A study of unified results involving a product of generalized Legendre's function, a

 general class of polynomials, Aleph-function with the multivariable I-functionF.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

ABSTRACT

In this paper an integral involving general class of polynomials, Legendre's associated function, Aleph-function and I-function of several variables has been evaluated and an expansion formula for product of the general class of polynomials, Legendre's associated function, Aleph-function and Ifunction of several variables has been established with the application of this integral. The result established in this paper are of general nature and hence encompass several particular cases.

Keywords :Multivariable I-function, Aleph-function, Legendre's associated function, general class of polynomials, expansion formula,multivariable H -function

2010 Mathematics Subject Classification. 33C60, 82C31

1.Introduction and preliminaries.

In this paper an integral involving general class of polynomials, Legendre's associated function, Aleph-function and Ifunction of several variablesdefined by Prasad [3] has been evaluated and an expansion formula for product of the general class of polynomials, Legendre's associated function. We will study the case concerning the multivariable Hfunction
The Aleph- function, introduced by Südland [6] et al, however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral :
$\aleph(z)=\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}\left(\begin{array}{l|c}\mathrm{z} & \begin{array}{c}\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}\end{array}\end{array}\right)=\frac{1}{2 \pi \omega} \int_{L} \Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s) z^{-s} \mathrm{~d} s$
for all z different to 0 and

$$
\begin{equation*}
\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{N} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=N+1}^{P_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=M+1}^{Q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{1.2}
\end{equation*}
$$

With $|\arg z|<\frac{1}{2} \pi \Omega \quad$ where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0, i=1, \cdots, r$

For convergence conditions and other details of Aleph-function, see Südland et al [6]. The serie representation of Aleph-function is given by Chaurasia et al [1].
$\aleph_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(z)=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r}^{M,(s)}}{B_{G} g!} z^{-s}$

With $s=\eta_{G, g}=\frac{b_{G}+g}{B_{G}}, P_{i}<Q_{i},|z|<1$ and $\Omega_{P_{i}, Q_{i}, c_{i} ; r}^{M, N}(s)$ is given in (1.2)

The generalized polynomials defined by Srivastava [4], is given in the following manner :
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left[y_{1}, \cdots, y_{s}\right]=\sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!}$
$A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right] y_{1}^{K_{1}} \cdots y_{s}^{K_{s}}$

Where M_{1}, \cdots, M_{s} are arbitrary positive integers and the coefficients $A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$ are arbitrary constants, real or complex. In the present paper, we use the following notation
$a_{1}=\frac{\left(-N_{1}\right)_{M_{1} K_{1}}}{K_{1}!} \cdots \frac{\left(-N_{s}\right)_{M_{s} K_{s}}}{K_{s}!} A\left[N_{1}, K_{1} ; \cdots ; N_{s}, K_{s}\right]$

The multivariable I-function is defined in term of multiple Mellin-Barnes type integral :

$$
\left.\begin{array}{l}
\left(\mathrm{a}_{r j} ; \alpha_{r j}^{\prime}, \cdots, \alpha_{r j}^{(r)}\right)_{1, p_{r}}:\left(a_{j}^{\prime}, \alpha_{j}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{j}^{(r)}, \alpha_{j}^{(r)}\right)_{1, p^{(r)}} \\
\left(\mathrm{b}_{r j} ; \beta_{r j}^{\prime}, \cdots, \beta_{r j}^{(r)}\right)_{1, q_{r}}:\left(b_{j}^{\prime}, \beta_{j}^{\prime}\right)_{1, q^{\prime}} ; \cdots ;\left(b_{j}^{(r)}, \beta_{j}^{(r)}\right)_{1, q^{(r)}} \tag{1.7}
\end{array}\right)
$$

