Common Coupled Fixed Point Results for Generalized Rational Type Contractions in Complex Valued Metric Spaces

U. Karuppiah ${ }^{1}$ and M. Gunaseelan ${ }^{2}$
${ }^{1}$ Department of Mathematics
St.Joseph's College(Autonomous)
Tiruchirappalli-620 002,India.
${ }^{2}$ Department of Mathematics Sri Sankara Arts and Science College(Autonomous) Enathur, Kanchipuram-631 561,India.

Abstract

In this paper, we prove a common coupled fixed point results for generalized rational type contractions in complex valued metric spaces which generalize common coupled fixed point theorems due to Marwan Amin Kutbi et al.,[1].

Key words:Complex valued metric space; Coupled fixed point; Common coupled fixed point; Coupled coincidence point;

1 Introduction

Azam et al.[2] introduced new spaces called complex valued metric spaces and established the existence of fixed point theorems under the contraction condition.Subsequently,Rouzkard and Imdad [3] established some common fixed point theorems satisfying certain rational expressions in complex valued metric spaces which generalize, unify and complement the results of Azam et al.[2].Sintunavarat and Kumam [4] obtained common fixed point results by replacing constant of contractive condition to control functions.Recently,Klin-eam and Suanoom [5] extend the concept of complex valued metric spaces and generalized the results of Azam et al.[2] and Rouzkard and Imad [3].

The concept of coupled fixed point was first introduced by Bhaskar and Laxikantham [10] in 2006. Recently some researchers prove some coupled fixed point theorems in complex valued metric space in [11],[12]. In [1],Marwan Amin Kutbi et al.,gave a common coupled fixed point results for generalized contraction in complex valued metric space and proved following theorem.

Theorem 1.1. Let (X, d) be a complete complex valued metric space, and let the mappings $S, T: X \times X \rightarrow X$ satisfy

$$
\begin{aligned}
d(S(x, y), T(u, v) & \preceq \alpha \frac{d(x, u)+d(y, v)}{2} \\
& +\frac{\beta d(x, S(x, y) d(u, T(u, v))+\gamma d(u, S(x, y) d(x, T(u, v))}{1+d(x, u)+d(y, v)}
\end{aligned}
$$

for all $x, y, u, v \in X$ and α, β and γ are non negative real with $\alpha+\beta+\gamma<1$. Then S and T have a unique common coupled fixed point.

Theorem 1.2. Let (X, d) be a complete complex valued metric space, and let the mappings $S, T: X \times X \rightarrow X$ satisfy

$$
d\left(S(x, y), T(u, v) \preceq \begin{cases}\frac{\alpha(d(x, u)+d(y, v))}{\frac{\beta(2(x, S(x, y)) d(S(x, y), T(u, v)))}{d(x, T(u, v))+d(u, S(x, y))+d(x, u)+d(y, v)}} & \text { if } D \neq 0 \\ 0 & \text { if } D=0 .\end{cases}\right.
$$

for all $x, y, u, v \in X$, where $D=d(x, T(u, v))+d(u, S(x, y))+d(x, u)+d(y, v)$ and α, β are nonnegative reals with $\alpha+\beta<1$. Then S and T have a unique common coupled fixed point.

2 Preliminaries

Let \mathbb{C} be the set of complex numbers and $z_{1}, z_{2} \in \mathbb{C}$.Define a partial order \preceq on \mathbb{C} as follows:

$$
z_{1} \preceq z_{2} \quad \text { iff } \quad \operatorname{Re}\left(z_{1}\right) \leq \operatorname{Re}\left(z_{2}\right), \quad \operatorname{Im}\left(z_{1}\right) \leq \operatorname{Im}\left(z_{2}\right) .
$$

Note that $0 \preceq z_{1}$ and $z_{1} \neq z_{2}, z_{1} \preceq z_{2}$ implies $\left|z_{1}\right|<\left|z_{2}\right|$.
The following definition is recently introduced by Azam et al.[2]

Definition 2.1. Let X be a non empty set.Suppose that the mapping $d: X \times$ $X \rightarrow \mathbb{C}$ satisfies the following conditions:

1. $0 \preceq d(x, y)$,for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
2. $d(x, y)=d(y, x)$ for all $x, y \in X$;
3. $d(x, y) \preceq d(x, z)+d(z, y)$, for all $x, y, z \in X$.

Then, d is called a complex valued metric on X, and (X, d) is called a complex valued metric space.

Example 2.1. Let $X=\mathbb{C}$.Define the mapping $d: X \times X \rightarrow \mathbb{C}$ by

$$
d(x, y)=i|x-y|, \quad \forall \quad x, y \in X
$$

Then, (X, d) is a complex valued metric space.
Definition 2.2. Let (X, d) be a complex valued metric space.

1. A point $x \in X$ is called interior point of a set $A \subseteq X$ whenever there exists $0 \prec r \in \mathbb{C}$ such that $B(x, r):=\{y \in X: d(x, y) \prec r\} \subseteq A$.
2. A point $x \in X$ is called a limit point of a set A whenever for every $0 \prec$ $r \in \mathbb{C}, B(x, r) \cap(A-\{x\}) \neq \phi$.
3. A subset $A \subseteq X$ is called open whenever each element of A is an interior point of A.
4. A subset $A \subseteq X$ is called closed whenever each element of A belongs to A.
5. A subset $A \subseteq X$ is called closed whenever each element of A belongs to A.
6. A sub-basis for a Hausdorff topology τ on X is a family $F:=\{B(x, r)$: $x \in X$ and $0 \prec r\}$.

Definition 2.3. Let (X, d) be a complex valued metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be

1. convergent to x, if for every $c \in \mathbb{C}$ with $o \prec c$ there is $k \in \mathbb{N}$ such that,for all $n>k, d\left(x_{n}, x\right)<c$.we denote this by $\left\{x_{n}\right\} \rightarrow x$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} x_{n}=x$;
2. Cauchy, if for every $c \in \mathbb{C}$ with $0 \prec c$ there is $k \in \mathbb{N}$ such that,for all $n>k, d\left(x_{n}, x_{n+m}\right)<c$, where $m \in \mathbb{N}$;
3. complete, if every Cauchy sequence in X converges in X.

