# Estimation of Finite Population Variance using Auxiliary Information 

K. B. Panda, N. Sahoo<br>Utkal University, Vani Vihar, Odisha, India<br>Utkal University, Vani Vihar, Odisha, India


#### Abstract

This paper proposes a family of exponential estimators for estimating the finite population variance using auxiliary information in simple random sampling. Expressions for bias, mean squared error and its minimum values have been obtained. The comparisons have been made with the usual unbiased estimator, Isaki (J. Am. Stat. Assoc.78: 117-123, 1983), Kadilar and Cingi (Appl. Math. \& Comput., 173, 1047-1059), Upadhyaya and Singh (Vikram Math. J. 19, 14-17, 1999a) and Lone and Tailor (Pak. J. Stat. Oper.res. Vol.XI, No.2, pp 213-220, 2015). An empirical study is carried out to judge the merits of proposed estimator over the traditional estimators.


Keywords: Study variable, Auxiliary variable, Mean squared error, Bias, Simple random sampling.

## 1.Introduction

Consider a finite population $U=\left\{U_{1}, U_{2}, \ldots \ldots, U_{i}, \ldots, U_{N}\right\}$ consisting of $N$ units. Let $y$ and $x$ be the study variable and auxiliary variables with population means $\bar{Y}$ and $\bar{X}$ respectively. Let there be a sample of size $n$ drawn from this population using simple random sampling without replacement (SRSWOR). Let $s_{y}^{2}=$ $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} /(n-1) \quad$ and $s_{x}^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)$ be the sample variances and $\quad S_{y}^{2}=\sum_{i=1}^{N}\left(y_{i}-\bar{Y}\right)^{2} /(N-1) \quad$ and $\quad S_{x}^{2}=$ $\sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)^{2} /(N-1)$ the population variances of $y$ and $x$ respectively. Let $C_{y}=S_{y} / \bar{Y}$ and $C_{x}=S_{x} / \bar{X}$ be the coefficients of variation of $y$ and $x$ respectively, and $\rho_{y x}$ the coefficient of correlation between $y$ and $x$. We assume that all parameters of $x$ are known. It is also assumed that the population size $N$ is very large so that the finite population correction (FPC) term is ignored.

Let $\quad s_{y}^{2}=S_{y}^{2}\left(1+e_{0}\right), \quad s_{x}^{2}=S_{x}^{2}\left(1+e_{1}\right), \quad \bar{x}=$ $\bar{X}\left(1+e_{2}\right)$ such that $E\left(e_{0}\right)=E\left(e_{1}\right)=E\left(e_{2}\right)=0$, $E\left(e_{0}^{2}\right)=\frac{1}{n}\left(\lambda_{40}-1\right), E\left(e_{1}^{2}\right)=\frac{1}{n}\left(\lambda_{04}-1\right), E\left(e_{2}^{2}\right)=$ $\frac{1}{n} C_{x}^{2}, E\left(e_{0} e_{1}\right)=\frac{1}{n}\left(\lambda_{22}-1\right), E\left(e_{0} e_{2}\right)=\frac{1}{n} \lambda_{21} C_{x}$ and $E\left(e_{1} e_{2}\right)=\frac{1}{n} \lambda_{03} C_{x}$.
where $\lambda_{p q}=\frac{\mu_{p q}}{\mu_{20}^{p / 2} \mu_{02}^{q / 2}} \quad$ and $\quad \mu_{p q}=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\right.$ $\bar{Y})^{p}\left(x_{i}-\bar{X}\right)^{q} ;(p, q)$ being non negative integers.