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [3]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H -function given by as :
$\left|\arg z_{i}\right|<\frac{1}{2} \Omega_{i} \pi$, where

$$
\begin{align*}
& \Omega_{i}=\sum_{k=1}^{n^{(i)}} \alpha_{k}^{(i)}-\sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_{k}^{(i)}+\sum_{k=1}^{m^{(i)}} \beta_{k}^{(i)}-\sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_{k}^{(i)}+\left(\sum_{k=1}^{n_{2}} \alpha_{2 k}^{(i)}-\sum_{k=n_{2}+1}^{p_{2}} \alpha_{2 k}^{(i)}\right)+ \\
& +\left(\sum_{k=1}^{n_{r}} \alpha_{r k}^{(i)}-\sum_{k=n_{r}+1}^{p_{r}} \alpha_{r k}^{(i)}\right)-\left(\sum_{k=1}^{q_{2}} \beta_{2 k}^{(i)}+\sum_{k=1}^{q_{3}} \beta_{3 k}^{(i)}+\cdots+\sum_{k=1}^{q_{r}} \beta_{r k}^{(i)}\right) \tag{1.9}
\end{align*}
$$

where $i=1, \cdots, r$
The complex numbers z_{i} are not zero.Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form :
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|^{\gamma_{1}^{\prime}}, \cdots,\left|z_{r}\right|^{\gamma_{r}^{\prime}}\right), \max \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow 0$
$I\left(z_{1}, \cdots, z_{r}\right)=0\left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|^{\beta_{s}^{\prime}}\right), \min \left(\left|z_{1}\right|, \cdots,\left|z_{r}\right|\right) \rightarrow \infty$
where $k=1, \cdots, z: \alpha_{k}^{\prime}=\min \left[\operatorname{Re}\left(b_{j}^{(k)} / \beta_{j}^{(k)}\right)\right], j=1, \cdots, m_{k}$ and

$$
\beta_{k}^{\prime}=\max \left[\operatorname{Re}\left(\left(a_{j}^{(k)}-1\right) / \alpha_{j}^{(k)}\right)\right], j=1, \cdots, n_{k}
$$

We will use these following notations in this paper :
$U=p_{2}, q_{2} ; p_{3}, q_{3} ; \cdots ; p_{r-1}, q_{r-1} ; V=0, n_{2} ; 0, n_{3} ; \cdots ; 0, n_{s-1}$
$W=\left(p^{\prime}, q^{\prime}\right) ; \cdots ;\left(p^{(r)}, q^{(r)}\right) ; X=\left(m^{\prime}, n^{\prime}\right) ; \cdots ;\left(m^{(r)}, n^{(r)}\right)$
$A=\left(a_{2 k}, \alpha_{2 k}^{\prime}, \alpha_{2 k}^{\prime \prime}\right) ; \cdots ;\left(a_{(r-1) k}, \alpha^{\prime}{ }_{(r-1) k}, \alpha_{(r-1) k}^{\prime \prime}, \cdots, \alpha_{(r-1) k}^{(r-1)}\right)$
$B=\left(b_{2 k}, \beta_{2 k}^{\prime}, \beta_{2 k}^{\prime \prime}\right) ; \cdots ;\left(b_{(r-1) k}, \beta^{\prime}{ }_{(r-1) k}, \beta_{(r-1) k}^{\prime \prime}, \cdots, \beta_{(r-1) k}^{(r-1)}\right)$
$\mathfrak{A}=\left(a_{s k} ; \alpha^{\prime}{ }_{r k}, \alpha_{r k}^{\prime \prime}, \cdots, \alpha_{r k}^{r}\right): \mathfrak{B}=\left(b_{r k} ; \beta^{\prime}{ }_{r k}, \beta_{r k}^{\prime \prime}, \cdots, \beta_{r k}^{r}\right)$
$A^{\prime}=\left(a_{k}^{\prime}, \alpha_{k}^{\prime}\right)_{1, p^{\prime}} ; \cdots ;\left(a_{k}^{(r)}, \alpha_{k}^{(r)}\right)_{1, p^{(r)}} ; B^{\prime}=\left(b_{k}^{\prime}, \beta_{k}^{\prime}\right)_{1, q^{\prime}} ; \cdots ;\left(b_{k}^{(r)}, \beta_{k}^{(r)}\right)_{1, q^{(r)}}$
The multivariable I-function write :
$I\left(z_{1}, \cdots, z_{r}\right)=I_{U: p_{r}, q_{r} ; W}^{V ; 0, n_{r} ; X}\left(\begin{array}{c|c}\mathrm{z}_{1} & \mathrm{~A} ; \mathfrak{A} ; \mathrm{A}^{\prime} \\ \cdot & \\ \cdot & \\ \cdot & \mathrm{B} ; \mathfrak{B} ; \mathrm{B}^{\prime} \\ \mathrm{z}_{r} & \end{array}\right)$