In[2],Azam et al.established the following two lemmas.
Lemma 2.2. [2] Let (X, d) be a complex valued metric space, and let $\left\{x_{n}\right\}$ be a sequence in X.Then, $\left\{x_{n}\right\}$ converges to x if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 2.3. [2] Let (X, d) be a complex valued metric space, and let $\left\{x_{n}\right\}$ be a sequence in X. Then, $\left\{x_{n}\right\}$ is a Cauchy sequence if and only if $\left|d\left(x_{n}, x_{n+m}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$, where $m \in \mathbb{N}$.

Definition 2.4. [10] An element $(x, y) \in X \times X$ is called a coupled fixed point of $T: X \times X \rightarrow X$ if

$$
x=T(x, y) \quad y=T(y, x)
$$

Definition 2.5. [1] An element $d(x, y) \in X \times X$ is called a coupled coincidence point of $S, T: X \times X \rightarrow X$ if

$$
S(x, y)=T(x, y), \quad S(y, x)=T(y, x) .
$$

Example 2.4. An element $(x, y) \in X \times X \rightarrow X$ is called a coupled coincidence point of $S, T: X \times X \rightarrow X$ defined as $S(x, y)=x^{2} y^{2}$ and $T(x, y)=\left(\frac{4}{3}(x+y)\right)$ for all $x, y \in X$.Then $(0,0),(1,2)$, and $(2,1)$ are coupled coincidence points of S and T.

Example 2.5. Let $X=\mathbb{R}$ and $S, T: X \times X \rightarrow X$ defined as $S(x, y)=x+y+$ $\sin (x+y)$ and $T(x, y)=x+y+x y+\cos (x+y)$ for all $x, y \in X$.Then $\left(0, \frac{\pi}{4}\right)$ and $\left(\frac{\pi}{4}, 0\right)$ are coupled coincidence points of S and T.
Definition 2.6. [1] An element $(x, y) \in X \times X$ is called a common coupled fixed point of $S, T: X \times X \rightarrow X$ if

$$
x=S(x, y)=T(x, y) \quad y=S(y, x)=T(y, x)
$$

Example 2.6. Let $X=\mathbb{R}$ and $S, T: X \times X$ defined as $S(x, y)=x\left(\frac{\left(x+(y-1)^{2}\right)}{2}\right)$ and $T(x, y)=x\left(\sqrt{x^{2}+y^{2}+4}-2\right)$ for all $x, y \in X$.Then $(0,0),(1,2)$ and $(2,1)$ are common coupled fixed points of S and T.

The purpose of this paper is to generalize the theorem of Marwan Amin Kutbi et al.,[1] to common coupled fixed point results for generalized rational type contractions in complex valued metric Spaces .

3 Main Results

Theorem 3.1. Let (X, d) be a complete complex valued metric space, and let the mappings $S, T: X \times X \rightarrow X$ satisfy

$$
\begin{aligned}
d(S(x, y), T(u, v) & \preceq a_{1} \frac{d(x, u)+d(y, v)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d(u, T(u, v))}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{3} \frac{d(u, S(x, y)) d(x, T(u, v))}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{4} \frac{d(S(x, y), T(u, v)) d(x, u)}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{5} \frac{d(S(x, y), T(u, v)) d(y, v)}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{6} \frac{d(u, T(u, v)) d(y, v)}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{7} \frac{d(u, S(x, y)) d(x, u)}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{8} \frac{d(u, S(x, y)) d(y, v)}{1+d(x, u)+d(y, v)+d(u, S(x, y))} \\
& +a_{9} \max \{d(u, S(x, y)), d(S(x, y), T(u, v))\}
\end{aligned}
$$

for all $x, y, u, v \in X$ and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9} \geq 0$ with $a_{1}+a_{2}+a_{3}+$ $a_{4}+a_{5}+a_{6}+a_{9}<1$ and $a_{1}+a_{3}+a_{4}+a_{5}+a_{7}+a_{8}+a_{9}<1$. Then S and T have a unique common coupled fixed point.

Proof. Let x_{0} and y_{0} be arbitrary points in X.Define $x_{2 k+1}=S\left(x_{2 k}, y_{2 k}\right), y_{2 k+1}=$ $S\left(y_{2 k}, x_{2 k}\right)$ and $x_{2 k+2}=T\left(x_{2 k+1}, y_{2 k+1}\right), y_{2 k+2}=T\left(y_{2 k+1}, x_{2 k+1}\right)$,for $k=0,1, \ldots$

Then,

$$
\begin{aligned}
& d\left(x_{2 k+1}, x_{2 k+2}\right)=d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) \\
& \preceq a_{1} \frac{d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d\left(x_{2 k}, S\left(x_{2 k}, y_{2 k}\right)\right) d\left(x_{2 k+1}, T\left(x_{2 k+1}, y_{2 k+1}\right)\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{3} \frac{d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right) d\left(x_{2 k}, T\left(x_{2 k+1}, y_{2 k+1}\right)\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{4} \frac{\left.d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(x_{2 k}, x_{2 k+1}\right)\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{5} \frac{d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(y_{2 k}, y_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{6} \frac{d\left(x_{2 k+1}, T\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(y_{2 k}, y_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{7} \frac{d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right) d\left(x_{2 k}, x_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{8} \frac{d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right) d\left(y_{2 k}, y_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)} \\
& +a_{9} \max \left\{d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right), d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right)\right\} \\
& =a_{1} \frac{d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d\left(x_{2 k}, x_{2 k+1}\right) d\left(x_{2 k+1}, x_{2 k+2}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{3} \frac{d\left(x_{2 k+1}, x_{2 k+1}\right) d\left(x_{2 k}, x_{2 k+2}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{4} \frac{d\left(x_{2 k+1}, x_{2 k+2}\right) d\left(x_{2 k}, x_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{5} \frac{d\left(x_{2 k+1}, x_{2 k+2}\right) d\left(y_{2 k}, y_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{6} \frac{\left.d\left(x_{2 k+1}, x_{2 k+2}\right)\right) d\left(y_{2 k}, y_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{7} \frac{d\left(x_{2 k+1}, x_{2 k+1}\right) d\left(x_{2 k}, x_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{8} \frac{d\left(x_{2 k+1}, x_{2 k+1}\right) d\left(y_{2 k}, y_{2 k+1}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)} \\
& +a_{9} \max \left\{d\left(x_{2 k+1}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k+2}\right)\right\}
\end{aligned}
$$

which implies that

$$
\begin{align*}
&\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right| \leq a \frac{\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|}{2} \\
&+a_{1} \frac{\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|}{2} \\
&\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right| \leq a_{1} \frac{\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \\
&+a_{1} \frac{\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \tag{1}
\end{align*}
$$

