figure 2.2 depicts the prime labeling of Grotzsch graph.

Figure 2.2 the Grotzsch graph and its prime labeling.
Theorem: 2.2
The duplication of any vertex of degree 3 in Grotzsch graph admits prime labeling.

Proof:

Let G_{Z} be Grotzsch graph with 11 vertices and 20 edges.
Let G be the graph obtained from G_{Z} by duplicating any vertex of degree 3 in Grotzsch graph.
Without loss of generality, we may take the vertex v_{1} to be the duplicating vertex and let $v_{1}{ }^{\prime}$ be the duplication vertex of v_{1}.

$$
\text { Then }|\mathrm{V}(\mathrm{G})|=12
$$

Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 12\}$ defined as follows
Let $f\left(v_{1}{ }^{r}\right)=12$

$$
f\left(v_{1}\right)=2 \mathrm{i} \text { for } 1 \leq i \leq 5 \text { and } f(w)=11
$$

and $\quad f\left(u_{1}\right)=3$

$$
f\left(u_{2}\right)=5
$$

$$
f\left(u_{3}\right)=9
$$

$$
f\left(u_{4}\right)=7
$$

$$
f\left(u_{5}\right)=1
$$

In view of above defined labeling pattern, f satisfy the condition of the prime labeling
Therefore, G admits prime labeling
Hence, G is a prime graph.

Illustration: 2.3

Figure 2.2 shows the prime labeling of the duplication of the vertex v_{1} in G_{Z}.

Figure 2.2 Duplication of the vertex v_{1} in Grotzsch graph and its prime labeling.

Theorem: 2.3

The fusion of any two vertices of degree 4 in Grotzsch graph admits prime labeling.

Proof:

Let G_{Z} be the Grotzsch graph with 11 vertices and 20 edges
Let $V\left(\mathrm{G}_{\mathrm{Z}}\right)=\left\{w_{,}, v_{i} / 1 \leq i \leq 5 ; u_{i} / 1 \leq i \leq 5\right\}$
Let G be the graph obtained from G_{Z} by fusion of any two vertex of degree 4 in Grotzsch graph.
Without loss of generality, we may take the vertex u_{1} and u_{2} are the vertices may be fussed to the new vertex u. (i.e $\mathrm{u}=u_{1} u_{2}$)

$$
\text { Then }|\mathrm{V}(\mathrm{G})|=10
$$

Define a function $f: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 10\}$ defined as follows

$$
f(w)=7
$$

$$
\begin{gathered}
f\left(v_{i}\right)=10-2(i-1), \text { for } 1 \leq i \leq 5 \\
f\left(v_{1}\right)=10 \\
f\left(v_{2}\right)=8 \\
f\left(v_{3}\right)=6 \\
f\left(v_{4}\right)=4 \\
f\left(v_{5}\right)=2 \\
\text { and } f\left(u=u_{1} u_{2}\right)=1 \\
f\left(u_{3}\right)=3 \\
f\left(u_{4}\right)=5 \\
f\left(u_{5}\right)=9
\end{gathered}
$$

In view of above defined labeling pattern, f satisfy the condition of the prime labeling
Therefore, G admits prime labeling
Hence, G is a prime graph.
Illustration: 2.4
Figure 2.3 shows the prime labeling of fusion of vertices u_{1} and u_{2} in G_{Z}

Figure 2.3 fusion of the vertex u_{1} and u_{2} in G_{Z} and its prime labeling.

Theorem: 2.4

Switching the apex vertex in Grotzsch graph admits prime labeling.

Proof:

Let G_{Z} be the Grotzsch graph with 11 vertices and 20 edges
Let $\mathrm{V}\left(\mathrm{G}_{\mathrm{Z}}\right)=\left\{\mathrm{w}_{,}, v_{i} / 1 \leq i \leq 5 ; u_{i} / 1 \leq i \leq 5\right\}$
Then $|\mathrm{V}(\mathrm{G})|=11$
Let G be the graph obtained from G_{2} by switching the apex vertex win G_{Z}.
Then $|\mathrm{V}(\mathrm{G})|=11$
Define a function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots, 11\}$ defined as follows.
Let $f(w)=11$
$f\left(v_{i}\right)=2 i$, for $1 \leq i \leq 5$
and $f\left(u_{1}\right)=1$
$f\left(u_{2}\right)=5$
$f\left(u_{3}\right)=3$
$f\left(u_{4}\right)=7$
$f\left(u_{5}\right)=9$

In view of, the above defined labeling pattern, f satisfy the condition of the prime labeling
Therefore, G admits prime labeling
Hence, G is a prime graph.

Illustration: $\mathbf{2 . 5}$

Figure 2.4 show the prime labeling of switching the vertex w in Grotzsch graph.

Figure 2.4 Switching the vertex w in Grotzsch graph and its prime labeling .

Conclusion:

As all the graphs are not prime graph it is very interesting to investigate graph (or) graph families which admit prime labeling. In this paper we have investigated that the grotzsch graph is a prime graph and graph operations namely, fusion, duplication and switching on grotzsch graph admits prime labeling.

To investigate similar results for other graph families and in the context of different labeling techniques is an open area of research.

References:

1. J. A. Bondy and U.S.R. Murthy, "Graph Theory and Applications", (NorthHolland).New York (1976).
2. A. Tout, A.N. Dabboucy and K. Howalla, "Prime labeling of graphs", Nat.Acad.Sci. Letters, 11 (1982) 365-368.
3. S. M. Lee, L. Wui, and J. Yen, "on the amalgamation of prime graphs Bull", MalaysianMath.Soc. (Second Series)11, (1988) 59-67.
4. T. O. Dretskyet al., "on Vertex Prime labeling of graphs in graph theory", Combinatories and applications, Vol. 1, J. Alari (Wiley. N.Y.1991) 299-359.
5. H. C. Fu and K.C. Huang, "on prime labeling Discrete Math", 127, (1994) 181-186.
6. M. Sundaram, R. Ponraj\& S. Somasundaram (2006), "on prime labeling conjecture", Ars Combinatoria 79, 205-209.
7. J.A. Gallian, "A dynamic survey of graph labeling", The Electronic Journal of Combinations 16 \#DS6 (2015).
8. S.K. Vaidya and K. K. Kanmani, "Prime labeling for some cycle related graphs", journal of Mathematics Research, Vol.2. No.2, (2010) 98104.
9. S. Meena and K. Vaithilingam, "Prime Labeling for some Helm related graphs", International journal of Innovative Research in Science, Engineering and Technology Vol.2, issue 4, (2013).