2. Generalized Legendre's associated function

Formula 1

The following results are required in our investigation ([2],p.343, Eq(38); [2], p.340, Eq(26) and eq (27))
$\int_{-1}^{1}(1-x)^{\rho}(1+x)^{\sigma} P_{k-\frac{m-n}{2}}^{m, n}(x) \mathrm{d} x=\frac{2^{\rho+\sigma-\frac{m-n}{2}} \Gamma\left(\rho-\frac{m}{2}+1\right) \Gamma\left(\sigma+\frac{n}{2}+1\right)}{\Gamma(1-m) \Gamma\left(\rho+\sigma-\frac{m-n}{2}+2\right)}$
$\times{ }_{3} F_{2}\left(-k, n-m+k+1, \rho-\frac{m}{2}+1 ; 1-m, \rho-\sigma-\frac{m-n}{2}+2 ; 1\right)$
Provided that $\operatorname{Re}\left(\rho-\frac{m}{2}\right)>-1 ; \operatorname{Re}\left(\sigma+\frac{n}{2}\right)>-1$
Formula 2
$\int_{-1}^{1} P_{k-\frac{u-v}{2}}^{u, v}(x) P_{t-\frac{u-v}{2}}^{u, v}(x) \mathrm{d} x=\frac{2^{-u+v+1} k!\Gamma(k+v+1+1)}{(2 k-u+v+1) \Gamma(k-u+1) \Gamma(k-u+v+1)} \delta_{k, t}$

Where $\delta_{k, t}=1$ if $k=t, 0$ else. Provided $\operatorname{Re}(u)<1, \operatorname{Re}(v)>-1$

3. Main integral formula

$\int_{-1}^{1}(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} P_{k-\frac{u-v}{2}}^{u, v}(x) \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}\left(a_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i}, r} \\ \left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i}, r}\end{array}\right.\right)$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\binom{\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}}}{\dot{\mathrm{y}_{s}}(1-x)^{g_{s}}(1+x)^{w_{s}}} I\left(\begin{array}{c}\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\ \dot{\mathrm{~g}_{1}} \\ \mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}\end{array}\right) \mathrm{d} x$
$=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{l=0}^{\infty} a \frac{\left.(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, \eta_{G}, g}\right)}{B_{G}!} \frac{(-k)_{l} l^{v-u+k+1}}{l!\Gamma(1-u+l)} 2^{\rho-u+v+\sigma+(\mathfrak{g}+w) \eta_{G, g}+1} y^{\eta_{G, g}}$ $\prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} I_{U: p_{r}+2, q_{r}+1 ; W}^{V ; n_{r}+2 ; X}\left(\begin{array}{c}\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\ \cdot \\ \cdot \\ \mathrm{z}_{r} 2^{h_{r}+k_{r}}\end{array}\right) \mathrm{A} ;\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right)$,

Provided that

a) $\operatorname{Re}(u)>-1, \operatorname{Re}(v)<1$
b) $g, w>0 ; g_{i}, w_{i}>0, i=1, \cdots, s ; h_{i}, k_{i}>0, i=1, \cdots, r ; k, k-(u-v) / 2$ positive integer
c) $\operatorname{Re}\left[\rho-u+\mathfrak{g} \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-1$
d) $R e\left[\sigma+v+w \min _{1 \leqslant j \leqslant M} \frac{b_{j}}{B_{j}}+\sum_{i=1}^{r} h_{i} \min _{1 \leqslant j \leqslant m^{(i)}} \frac{b_{j}^{(i)}}{\beta_{j}^{(i)}}\right]>-1$
c) $\left|\arg z_{i}\right|<\frac{1}{2} \Omega_{i} \pi$, where Ω_{i} is defined by (1.9)
f) $|\arg y|<\frac{1}{2} \pi \Omega \quad$ Where $\Omega=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N} \alpha_{j}-c_{i}\left(\sum_{j=M+1}^{Q_{i}} \beta_{j i}+\sum_{j=N+1}^{P_{i}} \alpha_{j i}\right)>0$

Proof

To prove the formula(3.1), we express the general polynomials, the Aleph-function of one variable with the help of equation (1.5) and (1.3) respectively and the multivariable I-function defined by Prasad [3] in terms of Mellin-Barnes type contour integrals with the help of equation (1.7). Now interchanging the order of summation and integration (which permissible under the conditions stated), and then evaluate the inner x-integral by using the formula (2.1); we arrive at the desired result.