Proceeding similarly one can prove that

$$
\begin{align*}
\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right| & \leq a_{1} \frac{\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \\
& +a_{1} \frac{\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \tag{2}
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{aligned}
\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|+\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right| & \leq \frac{a_{1}}{\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \\
& {\left[\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|+\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|\right] } \\
& =k\left[\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|+\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|\right] .
\end{aligned}
$$

where $k=\frac{a_{1}}{\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)}<1$.
Also,

$$
\begin{align*}
\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right| & \leq a_{1} \frac{\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \\
& +a_{1} \frac{\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \tag{3}\\
\left|d\left(y_{2 k+2}, y_{2 k+3}\right)\right| & \leq a_{1} \frac{\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \\
& +a_{1} \frac{\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|}{2\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \tag{4}
\end{align*}
$$

Adding (3) and (5), we get

$$
\begin{aligned}
\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right|+\left|d\left(y_{2 k+2}, y_{2 k+3}\right)\right| & \leq \frac{a_{1}}{\left(1-\left(a_{2}+a_{4}+a_{5}+a_{6}+a_{9}\right)\right)} \\
& {\left[\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|+\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right|\right] } \\
& =k\left[\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|+\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right|\right] \\
& \leq k^{2}\left[\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|+\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|\right] .
\end{aligned}
$$

Continuing this way, we have

$$
\begin{aligned}
\left|d\left(x_{n}, x_{n+1}\right)\right|+\left|d\left(y_{n}, y_{n+1}\right)\right| & \leq k\left[\left|d\left(x_{n-1}, x_{n}\right)\right|+\left|d\left(y_{n-1}, y_{n}\right)\right|\right] \\
& \leq k^{2}\left[\left|d\left(x_{n-2}, x_{n-1}\right)\right|+\left|d\left(y_{n-2}, y_{n-1}\right)\right|\right] \\
& \leq \cdots \leq k^{n}\left[\left|d\left(x_{0}, x_{1}\right)\right|+\left|d\left(y_{0}, y_{1}\right)\right|\right]
\end{aligned}
$$

Now if $\left|d\left(x_{n}, x_{n+1}\right)\right|+\left|d\left(y_{n}, y_{n+1}\right)\right|=\delta_{n}$, then

$$
\delta_{n} \leq k \delta_{n-1} \leq \cdots \leq k^{n} \delta_{0}
$$

Without loss of generality, we take $m>n$. Since $0 \leq k<1$, so we get

$$
\begin{aligned}
\left|d\left(x_{n}, x_{m}\right)\right|+\left|d\left(y_{n}, y_{m}\right)\right| & \leq\left|d\left(x_{n}, x_{n+1}\right)\right|+\left|d\left(y_{n}, y_{n+1}\right)\right| \\
& +\left|d\left(x_{n+1}, x_{n+2}\right)\right|+\left|d\left(y_{n+1}, y_{n+2}\right)\right|+\ldots \\
& +\left|d\left(x_{m-1}, x_{m}\right)\right|+\left|d\left(y_{m-1}, y_{m}\right)\right| \\
& \leq\left[k^{n} \delta_{0}+k^{n+1} \delta_{0}+\cdots+k^{m-1} \delta_{0}\right] \\
& \leq k^{n}\left[1+k+k^{2}+\ldots\right] \delta_{0} \\
& =\frac{k^{n}}{1-k} \delta_{0} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequence in X. Since X is complete,there exists $x, y \in X$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$. We now show that $x=S(x, y)$ and $y=S(y, x)$.We suppose on the contrary that $x \neq S(x, y)$ and $y \neq S(y, x)$ so that $0 \prec d(x, S(x, y))=l_{1}$ and $0 \prec d(y, S(y, x))=l_{2}$;we
would then have

