# Estimation of Finite Population Variance using Auxiliary Information

K. B. Panda, N. Sahoo

Utkal University, Vani Vihar, Odisha, India Utkal University, Vani Vihar, Odisha, India

Abstract: This paper proposes a family of exponential estimators for estimating the finite population variance using auxiliary information in simple random sampling. Expressions for bias, mean squared error and its minimum values have been obtained. The comparisons have been made with the usual unbiased estimator, Isaki (J. Am. Stat. Assoc.78: 117-123, 1983), Kadilar and Cingi (Appl. Math. & Comput., 173, 1047-1059), Upadhyaya and Singh (Vikram Math. J. 19, 14-17, 1999a) and Lone and Tailor (Pak. J. Stat. Oper.res. Vol.XI, No.2, pp 213-220, 2015). An empirical study is carried out to judge the merits of proposed estimator over the traditional estimators.

**Keywords**: *Study variable, Auxiliary variable, Mean squared error, Bias, Simple random sampling.* 

## 1.Introduction

population Consider а finite  $U = \{U_1, U_2, \dots, U_i, \dots, U_N\}$  consisting of N units. Let y and x be the study variable and auxiliary variables with population means  $\overline{Y}$  and  $\overline{X}$ respectively. Let there be a sample of size n drawn from this population using simple random sampling without replacement (SRSWOR). Let  $s_v^2 =$  $\sum_{i=1}^{n} (y_i - \overline{y})^2 / (n-1)$ and  $s_x^2 = \sum_{i=1}^n (x_i - \bar{x})^2 / (n-1)$  be the sample variances and  $S_{y}^{2} = \sum_{i=1}^{N} (y_{i} - \bar{Y})^{2} / (N - 1)$  and  $S_{x}^{2} =$  $\sum_{i=1}^{N} (x_i - \bar{X})^2 / (N - 1)$  the population variances of y and x respectively. Let  $C_y = S_y/\overline{Y}$  and  $C_x = S_x/\overline{X}$ be the coefficients of variation of y and x respectively, and  $\rho_{yx}$  the coefficient of correlation between y and x. We assume that all parameters of xare known. It is also assumed that the population size N is very large so that the finite population correction (FPC) term is ignored.

Let 
$$s_y^2 = S_y^2(1+e_0)$$
,  $s_x^2 = S_x^2(1+e_1)$ ,  $\bar{x} = \bar{X}(1+e_2)$  such that  $E(e_0) = E(e_1) = E(e_2) = 0$ ,  
 $E(e_0^2) = \frac{1}{n}(\lambda_{40} - 1)$ ,  $E(e_1^2) = \frac{1}{n}(\lambda_{04} - 1)$ ,  $E(e_2^2) = \frac{1}{n}C_x^2$ ,  $E(e_0e_1) = \frac{1}{n}(\lambda_{22} - 1)$ ,  $E(e_0e_2) = \frac{1}{n}\lambda_{21}C_x$  and  
 $E(e_1e_2) = \frac{1}{n}\lambda_{03}C_x$ .

where  $\lambda_{pq} = \frac{\mu_{pq}}{\mu_{20}^{p/2} \mu_{02}^{q/2}}$  and  $\mu_{pq} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \overline{Y})^p (x_i - \overline{X})^q$ ; (p,q) being non negative integers.

### 2. Existing Estimators

The variance of the usual unbiased estimator  $s_y^2$  ( $t_0$ ) is given by

$$V(t_0) = \frac{1}{n} S_y^4 (\lambda_{40} - 1)$$
 (2.1)

Isaki (1983), suggested the following ratio estimator for estimating population variance  $S_v^2$ 

$$t_1 = s_y^2 \left( \frac{S_x^2}{s_x^2} \right)$$
(2.2)

Kadilar and Cingi (2006) considered the following ratio type estimators for  $S_{\nu}^2$  as

$$t_{2} = s_{y}^{2} \left( \frac{S_{x}^{2} - C_{x}}{s_{x}^{2} - C_{x}} \right),$$
(2.3) (2.3)

$$t_{3} = s_{y}^{2} \left( \frac{S_{x}^{2} - \beta_{2} \ x}{s_{x}^{2} - \beta_{2} \ x} \right),$$
(2.4)

$$t_{4} = s_{y}^{2} \left( \frac{S_{x}^{2} \beta_{2} \ x - C_{x}}{s_{x}^{2} \beta_{2} \ x - C_{x}} \right),$$
(2.5)

$$t_{5} = s_{y}^{2} \left( \frac{C_{x}S_{x}^{2} - \beta_{2} x}{C_{x}s_{x}^{2} - \beta_{2} x} \right),$$
(2.6)