4. Expansion formula

In this section, we evaluate an expansion formula for product of the general class of polynomials, Legendre's associated function, Aleph-function and I-function of several variables. We have.

$$
\begin{aligned}
& (1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}
\end{array}\right.\right) \\
& S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\cdot \cdot \cdot \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) I\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\dot{\sim} \cdot \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right)
\end{aligned}
$$

$$
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, N}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a
$$

$$
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}
$$

$$
I_{U: p_{r}+2, q_{r}+1 ; W}^{V ; 0, n_{r}+2 ; X}\left(\begin{array}{c|c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} & \mathrm{~A} ;\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right) \\
\cdot & \cdot \\
\dot{\cdot} & \mathrm{B} ;
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), \mathfrak{A}: A^{\prime} \tag{4.1}\\
\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s} \dot{(}\left(g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), \mathfrak{B}: B^{\prime}
\end{array}\right)
$$

which holds true under the same conditions as needed in (3.1)

Proof

Let $f(x)=(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{l}\binom{\left(a_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{n+1, p_{i} ; r}}{\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}}\end{array}\right.\right.$
$S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\ \dot{\cdot} \cdot \\ \mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}\end{array}\right) I\left(\begin{array}{c}\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\ \dot{\sim} \cdot \\ \mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}\end{array}\right)=\sum_{k=0}^{\infty} c_{k} P_{k-\frac{u-v}{u},}(x)$

The equation (4.2) is valid since $f(x)$ is continuous and bounded variation in the interval $(-1,1)$. Now , multiplying both the sides of (4.2) by $P_{t-\frac{m-n}{2}}^{m, n}(x)$ and integrating with respect to x from -1 to 1 ; change the order of integration and summation (which is permissible) on the right,

$$
\begin{align*}
& \int_{-1}^{1}(1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}
\end{array}\right.\right) \\
& P_{t-\frac{u-v}{2}}^{u, v}(x) S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\cdots \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) I\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\cdots \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right) \mathrm{d} x \\
& =\sum_{k=0}^{\infty} c_{k} \int_{-1}^{1} P_{k-\frac{u-v}{2}}^{u, v}(x) P_{t-\frac{u-v}{2}}^{u, v}(x) \mathrm{d} x \tag{4.3}
\end{align*}
$$

using the orthogonality property for the generalized Legendre's associated function on the right (2.2) on the right-hand side and the result (3.1) on the left hand side of (4.3) ; we obtain

$$
\begin{aligned}
& c_{k}=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M,}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a \\
& \frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}} \\
& I_{U: p_{r}+2, q_{r}+1 ; W}^{V ; 0, n_{r}+2 ; X}\left(\begin{array}{c|c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot & \mathrm{~A} ;\left(-\sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right), \\
\dot{\cdot} & \mathrm{B} ; \\
\mathrm{z}_{r} 2^{2_{r}+k_{r}} & \mathrm{~B}
\end{array}\right.
\end{aligned}
$$

Now on substituing the value of c_{k} in (4.2), the result (4.1) follows.

5. Multivariable H -function

If $U=V=A=B=0$, the multivariable I-function defined by Prasad degenere in multivariable H -function defined by Srivastava et al [5]. We have the following result.