$$
\begin{aligned}
& l_{1}=d(x, S(x, y)) \preceq d\left(x, x_{2 k+2}\right)+d\left(x_{2 k+2}, S(x, y)\right) \\
& \preceq d\left(x, x_{2 k+2}\right)+d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) \\
& \preceq d\left(x, x_{2 k+2}\right)+a_{1} \frac{d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d\left(x_{2 k+1}, T\left(x_{2 k+1}, y_{2 k+1}\right)\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{3} \frac{d\left(x_{2 k+1}, S(x, y)\right) d\left(x, T\left(x_{2 k+1}, y_{2 k+1}\right)\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{4} \frac{d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(x, x_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{5} \frac{d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(y, y_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{6} \frac{d\left(x_{2 k+1}, T\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(y, y_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{7} \frac{d\left(x_{2 k+1}, S(x, y)\right) d\left(x, x_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{8} \frac{d\left(x_{2 k+1}, S(x, y)\right) d\left(y, y_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{9} \max \left\{d\left(x_{2 k+1}, S(x, y)\right), d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right)\right\} \\
& =d\left(x, x_{2 k+2}\right)+a_{1} \frac{d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d\left(x_{2 k+1}, x_{2 k+2}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{3} \frac{d\left(x_{2 k+1}, x_{2 k+1}\right) d\left(x_{2 k}, x_{2 k+2}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{4} \frac{d\left(S(x, y), x_{2 k+2}\right) d\left(x, x_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{5} \frac{d\left(S(x, y), x_{2 k+2}\right) d\left(y, y_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{6} \frac{d\left(x_{2 k+1}, x_{2 k+2}\right) d\left(y, y_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{7} \frac{d\left(x_{2 k+1}, S(x, y)\right) d\left(x, x_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{8} \frac{d\left(x_{2 k+1}, S(x, y)\right) d\left(y, y_{2 k+1}\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)} \\
& +a_{9} \max \left\{d\left(x_{2 k+1}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k+2}\right)\right\}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left|l_{1}\right| & \leq\left|d\left(x, x_{2 k+2}\right)\right|+a_{1} \frac{\left|d\left(x, x_{2 k+1}\right)\right|+\left|d\left(y, y_{2 k+1}\right)\right|}{2} \\
& +a_{2} \frac{|d(x, S(x, y))|\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{3} \frac{\left|d\left(x_{2 k+1}, x_{2 k+1}\right)\right|\left|d\left(x_{2 k}, x_{2 k+2}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{4} \frac{\left|d\left(S(x, y), x_{2 k+2}\right)\right|\left|d\left(x, x_{2 k+1}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{5} \frac{\left|d\left(S(x, y), x_{2 k+2}\right)\right|\left|d\left(y, y_{2 k+1}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{6} \frac{\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|\left|d\left(y, y_{2 k+1}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{7} \frac{\left|d\left(x_{2 k+1}, S(x, y)\right)\right|\left|d\left(x, x_{2 k+1}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{8} \frac{\left|d\left(x_{2 k+1}, S(x, y)\right)\right|\left|d\left(y, y_{2 k+1}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)\right|} \\
& +a_{9} \max \left\{\left|d\left(x_{2 k+1}, x_{2 k+1}\right)\right|,\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|\right\}
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent to x and y,therefore by taking limit as $k \rightarrow$ ∞ we get $\left|l_{1}\right| \leq 0$. Which is contradiction,so $|d(x, S(x, y))|=0 \Rightarrow x=S(x, y)$. Similarly we can prove that $y=S(x, y)$.Also we can prove that $x=T(x, y)$ and $y=T(y, x)$.Thus (x, y) is a common coupled fixed point of S and T.
We now show that S and T have a unique common coupled fixed point.For this,assume that $\left(x_{1}, y_{1}\right) \in X \times X$ is a second common coupled fixed point of S and T.Then

$$
\begin{aligned}
& d\left(x, x_{1}\right)=d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right) \\
& \preceq a_{1} \frac{d\left(x, x_{1}\right)+d\left(y, y_{1}\right)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d\left(x_{1}, T\left(x_{1}, y_{1}\right)\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{3} \frac{d\left(x_{1}, S(x, y)\right) d\left(x, T\left(x_{1}, y_{1}\right)\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{4} \frac{d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right) d\left(x, x_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{5} \frac{d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right) d\left(y, y_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{6} \frac{d\left(x_{1}, T\left(x_{1}, y_{1}\right)\right) d\left(y, y_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{7} \frac{d\left(x_{1}, S(x, y)\right) d\left(x, x_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{8} \frac{d\left(x_{1}, S(x, y)\right) d\left(y, y_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)} \\
& +a_{9} \max \left\{d\left(x_{1}, S(x, y)\right), d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right)\right\} \\
& =a_{1} \frac{d\left(x, x_{1}\right)+d\left(y, y_{1}\right)}{2} \\
& +a_{2} \frac{\left.d(x, x) d\left(x_{1}, x_{1}\right)\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{3} \frac{d\left(x_{1}, x\right) d\left(x, x_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{4} \frac{d\left(x, x_{1}\right) d\left(x, x_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{5} \frac{d\left(x, x_{1}\right) d\left(y, y_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{6} \frac{d\left(x_{1}, x_{1}\right) d\left(y, y_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{7} \frac{d\left(x_{1}, x\right) d\left(x, x_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{8} \frac{d\left(x_{1}, x\right) d\left(y, y_{1}\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)} \\
& +a_{9} \max \left\{d\left(x_{1}, x\right), d\left(x, x_{1}\right)\right\}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|d\left(x, x_{1}\right)\right| & \leq a_{1} \frac{\left|d\left(x, x_{1}\right)\right|+\left|d\left(y, y_{1}\right)\right|}{2} \\
& +a_{3} \frac{\left|d\left(x_{1}, x\right)\right|\left|d\left(x, x_{1}\right)\right|}{\left|1+2 d\left(x, x_{1}\right)+d\left(y, y_{1}\right)\right|} \\
& +a_{4} \frac{\left|d\left(x, x_{1}\right)\right|\left|d\left(x, x_{1}\right)\right|}{\left|1+2 d\left(x, x_{1}\right)+d\left(y, y_{1}\right)\right|} \\
& +a_{5} \frac{\left|d\left(x, x_{1}\right)\right|\left|d\left(y, y_{1}\right)\right|}{\left|1+2 d\left(x, x_{1}\right)+d\left(y, y_{1}\right)\right|} \\
& +a_{7} \frac{\left|d\left(x_{1}, x\right)\right|\left|d\left(x, x_{1}\right)\right|}{\left|1+2 d\left(x, x_{1}\right)+d\left(y, y_{1}\right)\right|} \\
& +a_{8} \frac{\left|d\left(x_{1}, x\right)\right|\left|d\left(y, y_{1}\right)\right|}{\left|1+2 d\left(x, x_{1}\right)+d\left(y, y_{1}\right)\right|} \\
& +a_{9}\left|d\left(x_{1}, x\right)\right|
\end{aligned}
$$

Since $\left|1+2 d\left(x, x_{1}\right)+d\left(y, y_{1}\right)\right|>\mid d\left(x, x_{1}\right)$,so we get

$$
\begin{array}{r}
\left(1-\frac{a_{1}}{2}-a_{3}-a_{4}-a_{5}-a_{7}-a_{8}-a_{9}\right)\left|d\left(x, x_{1}\right)\right| \leq a_{1} \frac{\left|d\left(y, y_{1}\right)\right|}{2} \\
\left|d\left(x, x_{1}\right)\right| \leq \frac{a_{1}}{\left(2-a_{1}-2 a_{3}-2 a_{4}-2 a_{5}-2 a_{7}-2 a_{8}-2 a_{9}\right)}\left|d\left(y, y_{1}\right)\right| \tag{5}
\end{array}
$$