## 2. Existing Estimators

The variance of the usual unbiased estimator $s_{y}^{2}\left(t_{0}\right)$ is given by

$$
\begin{equation*}
V\left(t_{0}\right)=\frac{1}{n} S_{y}^{4}\left(\lambda_{40}-1\right) \tag{2.1}
\end{equation*}
$$

Isaki (1983), suggested the following ratio estimator for estimating population variance $S_{y}^{2}$

$$
\begin{equation*}
t_{1}=s_{y}^{2}\left(\frac{S_{x}^{2}}{s_{x}^{2}}\right) \tag{2.2}
\end{equation*}
$$

Kadilar and Cingi (2006) considered the following ratio type estimators for $S_{y}^{2}$ as
$t_{2}=s_{y}^{2}\left(\frac{S_{x}^{2}-C_{x}}{s_{x}^{2}-C_{x}}\right)$,
$t_{3}=s_{y}^{2}\left(\frac{S_{x}^{2}-\beta_{2} \quad x}{s_{x}^{2}-\beta_{2} x}\right)$,
$t_{4}=s_{y}^{2}\left(\frac{S_{x}^{2} \beta_{2} x-C_{x}}{s_{x}^{2} \beta_{2} x-C_{x}}\right)$,
$t_{5}=s_{y}^{2}\left(\frac{C_{x} S_{x}^{2}-\beta_{2} x}{C_{x} s_{x}^{2}-\beta_{2} x}\right)$,

Upadhyaya and Singh (1999a) proposed ratio estimator for $S_{y}^{2}$ as
$t_{6}=s_{y}^{2}\left(\frac{S_{x}^{2}+\beta_{2} x}{s_{x}^{2}+\beta_{2} x}\right)$.
The mean squared error of the estimators $t_{i}(i=$ $1,2,3,4,5,6)$ up to the first degree of approximation are given as

$$
\left.\begin{array}{l}
\operatorname{MSE}\left(t_{i}\right)= \\
\frac{1}{n} S_{y}^{4}\left[\lambda_{40}-1+\delta_{i}^{2} \quad \lambda_{04}-1-2 \delta_{i}\right. \\
\lambda_{22}-1
\end{array}\right] .
$$

$$
\begin{equation*}
t_{7}=\left[W_{1} s_{y}^{2}\left(\frac{a S_{x}^{2}-b}{a s_{x}^{2}-b}\right)+W_{2} s_{y}^{2}\left(\frac{\theta \bar{x}-\varphi}{\theta \bar{X}-\varphi}\right)\right] \tag{2.5}
\end{equation*}
$$

Where $\left(W_{1}, W_{2}\right)$ are suitably chosen constant can be determined such that mean squared error of the estimator $t_{6}$ is minimum and $(a, b, \theta, \varphi)$ are either constants or functions of known parameters $C_{x}$, $\beta_{2}(x)$ and $\rho_{y x}$ of the auxiliary variate $x$.

The MSE of the estimator $t_{7}$ is given by

$$
\begin{align*}
& \operatorname{MSE}\left(t_{7}\right)=S_{y}^{4}\left[1+C W_{1}^{2}+D W_{2}^{2}+2 E W_{1} W_{2}-\right. \\
& \left.2 W_{1} F-2 W_{2} G\right] \tag{2.7}
\end{align*}
$$

where

$$
\begin{align*}
& C=1+3 M^{2} \frac{1}{n}\left(\lambda_{04}-1\right)+\frac{1}{n}\left(\lambda_{40}-1\right) \\
& -4 M \frac{1}{n}\left(\lambda_{22}-1\right) \\
& D=1+\frac{1}{n}\left(\lambda_{40}-1\right)+S^{2} \frac{1}{n} C_{x}^{2}+4 S \frac{1}{n} \lambda_{21} C_{x} \\
& E=1+2 \frac{s}{n} \lambda_{21} C_{x}-2 M \frac{1}{n}\left(\lambda_{22}-1\right)- \\
& M S \frac{1}{n} \lambda_{03} C_{x}+\frac{1}{n}\left(\lambda_{40}-1\right)+M^{2} \frac{1}{n}\left(\lambda_{04}-1\right)  \tag{2.8}\\
& F=1+M^{2} \frac{1}{n}\left(\lambda_{04}-1\right)-M \frac{1}{n}\left(\lambda_{22}-1\right)
\end{align*}
$$

where

$$
\delta_{i}= \begin{cases}1, & i=1  \tag{2.12}\\ S_{x}^{2} /\left(S_{x}^{2}-C_{x}\right), & i=2 \\ S_{x}^{2} /\left(S_{x}^{2}-\beta_{2}(x)\right), & i=3 \\ S_{x}^{2} \beta_{2}(x) /\left(S_{x}^{2} \beta_{2}(x)-C_{x}\right), & i=4 \\ S_{x}^{2} C_{x} /\left(S_{x}^{2} C_{x}-\beta_{2}(x)\right), & i=5 \\ S_{x}^{2} /\left(S_{x}^{2}+\beta_{2}(x)\right), & i=6\end{cases}
$$

