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Abstract

In this paper, we study the existence of coincidence points
and generalized common fixed point theorem for three self
mappings in cone metric spaces and relaxing the completeness
of the space. This improves the results of K. Purdhvi[1].
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1 Introduction and preliminaries

Ordered Banach spaces, normal cones and topical functions have applica-
tions in optimization theory. This motivate research in ordered linear metric
spaces (see, e.g. [7],[8]). In 2007, cone metric space was introduced by Huang
and Zhang [6] who generalized metric space into cone metric space replac-
ing the set of real numbers by an ordered Banach space and obtained some
fixed point theorems in this cone metric space. Later on, many authors are
inspired with this cone metric space and studied Huang and Zhang [6] fixed
point theorems and extended this idea to different contractive conditions
(see, e.g. [1-4,8]). Recently K. Prudhvi [1] obtained a Common Fixed Point
Result in Cone Metric Spaces for three self maps in cone metric spaces and
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relaxing the completeness conditions. The aim of this paper, is to study the
existence of coincidence points and generalized common fixed point theorem
for three self-maps in cone metric spaces, which is an extension of the results
of K. Prudhvi[1] who proved fixed point theorems for three self-mappings
without assuming commutative and completeness conditions with in cone
metric spaces. We need the following definitions and results, consistent
with [1,3,6], in the sequel.

Definition 1.1. Let E be a real Banach spaces and P a subset of E. The
set P is called a cone if and only if:
(a). P is closed, non-empty and P 6= {0};
(b). a, b ∈ R, x, y ∈ P implies ax+ by ∈ P ;
(c). P ∩ −P = {0}.

Definition 1.2. Let P be a cone in a Banach space E, define partial ordering
′ ≤′ with respect to P by x ≤ y if and only if y−x ∈ P. We shall write x < y
to indicate x ≤ y but x 6= y while x� y will stand for y − x ∈ intP, where
intP denotes the interior of the set P. This cone P is called an order cone.

Definition 1.3. Let E be a Banach space and P ⊂ E be an order cone.
The order cone P is called normal if there exists L > 0 such that for all
x, y ∈ E,

0 6 x 6 y implies ‖x‖6 L‖y‖.

The least positive number L satisfies the above inequality is called the normal
constant of P .

Definition 1.4. Let X be a non-empty set of E. Suppose that the map
d : X ×X → E satisfies:
(a) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is clear that the concept of a cone metric space is more general than
that of a metric space.

Example 1.1. [6] Let E = R2, P = {(x, y) ∈ E such that: x, y ≥ 0} ⊂
R2, X = R and d : X ×X → E such that

d(x, y) = (|x− y|, α|x− y|),

where α ≥ 0 is a constant. Then (X, d) is a metric space.
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Clearly, this example shows that cone metric spaces generalize metric
spaces.

Definition 1.5. Let (X, d) be a cone metric space. We say that {xn} is a
Cauchy sequence if for every c in E with c � 0, there is a natural number
N such that for all n,m > N, d(xn, xm)� c.

It is shown in [6] that a convergent sequence in a cone metric space (X, d)
is a Cauchy sequence.

Definition 1.6. Let (X, d) be a metric space. We say that {xn} is con-
vergent sequence if for any c � 0 there is an N such that for all n > N,
d(xn, x)� c, for some fixed x in X. We denote this xn → x (as n→∞).
The space (X, d) is called a complete cone metric space if every Cauchy
sequence is convergent ([6]).

Definition 1.7. [2] Let f, g : X → X be mappings. If w = f(z) = g(z) for
some z ∈ X, then z is called a coincidence point of f and g, and w is called
a point of coincidence of f and g.

Definition 1.8. [4] The mappings f, g : X → X are said to be weakly
compatible if for every x ∈ X, holds:

f(g(x)) = g(f(x)) whenever f(x) = g(x).

Lemma 1.2. Let X be a non-empty and the mappings f, g and h have a
unique point of coincidence point w in X. If (f, g) and (g, h) are weakly
compatible self-maps of X, then f, g and h have a unique common fixed
point.

2 Main results

In this section, we obtain coincidence points and generalized common fixed
point theorem for three self-maps in cone metric spaces.
We adopted the technique which is used in [4].
Let (X, d) be a cone metric space and f, g and h be self-mappings of X such
that f(X)∪ g(X) ⊆ h(X). Suppose x0 ∈ X and x1 ∈ X is chosen such that
hx1 = fx0 and x2 ∈ X is chosen such that hx2 = gx1. Continuing in this
way, the sequence hxn such that

y2n = hx2n+1 = fx2n,
y2n+1 = hx2n+2 = gx2n+1, n = 0, 1, 2, ....
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is called a (f, g)-self sequence with initial point x0.