Similarly,

$$
\begin{equation*}
\left|d\left(y, y_{1}\right)\right| \leq \frac{a_{1}}{\left(2-a_{1}-2 a_{3}-2 a_{4}-2 a_{5}-2 a_{7}-2 a_{8}-2 a_{9}\right)}\left|d\left(x, x_{1}\right)\right| \tag{6}
\end{equation*}
$$

Adding (5) and (6), we get

$$
\begin{gathered}
\left|d\left(x, x_{1}\right)\right|+\left|d\left(y, y_{1}\right)\right| \leq \frac{a_{1}}{\left(2-a_{1}-2 a_{3}-2 a_{4}-2 a_{5}-2 a_{7}-2 a_{8}-2 a_{9}\right)} \\
{\left[\left|\left|d\left(y, y_{1}\right)\right|+\left|d\left(x, x_{1}\right)\right|\right]\right.} \\
{\left[1-\frac{a_{1}}{\left(2-a_{1}-2 a_{3}-2 a_{4}-2 a_{5}-2 a_{7}-2 a_{8}-2 a_{9}\right)}\right]\left[\left|d\left(y, y_{1}\right)\right|+\left|d\left(x, x_{1}\right)\right|\right] \leq 0} \\
\frac{2\left(1-a_{1}-a_{3}-a_{4}-a_{5}-a_{7}-a_{8}-a_{9}\right)}{\left(2-a_{1}-2 a_{3}-2 a_{4}-2 a_{5}-2 a_{7}-2 a_{8}-2 a_{9}\right)}\left[\left|d\left(y, y_{1}\right)\right|+\left|d\left(x, x_{1}\right)\right|\right] \leq 0 .
\end{gathered}
$$

Since $a_{1}+a_{3}+a_{4}+a_{5}+a_{7}+a_{8}+a_{9}<1$.
Therefore

$$
\frac{2\left(1-a_{1}-a_{3}-a_{4}-a_{5}-a_{7}-a_{8}-a_{9}\right)}{\left(2-a_{1}-2 a_{3}-2 a_{4}-2 a_{5}-2 a_{7}-2 a_{8}-2 a_{9}\right)}>0
$$

Hence
$\left[\left|d\left(y, y_{1}\right)\right|+\left|d\left(x, x_{1}\right)\right|\right] \leq 0$.
Which implies that $x=x_{1}$ and $y=y_{1} \Rightarrow(x, y)=\left(x_{1}, y_{1}\right)$.
Thus, S and T have unique common coupled fixed point.

Corollary 3.2. Let (X, d) be a complete complex valued metric space, and let the mappings $T: X \times X \rightarrow X$ satisfy

$$
\begin{aligned}
d(T(x, y), T(u, v) & \preceq a_{1} \frac{d(x, u)+d(y, v)}{2} \\
& +a_{2} \frac{d(x, T(x, y)) d(u, T(u, v))}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{3} \frac{d(u, T(x, y)) d(x, T(u, v))}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{4} \frac{d(T(x, y), T(u, v)) d(x, u)}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{5} \frac{d(T(x, y), T(u, v)) d(y, v)}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{6} \frac{d(u, T(u, v)) d(y, v)}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{7} \frac{d(u, T(x, y)) d(x, u)}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{8} \frac{d(u, T(x, y)) d(y, v)}{1+d(x, u)+d(y, v)+d(u, T(x, y))} \\
& +a_{9} \operatorname{max\{ d(u,T(x,y)),d(T(x,y),T(u,v))\} }
\end{aligned}
$$

for all $x, y, u, v \in X$ and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9} \geq 0$ with $a_{1}+a_{2}+a_{3}+$ $a_{4}+a_{5}+a_{6}+a_{9}<1$ and $a_{1}+a_{3}+a_{4}+a_{5}+a_{7}+a_{8}+a_{9}<1$. Then S and T have a unique common coupled fixed point.

Proof. The proof follows from Theorem 3.1 by taking $S=T$.
Theorem 3.3. Let (X, d) be a complete complex valued metric space, and let the mappings $S, T: X \times X \rightarrow X$ satisfy

$$
\begin{aligned}
d(S(x, y), T(u, v) & \preceq a_{1} \frac{d(x, u)+d(y, v)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d(S(x, y), T(u, v))}{1+d(x, u)+d(y, v)+d(u, S(x, y))+d(x, T(u, v))} \\
& +a_{3} \max \{d(u, S(x, y)), d(S(x, y), T(u, v))\}
\end{aligned}
$$

for all $x, y, u, v \in X$ and $a_{1}, a_{2}, a_{3} \geq 0$ with $a_{1}+a_{2}+a_{3}<1$. Then S and T have a unique common coupled fixed point.

Proof. Take two arbitrary points x_{0}, y_{0} in X.Define $x_{2 k+1}=S\left(x_{2 k}, y_{2 k}\right), y_{2 k+1}=$ $S\left(y_{2 k}, x_{2 k}\right), x_{2 k+2}=T\left(x_{2 k+1}, y_{2 k+1}\right)$ and $y_{2 k+2}=T\left(y_{2 k+1}, x_{2 k+1}\right)$ for $k=$
$0,1,2 \ldots$ Then,

$$
\begin{aligned}
d\left(x_{2 k+1}, x_{2 k+2}\right) & =d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) \\
& \preceq a_{1} \frac{d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d\left(x_{2 k}, S\left(x_{2 k}, y_{2 k}\right)\right) d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right)+d\left(x_{2 k}, T\left(x_{2 k+1}, y_{2 k+1}\right)\right)} \\
& +a_{3} \max \left\{d\left(x_{2 k+1}, S\left(x_{2 k}, y_{2 k}\right)\right), d\left(S\left(x_{2 k}, y_{2 k}\right), T\left(x_{2 k+1}, y_{2 k+1}\right)\right)\right\} \\
& =a_{1} \frac{d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d\left(x_{2 k}, x_{2 k+1}\right) d\left(x_{2 k+1}, x_{2 k+2}\right)}{1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k+1}, x_{2 k+1}\right)+d\left(x_{2 k}, x_{2 k+2}\right)} \\
& +a_{3} \max \left\{d\left(x_{2 k+1}, x_{2 k+1}\right), d\left(x_{2 k+1}, x_{2 k+2}\right)\right\} \\
\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right| & \leq a_{1} \frac{\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|+\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|}{2} \\
& +a_{2} \frac{\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|}{\left|1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k}, x_{2 k+2}\right)\right|} \\
& +a_{3}\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|
\end{aligned}
$$