$G=1+S \frac{1}{n} \lambda_{21} C_{x}$
and $\quad W_{1}(o p t)=.\frac{D F-E G}{C D-E^{2}}, W_{2}(o p t)=.\frac{C G-E F}{C D-E^{2}}$

So Min. $\operatorname{MSE}\left(t_{7}\right)=S_{y}^{4}\left[1-\frac{\left(D F^{2}+C G^{2}-2 E F G\right)}{C D-E^{2}}\right]$

Lone and Tailor (2015) suggested the following class of estimators for population variance $S_{y}^{2}$ as
where $K^{*}=\frac{\left(D F^{2}+C G^{2}-2 E F G\right)}{C D-E^{2}}$

## 3. Proposed Estimator

Motivated by Singh, et al. (2009a.), we propose the following estimator for estimating the population variance $S_{y}^{2}$ as
$t_{R e}=$
$\left[W_{1} s_{y}^{2}+W_{2}\left(\frac{\bar{X}-\bar{x}}{\bar{X}+\bar{x}}\right)\right] \exp \left[\frac{\gamma S_{x}^{2}-s_{x}^{2}}{\gamma S_{x}^{2}+s_{x}^{2}+2 \beta}\right]$
where $\gamma$ and $\beta$ are either real numbers or functions of the known parameters associated with an auxiliary attribute. $\left(W_{1}, W_{2}\right)$ are suitably chosen scalars to be properly determined for minimum mean square error (MSE) of suggested estimators and $W_{1}+W_{2} \neq 1$ (see Sharma \& Singh 2013a).

Expanding equation (3.1) in terms of e's up to the first order of approximation, we have,
$t_{R e}-S_{y}^{2}=W_{1} S_{y}^{2}+W_{1} S_{y}^{2} e_{0}+W_{2} \frac{e_{2}}{2}+W_{2} \frac{e_{2}^{2}}{4}-$
$W_{1} S_{y}^{2} \frac{\theta e_{1}}{2}-W_{1} S_{y}^{2} \frac{\theta e_{0} e_{1}}{2}+W_{2} \frac{\theta e_{1} e_{2}}{4}+W_{1} S_{y}^{2} \frac{3}{8} \theta^{2} e_{1}^{2}-$ $S_{y}^{2}$
where, $e_{0}$ and $e_{1}$ are defined earlier and

$$
\theta=\frac{\gamma S_{x}^{2}}{\gamma S_{x}^{2}+\beta}
$$

Now $B\left(t_{R e}\right)=E\left(t_{R e}-S_{y}^{2}\right)=\left(W_{1}-1\right) S_{y}^{2}+$ $W_{2} \frac{C_{x}^{2}}{4 n}-W_{1} S_{y}^{2} \frac{\theta}{2 n}\left(\lambda_{22}-1\right)+W_{2} \frac{\theta}{4 n} \lambda_{03} C_{x}+$

$$
\frac{3}{8} W_{1} S_{y}^{2} \frac{\theta^{2}}{n}\left(\lambda_{04}-1\right)
$$

(3.3)