$$
\begin{aligned}
& (1-x)^{\rho-\frac{u}{2}}(1+x)^{\sigma+\frac{v}{2}} \aleph_{P_{i}, Q_{i}, c_{i} ; r^{\prime}}^{M, N}\left(y(1-x)^{\mathfrak{g}}(1+x)^{w} \left\lvert\, \begin{array}{c}
\left(\mathrm{a}_{j}, A_{j}\right)_{1, \mathfrak{n}},\left[c_{i}\left(a_{j i}, A_{j i}\right)\right]_{\mathfrak{n}+1, p_{i} ; r} \\
\left(\mathrm{~b}_{j}, B_{j}\right)_{1, m},\left[c_{i}\left(b_{j i}, B_{j i}\right)\right]_{m+1, q_{i} ; r}
\end{array}\right.\right) \\
& S_{N_{1}, \cdots, N_{s}}^{M_{1}, \cdots, M_{s}}\left(\begin{array}{c}
\mathrm{y}_{1}(1-x)^{g_{1}}(1+x)^{w_{1}} \\
\cdot \\
\mathrm{y}_{s}(1-x)^{g_{s}}(1+x)^{w_{s}}
\end{array}\right) H\left(\begin{array}{c}
\mathrm{z}_{1}(1-x)^{h_{1}}(1+x)^{k_{1}} \\
\dot{\cdot} \cdot \dot{+} \\
\mathrm{z}_{r}(1-x)^{h_{r}}(1+x)^{k_{r}}
\end{array}\right)
\end{aligned}
$$

$$
=\sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_{1}=0}^{\left[N_{1} / M_{1}\right]} \cdots \sum_{K_{s}=0}^{\left[N_{s} / M_{s}\right]} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(-)^{g} \Omega_{P_{i}, Q_{i}, c_{i}, r^{\prime}}^{M, N}\left(\eta_{G, g}\right)(-k)_{l} \Gamma(v-u+k+l+1)}{B_{G} g!} a
$$

$$
\frac{(2 k-u+v+1) \Gamma(k-u+1)}{k!\Gamma(k+v+1)} P_{k-\frac{u-v}{2}}^{u, v}(x) 2^{\rho+\sigma+(\mathfrak{g}+w) \eta_{G, g}} \prod_{j=1}^{s} y_{j}^{K_{j}} 2^{\left(g_{j}+w_{j}\right) K_{j}} y^{\eta_{G, g}}
$$

$$
H_{p_{r}+2, q_{r}+1 ; W}^{0, n_{r}+2 ; X}\left(\begin{array}{c}
\mathrm{z}_{1} 2^{h_{1}+k_{1}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r} 2^{h_{r}+k_{r}}
\end{array}\right)\left(\begin{array}{c}
\\
\left.\mathrm{F}^{2} \sigma-v-w \eta_{G, g}-\sum_{i=1}^{s} w_{i} K_{i}: k_{1}, \cdots, k_{r}\right), ~ \\
\cdots
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\left(-\rho-m-\mathfrak{g} \eta_{G, g}+u-\sum_{i=1}^{s} g_{i} K_{i}: h_{1}, \cdots, h_{r}\right), \mathfrak{A}: A^{\prime} \tag{5.1}\\
\left.\left(\mathrm{u}-\mathrm{v}-\rho-\sigma-m-(\mathfrak{g}+w) \eta_{G, g}-\sum_{i=1}^{s} \dot{(} g_{i}+w_{i}\right) K_{i}: h_{1}+k_{1}, \cdots, h_{r}+k_{r}\right), \mathfrak{B}: B^{\prime}
\end{array}\right)
$$

which holds true under the same conditions as needed in (3.1) with $U=V=A=B=0$

6. Conclusion

The I-function of several variables definef by Prasad [3] presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as, multivariable H function, defined by Srivastava et al [5].

REFERENCES

[1] Chaurasia V.B.L and Singh Y. New generalization of integral equations of fredholm type using Aleph-function Int. J. of Modern Math. Sci. 9(3), 2014, p 208-220.
[2] Meulendbeld, B. and Robin, L.; Nouveaux resultats aux functions de Legendre's generalisees, Nederl. Akad. Wetensch. Proc. Ser. A 64(1961), page 333-347
[3] Y.N. Prasad , Multivariable I-function, Vijnana Parishad Anusandhan Patrika 29 (1986) , page 231-237.
[4] Srivastava H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre polynomial, Pacific. J. Math. 177(1985), page183-191.
[5] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.
[6] Südland N.; Baumann, B. and Nonnenmacher T.F. , Open problem : who knows about the Aleph-functions? Fract. Calc. Appl. Anal., 1(4) (1998): 401-402.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