Since $\left|1+d\left(x_{2 k}, x_{2 k+1}\right)+d\left(y_{2 k}, y_{2 k+1}\right)+d\left(x_{2 k}, x_{2 k+2}\right)\right|>\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|$,so we get
$\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right| \leq \frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|+\frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|$

Similarly we can prove

$$
\begin{equation*}
\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right| \leq \frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|+\frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(x_{2 k}, x_{2 k+1}\right)\right| \tag{8}
\end{equation*}
$$

Adding (7) and (8), we get

$$
\begin{aligned}
\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|+\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right| & \leq \frac{a_{1}}{\left(1-a_{2}-a_{3}\right)}\left[\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|+\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|\right] \\
& =k\left[\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|+\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|\right]
\end{aligned}
$$

where $k=\frac{a_{1}}{\left(1-a_{2}-a_{3}\right)}<1$. Also

$$
\begin{aligned}
d\left(x_{2 k+2}, x_{2 k+3}\right) & =d\left(S\left(x_{2 k+1}, y_{2 k+1}\right), T\left(x_{2 k+2}, y_{2 k+2}\right)\right) \\
& \preceq a_{1} \frac{d\left(x_{2 k+1}, x_{2 k+2}\right)+d\left(y_{2 k+1}, y_{2 k+2}\right)}{2} \\
& +a_{2} \frac{d\left(x_{2 k+1}, S\left(x_{2 k+1}, y_{2 k+1}\right)\right) d\left(S\left(x_{2 k+1}, y_{2 k+1}\right), T\left(x_{2 k+2}, y_{2 k+2}\right)\right)}{1+d\left(x_{2 k+1}, x_{2 k+2}\right)+d\left(y_{2 k+1}, y_{2 k+2}\right)+d\left(x_{2 k+2}, x_{2 k+2}\right)+d\left(x_{2 k+1}, T\left(x_{2 k+2}, y_{2 k+2}\right)\right)} \\
& +a_{3} \max \left\{d\left(x_{2 k+2}, S\left(x_{2 k+1}, y_{2 k+1}\right)\right), d\left(S\left(x_{2 k+1}, y_{2 k+1}\right), T\left(x_{2 k+2}, y_{2 k+2}\right)\right)\right\} \\
& =a_{1} \frac{d\left(x_{2 k+1}, x_{2 k+2}\right)+d\left(y_{2 k+1}, y_{2 k+2}\right)}{2} \\
& +a_{2} \frac{d\left(x_{2 k+1}, x_{2 k+2}\right) d\left(x_{2 k+2}, x_{2 k+3}\right)}{1+d\left(x_{2 k+1}, x_{2 k+2}\right)+d\left(y_{2 k+1}, y_{2 k+2}\right)+d\left(x_{2 k+2}, x_{2 k+2}\right)+d\left(x_{2 k+1}, x_{2 k+3}\right)} \\
& +a_{3} \operatorname{max\{ d(x_{2k+2},x_{2k+2}),d(x_{2k+2},x_{2k+3})\} } \\
\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right| & \leq a_{1} \frac{\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|+\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right|}{2} \\
& +a_{2} \frac{\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right|}{\left|1+d\left(x_{2 k+1}, x_{2 k+2}\right)+d\left(y_{2 k+1}, y_{2 k+2}\right)+d\left(x_{2 k+1}, x_{2 k+3}\right)\right|} \\
& +a_{3} d\left(x_{2 k+2}, x_{2 k+3}\right) \mid
\end{aligned}
$$

Since $\left|1+d\left(x_{2 k+1}, x_{2 k+2}\right)+d\left(y_{2 k+1}, y_{2 k+2}\right)+d\left(x_{2 k+1}, x_{2 k+3}\right)\right|>\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|$,so we get

$$
\begin{equation*}
\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right| \leq \frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|+\frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right| \tag{9}
\end{equation*}
$$

$\left|d\left(y_{2 k+2}, y_{2 k+3}\right)\right| \leq \frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(y_{2 k+1}, y_{2 k+2}\right)\right|+\frac{a_{1}}{2\left(1-a_{2}-a_{3}\right)}\left|d\left(x_{2 k+1}, x_{2 k+2}\right)\right|$

Adding (9) and (10), we get

$$
\begin{aligned}
\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right|+\left|d\left(y_{2 k+2}, y_{2 k+3}\right)\right| & \leq \frac{a_{1}}{\left(1-a_{2}-a_{3}\right)}\left[\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right|+\left|d\left(y_{2 k+2}, y_{2 k+3}\right)\right|\right] \\
& =k\left[\left|d\left(x_{2 k+2}, x_{2 k+3}\right)\right|+\left|d\left(y_{2 k+2}, y_{2 k+3}\right)\right|\right] \\
& =k^{2}\left[\left|d\left(y_{2 k}, y_{2 k+1}\right)\right|+\left|d\left(x_{2 k}, x_{2 k+1}\right)\right|\right]
\end{aligned}
$$