We start with a proposition that will be required in the sequel.

Proposition 2.1. Let (X, d) be a cone metric space, and P be a normal
cone with normal constant L. Suppose that the mappings f, g and h are
three self-maps of X such that f(X)

⋃
g(X) ⊆ h(X) satisfying

d(fx, gy) ≤ αd(hx, hy)+βmax{d(hx, fx), d(hy, gy)}+γ[d(hx, gy)+d(hy, fx)]
(1)

for all x, y ∈ X, where α, β, γ ∈ [0, 1) and α+ β + 2γ < 1.
Then every (f −g) sequence with initial point x0 ∈ X is a Cauchy sequence.

Proof. Suppose hxn is a (f − g) sequence with initial point x0.
Assume hxn 6= hxn+1 for all n ∈ N , then for all n.
Using (1) we have

d(y2n, y2n+1) = d(hx2n+1, hx2n+2)

= d(fx2n, gx2n+1)

≤ αd(hx2n, hx2n+1)

+ βmax{d(hx2n, fx2n+1), d(hx2n+1, gx2n+1)}
+ γ[d(hx2n, gx2n+1) + d(hx2n+1, fx2n+2)]

≤ αd(hx2n, hx2n+1)

+ βmax{d(hx2n, hx2n+1), d(hx2n+1, hx2n+2)}
+ γ[d(hx2n, hx2n+2) + d(hx2n+1, hx2n+1)]

≤ αd(hx2n, hx2n+1) + βM1

+ γ[d(hx2n, hx2n+2) + d(hx2n+1, hx2n+1)]

Where M1 = max{d(hx2n, hx2n+1), d(hx2n+1, hx2n+2)}
Now two cases arises,
Case I: If suppose that M1 = d(hx2n, hx2n+1) we have,

d(y2n, y2n+1) ≤ αd(hx2n, hx2n+1) + βd(hx2n, hx2n+1)

+ γ[d(hx2n, hx2n+2) + d(hx2n+1, hx2n+1)]

≤ (α+ β)d(hx2n, hx2n+1)

+ γ[d(hx2n, hx2n+1) + d(hx2n+1, hx2n+1)]

≤ (α+ β + γ)d(hx2n, hx2n+1) + γ(hx2n+1, hx2n+2)

≤ (α+ β + γ)d(y2n−1, y2n) + γ(y2n, y2n+1)

d(y2n, y2n+1) ≤
(α+ β + γ)

1− γ
d(y2n, y2n−1)
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Let λ1 = (α+β+γ)
(1−γ) , where λ1 < 1.

Hence
d(y2n, y2n+1) ≤ λ1d(y2n, y2n−1).

Case II: If suppose that M1 = d(hx2n+1, hx2n+2).

d(y2n, y2n+1) ≤ αd(hx2n, hx2n+1) + βd(hx2n+1, hx2n+2)

+ γ[d(hx2n, hx2n+2) + d(hx2n+1, hx2n+1)]

≤ αd(hx2n, hx2n+1) + (β + γ)d(hx2n+1, hx2n+2)

+ γd(hx2n, hx2n+2)

≤ αd(hx2n, hx2n+1) + (β + γ)d(hx2n+1, hx2n+2)

+ γd(hx2n, hx2n+1)

≤ (α+ γ)d(hx2n, hx2n+1) + (β + γ)d(hx2n+1, hx2n+2)

≤ (α+ γ)d(hx2n−1, hx2n) + (β + γ)d(hx2n, hx2n+1)

d(y2n, y2n+1) ≤
(α+ γ)

1− (β + γ)
d(hx2n, hx2n−1)

Let λ2 = (α+γ)
1−(β+γ) , where λ2 < 1.

Hence
d(y2n, y2n+1) ≤ λ2d(y2n, y2n−1).

Two cases shows that

d(y2n, y2n+1) ≤ λd(y2n, y2n−1) (2)

where, λ = λ1 = λ2.
Similarly, it can be shown that

d(y2n+1, y2n+2) ≤ λd(y2n, y2n+1).