Then $\operatorname{MSE}\left(t_{R e}\right)=S_{y}^{4}+W_{1}^{2} S_{y}^{4} A_{1}+W_{2}^{2} A_{2}+$ $2 W_{1} S_{y}^{4} A_{3}+2 W_{2} S_{y}^{2} A_{4}+2 W_{1} W_{2} S_{y}^{2} A_{5}$
where,
$A_{1}=1+\frac{1}{n}\left(\lambda_{40}-1\right)+\frac{\theta^{2}}{n}\left(\lambda_{04}-1\right)-\frac{2 \theta}{n}\left(\lambda_{22}-1\right)$
$A_{2}=\frac{C_{x}^{2}}{4 n}$
$A_{3}=-1+\frac{\theta}{2 n}\left(\lambda_{22}-1\right)-\frac{3 \theta^{2}}{8 n}\left(\lambda_{04}-1\right)$
$A_{4}=-\frac{C_{x}^{2}}{4 n}-\frac{\theta}{4 n} \lambda_{03} C_{x}$
$A_{5}=\frac{C_{x}^{2}}{4 n}-\frac{1}{2 n} \lambda_{21} C_{x}+\frac{\theta}{2 n} \lambda_{03} C_{x}$
Partially differentiating $\mathrm{eq}^{\mathrm{n}}$ (3.4) with respect to $W_{1}$ and $W_{2}$ and equating to zero, we get the optimum value of $W_{1}$ and $W_{2}$ as
$W_{1}($ opt. $)=\frac{A_{4} A_{5}-A_{2} A_{3}}{A_{1} A_{2}-A_{5}^{2}}$ and
$W_{2}(o p t)=.\frac{S_{y}^{2} A_{3} A_{5}-A_{1} A_{4}}{A_{1} A_{2}-A_{5}^{2}}$
Putting (3.5) in
(3.4), we get the optimum mean squared error of the estimator $t_{R e}$ as
$\operatorname{Min} . \operatorname{MSE}\left(t_{R e}\right)=$
$S_{y}^{4}\left[1+\frac{2 A_{3} A_{4} A_{5}-A_{2} A_{3}^{2}-A_{1} A_{4}^{2}}{A_{1} A_{2}-A_{5}^{2}}\right]$
$\operatorname{Min} . \operatorname{MSE}\left(t_{R e}\right)=S_{y}^{4}[1+R]$
where $\quad R=\frac{2 A_{3} A_{4} A_{5}-A_{2} A_{3}^{2}-A_{1} A_{4}^{2}}{A_{1} A_{2}-A_{5}^{2}}$, and $A_{1}$,
$A_{2}, A_{3}, A_{4}$ and $A_{5}$ defined earlier.
(iii) Kadilar and Cingi (2006) estimator $t_{2}$ if

$$
R<\frac{1}{n}\left[\left(\lambda_{40}-1\right)+\left(\frac{S_{x}^{2}}{S_{x}^{2}-C_{x}}\right)^{2}\left(\lambda_{04}-1\right)-\right.
$$

$\left.2\left(\frac{S_{x}^{2}}{S_{x}^{2}-C_{x}}\right)\left(\lambda_{22}-1\right)\right]-1$ (4.3)
(iv) Kadilar and Cingi (2006) estimator $t_{3}$ if
$R<\frac{1}{n}\left[\left(\lambda_{40}-1\right)+\left(\frac{S_{x}^{2}}{S_{x}^{2}-\beta_{2} x}\right)^{2}\left(\lambda_{04}-1\right)-\right.$ $\left.2\left(\frac{S_{x}^{2}}{S_{x}^{2}-\beta_{2} x}\right)\left(\lambda_{22}-1\right)\right]-1$
(4.4)
(v) Kadilar and Cingi (2006) estimator $t_{4}$ if
$R<\frac{1}{n}\left[\left(\lambda_{40}-1\right)+\left(\frac{S_{x}^{2} \beta_{2} x}{S_{x}^{2} \beta_{2} x-C_{x}}\right)^{2}\left(\lambda_{04}-\right.\right.$

1) $\left.-2\left(\frac{S_{x}^{2} \beta_{2} x}{S_{x}^{2} \beta_{2} x-C_{x}}\right)\left(\lambda_{22}-1\right)\right]-1$
(vi) Kadilar and Cingi (2006) estimator $t_{5}$ if
$R<\frac{1}{n}\left[\left(\lambda_{40}-1\right)+\left(\frac{S_{x}^{2} C_{x}}{S_{x}^{2} C_{x}-\beta_{2} x}\right)^{2}\left(\lambda_{04}-\right.\right.$
2) $\left.-2\left(\frac{S_{x}^{2} C_{x}}{S_{x}^{2} C_{x}-\beta_{2} x}\right)\left(\lambda_{22}-1\right)\right]-1$
(vii) Updhyaya and Singh (199a) estimator $t_{6}$ if
$R<\frac{1}{n}\left[\left(\lambda_{40}-1\right)+\left(\frac{S_{x}^{2}}{S_{x}^{2}+\beta_{2} x}\right)^{2}\left(\lambda_{04}-1\right)-\right.$ $\left.2\left(\frac{S_{x}^{2}}{S_{x}^{2}+\beta_{2} x}\right)\left(\lambda_{22}-1\right)\right]-1$
(4.7)
(viii) Lone and Tailor (2015) estimator $t_{7}$ if