Continuing the same process, we get

$$
\begin{aligned}
\left|d\left(x_{n}, x_{n+1}\right)\right|+\left|d\left(y_{n}, y_{n+1}\right)\right| & \leq k\left[\left|d\left(x_{n-1}, x_{n}\right)\right|+\left|d\left(y_{n-1}, y_{n}\right)\right|\right] \\
& \leq k^{2}\left[\left|d\left(x_{n-2}, x_{n-1}\right)\right|+\left|d\left(y_{n-2}, y_{n-1}\right)\right|\right] \\
& \leq \cdots \leq k^{n}\left[\left|d\left(x_{0}, x_{1}\right)\right|+\left|d\left(y_{0}, y_{1}\right)\right|\right]
\end{aligned}
$$

If $\left|d\left(x_{n}, x_{n+1}\right)\right|+\left|d\left(y_{n}, y_{n+1}\right)\right|=\delta_{n}$. Then $\delta_{n} \leq k \delta_{n-1} \leq k^{2} \delta_{n-2} \leq \cdots \leq k^{n} \delta_{0}$.
Without loss of generality, we take $m>n$.Since $0 \leq k<1$, so we get

$$
\begin{aligned}
\left|d\left(x_{n}, x_{m}\right)\right|+\left|d\left(y_{n}, y_{m}\right)\right| & \leq\left|d\left(x_{n}, x_{n+1}\right)\right|+\left|d\left(y_{n}, y_{n+1}\right)\right| \\
& +\left|d\left(x_{n+1}, x_{n+2}\right)\right|+\left|d\left(y_{n+1}, y_{n+2}\right)\right|+\ldots \\
& +\left|d\left(x_{m-1}, x_{m}\right)\right|+\left|d\left(y_{m-1}, y_{m}\right)\right| \\
& \leq\left[k^{n} \delta_{0}+k^{n+1} \delta_{0}+\cdots+k^{m-1} \delta_{0}\right] \\
& \leq k^{n}\left[1+k+k^{2}+\ldots\right] \delta_{0} \\
& =\frac{k^{n}}{1-k} \delta_{0} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

This implies that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequence in X. Since X is complete, there exists $x, y \in X$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$. We now show that $x=S(x, y)$ and $y=S(y, x)$.We suppose on the contrary that $x \neq S(x, y)$ and $y \neq S(y, x)$ so that $0 \prec d(x, S(x, y))=l_{1}$ and $0 \prec d(y, S(y, x))=l_{2}$;we would then have

$$
\begin{aligned}
l_{1}=d(x, S(x, y)) & \preceq d\left(x, x_{2 k+2}\right)+d\left(x_{2 k+2}, S(x, y)\right) \\
& \preceq d\left(x, x_{2 k+2}\right)+d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right) \\
& \preceq d\left(x, x_{2 k+2}\right)+a_{1} \frac{d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right)}{1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)+d\left(x, T\left(x_{2 k+1}, y_{2 k+1}\right)\right)} \\
& +a_{3} \max \left\{d\left(x_{2 k+1}, S(x, y)\right), d\left(S(x, y), T\left(x_{2 k+1}, y_{2 k+1}\right)\right)\right\} \\
& =d\left(x, x_{2 k+2}\right)+a_{1} \frac{d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d\left(S(x, y), x_{2 k+2}\right)}{\left.1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)+d\left(x, x_{2 k+2}\right)\right)} \\
& +a_{3} \max \left\{d\left(x_{2 k+1}, S(x, y)\right), d\left(S(x, y), x_{2 k+2}\right)\right\}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \left|l_{1}\right|=|d(x, S(x, y))| \leq\left|d\left(x, x_{2 k+2}\right)\right|+a_{1} \frac{\left|d\left(x, x_{2 k+1}\right)\right|+\left|d\left(y, y_{2 k+1}\right)\right|}{2} \\
& +a_{2} \frac{|d(x, S(x, y))|\left|d\left(S(x, y), x_{2 k+2}\right)\right|}{\left|1+d\left(x, x_{2 k+1}\right)+d\left(y, y_{2 k+1}\right)+d\left(x_{2 k+1}, S(x, y)\right)+d\left(x, x_{2 k+2}\right)\right|} \\
& +a_{3} \max \left\{\left|d\left(x_{2 k+1}, S(x, y)\right)\right|,\left|d\left(S(x, y), x_{2 k+2}\right)\right|\right\}
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent to x and y,therefore by taking limit as $k \rightarrow \infty$ we get

$$
|d(x, S(x, y))|\left(1-a_{2}-a_{3}\right) \leq 0
$$

Since $a_{1}+a_{2}+a_{3}<1$.
Therefore,

$$
1-a_{2}-a_{3}>0
$$

Hence

$$
\left|l_{1}\right|=|d(x, S(x, y))| \leq 0
$$

Which is contradiction,so $|d(x, S(x, y))|=0 \Rightarrow x=S(x, y)$.
Similarly we can prove that $y=S(y, x)$.Also we can prove that $x=T(x, y)$ and $y=T(y, x)$.Thus (x, y) is a common coupled fixed point of S and T.
We now show that S and T have a unique common coupled fixed point.For this,assume that $\left(x_{1}, y_{1}\right) \in X \times X$ is a second common coupled fixed point of S and T.Then

$$
\begin{aligned}
d\left(x, x_{1}\right) & =d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right) \\
& \preceq a_{1} \frac{d\left(x, x_{1}\right)+d\left(y, y_{1}\right)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right)}{1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, S(x, y)\right)+d\left(x, T\left(x_{1}, y_{1}\right)\right)} \\
& +a_{3} \max \left\{d\left(x_{1}, S(x, y)\right), d\left(S(x, y), T\left(x_{1}, y_{1}\right)\right)\right\} \\
& =a_{1} \frac{d\left(x, x_{1}\right)+d\left(y, y_{1}\right)}{2} \\
& +a_{2} \frac{d(x, x) d\left(x,, x_{1}\right)}{\left.1+d\left(x, x_{1}\right)+d\left(y, y_{1}\right)+d\left(x_{1}, x\right)+d\left(x, x_{1}\right)\right)} \\
& +a_{3} \max \left\{d\left(x_{1}, x\right), d\left(x, x_{1}\right)\right\}
\end{aligned}
$$