Therefore for all n,

d(yn+1, yn+2) ≤ λd(yn, yn+1) ≤ λ2d(yn−1, yn) ≤ ..... ≤ λn+1d(y0, y1)

Now for any m > n

d(yn, ym) ≤ λd(yn, yn+1) ≤ λ2d(yn+1, yn+2) ≤ ..... ≤ λm−1d(y0, ym)

≤ (λn + λn+1 + λn+2 + .....+ λm−1)d(y1, y0)

d(yn, ym) ≤ λn

1− λ
d(y1, y0).
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From (1.2), we have

‖d(yn, ym)‖≤ λn

1− λ
‖d(y1, y0)‖.

Since λ < 1, λn

1−λ → 0 as n→∞.

Which implies that

d(yn, ym)→ 0 as n,m→∞.

Hence yn is a Cauchy sequence, where yn = hxn.

Here, we further improve Proposition 2.1 as follows.

Theorem 2.2. Let (X,d) be a cone metric space, and P be a normal cone
with normal constant K. Suppose that the mappings f, g and h are three
self-maps of X such that f(X) ∪ g(X) ⊆ h(X) satisfying

d(fx, gy) ≤ αd(hx, hy)+βmax{d(hx, fx), d(hy, gy)}+γ[d(hx, gy)+d(hy, fx)]
(3)

for all x, y ∈ X, where α, β, γ ∈ [0, 1) and α+ β + 2γ < 1.
If f(X) ∪ g(X) or h(X) is a complete subsequence of X, then f, g and h
have unique point of coincidence. Moreover, if (f,h) and (g,h) are weakly
compatible, then f, g and h have a unique common fixed point.

Proof. Since h(X) is complete subspace of X. And since, by the proposition
(2.1) a (f−g) sequence (hxn) with the initial point x0 is a Cauchy sequence,
there exists u, v ∈ X such that hxn → v = hu.
The same argument holds if f(X) ∪ g(X) is a complete subsequence of X
with v ∈ f(X) ∪ g(X).
From (3) and triangle inequality

d(hu, fu) = d(hu, hx2n + d(hx2n, fu))

= d(hu, hx2n) + d(fu, gx2n−1)

≤ d(v, hx2n) + αd(hu, hx2n−1)

+ βmax{d(hu, fu), d(hx2n−1, gx2n−1)}
+ γ[d(hu, gx2n−1) + d(hx2n−1, fu)]

d(hu, fu) ≤ d(v, hx2n) + αd(hu, hx2n−1)

+ βM1 + γ[d(hu, gx2n−1) + d(hx2n−1, fu)]

Where M1 = max{d(hu, fu), d(hx2n−1, gx2n−1)}
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Now two cases arises,
Case I: If suppose that M1 = d(hu, fu) we have,

d(hu, fu) ≤ d(v, hx2n) + αd(hu, hx2n−1) + βd(hu, fu)

+ γ[d(hu, gx2n−1) + d(hx2n−1, fu)]

≤ d(v, hx2n) + αd(v, hx2n−1) + βd(hu, fu)

+ γ[d(v, hx2n) + d(hx2n−1, v) + d(hu, fu)]

≤ (1 + γ)d(v, hx2n) + (α+ γ)d(v, hx2n−1) + (β + γ)d(hu, fu)

≤ 1 + γ

1− (β + γ)
d(v, hx2n) +

α+ γ

1− (β + γ)
d(v, hx2n−1)

d(hu, fu) ≤ λ1d(v, hx2n) + λ2d(v, hx2n−1).

Let λ1 = 1+γ
1−(β+γ) and λ2 = α+γ

1−(β+γ) .

Which from (1.2), implies that

‖d(hu, fu)‖ ≤ L{λ1‖d(v, hx2n)‖+ λ2‖d(v, hx2n−1)‖}.

Case II: If suppose that M1 = d(hx2n−1, gx2n−1)

d(hu, fu) ≤ d(v, hx2n) + αd(hu, hx2n−1) + βd(hx2n−1, gx2n−1)

+ γ[d(hu, gx2n−1) + d(hx2n−1, fu)]

≤ d(v, hx2n) + αd(v, hx2n−1) + β[d(hxn−1, hu) + d(hu, gx2n−1)]

+ γ[d(hu, hx2n) + d(hx2n−1, hu) + d(hu, fu)]

≤ d(v, hx2n) + αd(v, hx2n−1) + β[d(hxn−1, v) + d(v, gx2n)]

+ γ[d(v, hx2n) + d(hx2n−1, v) + d(hu, fu)]

≤ (1 + β + γ)d(v, hx2n) + (α+ β + γ)d(v, hx2n−1) + γd(hu, fu)

d(hu, fu) ≤ 1 + β + γ

1− γ
d(v, hx2n) +

α+ β + γ

1− γ
d(v, hx2n−1).