$$
\begin{equation*}
R<-K^{*} \tag{4.8}
\end{equation*}
$$

## 5. Empirical study

To illustrate the performance of estimators $t_{R e i}$ and $\min .\left(t_{R e}\right)$ over the existing estimators, we consider a natural population from $[\operatorname{Singh}(2003)$, p. 1111-1112]. The description of population is given below.
$y$ : Amount (in \$000) of real estate farm loans in different state during 1997,
$x$ : Amount (in \$000) of non-real estate farm loans in different state during 1997.

Table 5.1

$$
\begin{aligned}
& \lambda_{40}=3.5822, \lambda_{04}=4.5247, \lambda_{22}=2.8411 \\
& \lambda_{21}=0.9387, \lambda_{03}=1.5936, \bar{Y}=555.43 \\
& \bar{X}=878.16, C_{x}=1.2351, C_{y}=1.0529, n=10
\end{aligned}
$$

## Table 5.2

Percent Relatives Efficiencies of $S_{y}^{2}, \quad t_{i}(i=$ $0,1,2,3,4,5,6)$ and $T_{i}(i=1,2,3)$ with respect to $S_{y}^{2}$

| Estimators | PRE |
| :---: | :---: |
| $t_{0}$ | 100 |
| $t_{1}$ | 156.0173 |
| $t_{2}$ | 156.0157 |
| $t_{3}$ | 156.0168 |
| $t_{4}$ | 156.0172 |
| $t_{5}$ | 156.0176 |
| $t_{6}$ | 156.0179 |
| $t_{7}$ | 163.8827 |
| $\boldsymbol{t}_{\boldsymbol{R e} \boldsymbol{1}}$ | $\mathbf{2 3 0 . 7 5 9 6}$ |
| $\boldsymbol{t}_{\boldsymbol{R e} 2}$ | $\mathbf{2 3 0 . 7 5 9 6}$ |
| $t_{\boldsymbol{R e} 3}$ | 226.3102 |

## 6. Conclusion

In table 5.2, it is observed that the proposed estimator is more efficient than the usual unbiased estimator, Isaki (J. Am. Stat. Assoc.78: 117-123, 1983), Kadilar and Cingi (Appl. Math. \& Comput., 173, 1047-1059), Upadhyaya and Singh (Vikram Math. J. 19, 14-17, 1999a) and Lone and Tailor (Pak. J. Stat. Oper.res. Vol.XI, No.2, pp 213-220, 2015).

## REFEREENCES

1. Isaki, C. T. (1983). Variance estimation using auxiliary information. J. Amer. Statist. Assoc. 78, 117-123.
2. Kadilar, C. and Cingi, H. (2006). Ratio estimators for the population in simple and stratified random sampling. Applied Maths. \& Comp., 173, 1047-1059.
3. S. Singh (2003). Advanced sampling theory with applications, Kluwer Academic Press.
4.Tailor, R. and Lone, H. A. (2015). A family of estimators for estimating population variance using
auxiliary information in sample survey. Pak. J. Stat. Oper. Res. Vol.XI, No.2, pp 213-220.
4. Upadhyaya, L. N. and Singh, H. P. (1999a). An estimator for finite population variance that utilizes the kurtosis of an auxiliary variable in sample survey. Vikram Math. J. 19, 14-17.
5. Singh, R., Chouhan, P., Sawan, N., Smarandache, F., (2009a). Improvement in estimating the population mean using exponential estimator in simple random sampling. Bulletin of Statistics \& Economics, Vol.3, A09, 13-18.