Thus

$$
\left|d\left(x, x_{1}\right)\right| \leq a_{1} \frac{\left|d\left(x, x_{1}\right)\right|+\left|d\left(y, y_{1}\right)\right|}{2}+a_{3}\left|d\left(x, x_{1}\right)\right|
$$

Therefore,

$$
\begin{align*}
\left|d\left(x, x_{1}\right)\right|\left(1-\frac{a_{1}}{2}-a_{3}\right) & \leq \frac{a_{1}}{2}\left|d\left(y, y_{1}\right)\right| \\
\left|d\left(x, x_{1}\right)\right| & \leq \frac{a_{1}}{2-2 a_{3}-a_{1}}\left|d\left(y, y_{1}\right)\right| \tag{11}
\end{align*}
$$

Similarly,we can prove that

$$
\begin{equation*}
\left|d\left(y, y_{1}\right)\right| \leq \frac{a_{1}}{2-2 a_{3}-a_{1}}\left|d\left(x, x_{1}\right)\right| \tag{12}
\end{equation*}
$$

Adding (11) and (12), we get

$$
\begin{aligned}
\left|d\left(x, x_{1}\right)\right|+\left|d\left(y, y_{1}\right)\right| & \leq \frac{a_{1}}{2-2 a_{3}-a_{1}}\left[\left|d\left(x, x_{1}\right)\right|+\left|d\left(y, y_{1}\right)\right|\right] \\
\left(1-\frac{a_{1}}{2-2 a_{3}-a_{1}}\right)\left[\left|d\left(x, x_{1}\right)\right|+\left|d\left(y, y_{1}\right)\right|\right] & \leq 0 .
\end{aligned}
$$

which is a contradiction because $a_{1}+a_{2}+a_{3}<1$.Thus, we get $x_{1}=x$ and $y_{1}=y$,which proves the uniqueness of common coupled fixed point of S and T.

Corollary 3.4. Let (X, d) be a complete complex valued metric space, and let the mappings $S: X \times X \rightarrow X$ satisfy

$$
\begin{aligned}
d(S(x, y), S(u, v) & \preceq a_{1} \frac{d(x, u)+d(y, v)}{2} \\
& +a_{2} \frac{d(x, S(x, y)) d(S(x, y), S(u, v))}{1+d(x, u)+d(y, v)+d(u, S(x, y))+d(x, S(u, v))} \\
& +a_{3} \max \{d(u, S(x, y)), d(S(x, y), S(u, v))\}
\end{aligned}
$$

for all $x, y, u, v \in X$ and $a_{1}, a_{2}, a_{3} \geq 0$ with $a_{1}+a_{2}+a_{3}<1$. Then S has a unique common coupled fixed point.
Proof. The proof follows from Theorem 3.3 by taking $T=S$.
Example 3.5. Suppose $X=[0,1]$. Defined the function $d: X \times X \rightarrow \mathbb{C}$ by $d(x, y)=i|x-y|, \forall x, y \in X$.Clearly (X, d) is complex valued metric space.If We define two mappings $S, T: X \times X \rightarrow X$, as $S(x, y)=\frac{x+y}{4}, T(x, y)=\frac{x+y}{3}$ for each $x, y \in X$. Then it can be proved simply that the maps S and T satisfy the condition of Theorem 3.1 with $a_{1}=\frac{1}{7}, a_{2}=\frac{1}{6}, a_{3}=\frac{1}{14}, a_{4}=\frac{1}{15}, a_{5}=\frac{1}{17}, a_{6}=$ $\frac{1}{16}, a_{7}=\frac{1}{18}, a_{8}=\frac{1}{19}, a_{9}=\frac{1}{26}$.Hence $(0,0)$ is a unique common coupled fixed point of S and T.

References

[1] Marwan Amin Kutbi,Akbar Azam,Jamshaid Ahmad,and Cristina Some Common Coupled fixed point results for generalized contraction in complex valued metric spaces,J.of Applied Mathematics Vol.2013,Article ID 352927, 10 pages.
[2] A. Azam B. Fisher and M. Khan Common fixed point theorems in complex valued metric spaces ,Numer.Funct.Anal.Optim.32(3),(2011) 243-253.
[3] F. Rouzkard,M. Imdad Some common fixed point theorems on complex valued metric spaces,Comput.Math.Appl.64(6) (2012)1866-1874.
[4] W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J.Inequal.Appl. 84 (2012).
[5] C.Klin-eam,and C.Suanoom,Some common fixed point theorems for generalized-contractive-type mappings on complex-valued metric spaces,Abstr.Appl.Anal.(2013) ID 604215.
[6] A.A,Mukheirmer,Some common fixed point theorems in complex valued b-metric spaces,The Scientific World Journal Vol. 2014 (2014) Article ID 587825,6 pages.
[7] K.P.R.Rao, P.R.Swamy and J.R.Prasad, A common fixed point theorem in complex valued b-metric spaces,Bulletin of Mathematics and Statistics Research,1(1)(2013).
[8] R.K.Verma and H.K.Pathak, Common fixed point theorems using property (E.A) in complex valued metric space,Thai.J.Math.,Vol.11,No.2(2013),347355.
[9] Naval Singh,Deepak Singh,Anil Badal and Vishal Joshi,Fixed point theorems in complex valued metric spaces,J.of the Egyptian Mathematical Soc.(2016)24,402-409.
[10] T.G.Bhaskar, and V.LaxikanthanFixed point theorem in partially ordered cone metric spaces and applications,Nonlinear Analysis,TMA,65(2006),825832.
[11] S.M.Kang,M.Kumar,P.Kumar,and S.KumarCoupled fixed point theorems in complex valued metric spaces,In.Journal of Math.Analysis,Vol.7,(2013),no.46,2269-2277.
[12] Savitri,and N.Hooda A common coupled fixed point theorem in complex valued metric space,In.Journal of Computer Applications (09758887),Vol.109(2015), no.4,January 2015.
[13] M.Sarwar et al.Common coupled fixed point theorems satisfying rational type contractive conditions in b-metric spaces,Springerplus(2016),DOI 10.1186/s40064-016-1849-6.