Let λ1 = 1+β+γ
1−γ and λ2 = α+β+γ

1−γ .

Which from (1.2) implies that

‖d(hu, fu)‖ ≤ L{λ1‖d(v, hx2n)‖+ λ2‖d(v, hx2n−1)‖}.

Now the right hand side of the above approaches to zero as n→ 0.
Hence,

‖d(hu, fu)‖ = 0 and fu = hu(= v). (3)

Similarly, by using the inequality
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d(hu, gu) ≤ d(hu, hx2n+1) + d(hx2n+1, gu).

We can show that

hu = gu(= v).

Thus, v = hu = fu = gu and hence we conclude that v is a point of
coincidence of f , g and h.
Now we show that the point of coincidence is unique.
Assume that there is another point of coincidence v in X such that

v∗ = fu∗ = gu∗ = hu∗ for some u∗ ∈ X.

It is easy to see that using (3) that

d(v, v∗) = d(fu, gu∗)

≤ αd(hu, hu∗) + βmax[d(hu, fu), d(hu∗, gu∗)]

+ γ[d(hu, gu∗) + d(hu∗, fu)]

≤ αd(hu, hu∗) + βM1 + γ[d(hu, gu∗) + d(hu∗, fu)].

Now two cases arises,
Where M1 = max[d(hu, fu), d(hu∗, gu∗)].

Case I: If suppose that M1 = d(hu, fu) we have,

d(v, v∗) ≤ αd(hu, hu∗) + βd(hu, fu) + γ[d(hu, gu∗) + d(hu∗, fu)]

≤ αd(v, v∗) + βd(v, v) + γ[d(u, u∗) + d(u∗, u)]

≤ 2γ

1− α
d(u, u∗)

d(v, v∗) ≤ bd(u, u∗).

Case II: If suppose that M1 = d(hu∗, gu∗) we have,

d(v, v∗) ≤ αd(hu, hu∗) + βd(hu∗, gu∗) + γ[d(hu, gu∗) + d(hu∗, fu)]

≤ αd(v, v∗) + βd(v∗, v∗) + γ[d(u, u∗) + d(u∗, u)]

≤ 2γ

1− α
d(u, u∗)

d(v, v∗) ≤ bd(u, u∗).

Putting b = 2γ
1−α < 1.

Hence two cases shows that

d(v, v∗) ≤ bd(u, u∗).
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Since α+ 2γ < 1, then v = v∗.
Since (f, g) and (g, h) are weakly compatible by assumption v is the unique
point of coincidence of f, g and h, then by the Lemma (1.2) we get that v
is the unique common fixed point of f, g and h.

Remark 2.3. If we choose h = Ix is an identity map in the above Theorem
2.2.,then we deduce the following Theorem.

Theorem 2.4. Let (X,d) be a cone metric space, and P be a normal cone
with normal constant K. Suppose that the mappings f and g are two self-
maps of X satisfying

d(fx, gy) ≤ αd(x, y) + βmax[d(x, fx), d(y, gy)] + γ[d(x, gy) + d(y, fx)] (4)

for all x, y ∈ X, where α, β, γ ∈ [0, 1) and α+ β + 2γ < 1.
If f(X) or g(X), where is a complete subspace of X, then f and g have a
unique point of coincidence. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Example 2.5. Let X = {1, 2, 3}, E = R2 and P = {(x, y) ∈ E/x, y ≥ 0}.
Define d, g : X ×X → E as follows:

d(x, y) =


(0, 0) if x = y

(79 , 7) if x 6= y x, y ∈ X − {2}
(1, 9) if x 6= y x, y ∈ X − {3}
(13 , 3) if x 6= y x, y ∈ X − {1}

and g(x) =

{
2 if x 6= 2

1 if x = 2

And now Define a constant mappings h, f : X → X by hx = fx = 1, for all
x ∈ X. Then

d(fx, gy) =

{
(0, 0) if y 6= 2

(79 , 7) if y = 2.

and

αd(hx, hy) +βmax{d(hx, fx), d(hy, gy)}+γ[d(hx, gy) +d(hy, fx)] = (79 , 7).
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if y = 2, α = 0 = γ, β = 7
9 .

It follows that all conditions of Theorem 2.2 are satisfied for α = 0 = γ, β =
7
9 and so f, g and h have unique point of coincidence and a unique common
fixed point 1.

Conclusion 2.6. Our results generalized proposition 3.1 and theorems 3.2
and 3.4 in [1].
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