Upadhyaya and Singh (1999a) proposed ratio estimator for  $S_y^2$  as

$$t_6 = s_y^2 \left( \frac{S_x^2 + \beta_2 \ x}{s_x^2 + \beta_2 \ x} \right).$$
(2.7)

The mean squared error of the estimators  $t_i$  (i = 1, 2, 3, 4, 5, 6) up to the first degree of approximation are given as

$$MSE(t_i) = \frac{1}{n} S_y^4 \left[ \lambda_{40} - 1 + \delta_i^2 \lambda_{04} - 1 - 2\delta_i \lambda_{22} - 1 \right]$$

(2.8)

where

$$\delta_{i} = \begin{cases} 1, & i = 1 \\ S_{x}^{2}/(S_{x}^{2} - C_{x}), & i = 2 \\ S_{x}^{2}/(S_{x}^{2} - \beta_{2}(x)), & i = 3 \\ S_{x}^{2}\beta_{2}(x)/(S_{x}^{2}\beta_{2}(x) - C_{x}), & i = 4 \\ S_{x}^{2}C_{x}/(S_{x}^{2}C_{x} - \beta_{2}(x)), & i = 5 \\ S_{x}^{2}/(S_{x}^{2} + \beta_{2}(x)), & i = 6 \end{cases}$$

(2.9)

Lone and Tailor (2015) suggested the following class of estimators for population variance  $S_y^2$  as

$$t_{7} = \left[ W_{1}s_{y}^{2} \left( \frac{aS_{x}^{2} - b}{as_{x}^{2} - b} \right) + W_{2}s_{y}^{2} \left( \frac{\theta \bar{x} - \phi}{\theta \bar{X} - \phi} \right) \right]$$

$$(2.10)$$

Where  $(W_1, W_2)$  are suitably chosen constant can be determined such that mean squared error of the estimator  $t_6$  is minimum and  $(a, b, \theta, \varphi)$  are either constants or functions of known parameters  $C_x$ ,  $\beta_2(x)$  and  $\rho_{yx}$  of the auxiliary variate x.

The MSE of the estimator  $t_7$  is given by

$$MSE(t_7) = S_y^4 [1 + CW_1^2 + DW_2^2 + 2EW_1W_2 - 2W_1F - 2W_2G]$$
(2.11)

where

$$C = 1 + 3M^{2} \frac{1}{n} (\lambda_{04} - 1) + \frac{1}{n} (\lambda_{40} - 1) - 4M \frac{1}{n} (\lambda_{22} - 1)$$
$$D = 1 + \frac{1}{n} (\lambda_{40} - 1) + S^{2} \frac{1}{n} C_{x}^{2} + 4S \frac{1}{n} \lambda_{21} C_{x}$$
$$E = 1 + 2\frac{s}{n} \lambda_{21} C_{x} - 2M \frac{1}{n} (\lambda_{22} - 1) - MS \frac{1}{n} \lambda_{03} C_{x} + \frac{1}{n} (\lambda_{40} - 1) + M^{2} \frac{1}{n} (\lambda_{04} - 1)$$
$$F = 1 + M^{2} \frac{1}{n} (\lambda_{04} - 1) - M \frac{1}{n} (\lambda_{22} - 1)$$
$$G = 1 + S \frac{1}{n} \lambda_{21} C_{x}$$

and 
$$W_1(opt.) = \frac{DF - EG}{CD - E^2}, W_2(opt.) = \frac{CG - EF}{CD - E^2}$$
  
(2.12)

So Min. 
$$MSE(t_7) = S_y^4 \left[ 1 - \frac{(DF^2 + CG^2 - 2EFG)}{CD - E^2} \right]$$
  
(2.13)

Min. 
$$MSE(t_7) = S_y^4 [1 - K^*]$$
 (2.14)  
where  $K^* = \frac{(DF^2 + CG^2 - 2EFG)}{CD - E^2}$ 

#### 3. Proposed Estimator

Motivated by Singh, et al. (2009a.), we propose the following estimator for estimating the population variance  $S_v^2$  as

$$t_{Re} = \begin{bmatrix} W_1 s_y^2 + W_2 \left(\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right) \end{bmatrix} \exp \left[\frac{\gamma \ S_x^2 - S_x^2}{\gamma \ S_x^2 + S_x^2 + 2\beta}\right]$$

(3.1)

where  $\gamma$  and  $\beta$  are either real numbers or functions of the known parameters associated with an auxiliary attribute. ( $W_1$ ,  $W_2$ ) are suitably chosen scalars to be properly determined for minimum mean square error (MSE) of suggested estimators and  $W_1 + W_2 \neq 1$ (see Sharma & Singh 2013a).

Expanding equation (3.1) in terms of e's up to the first order of approximation, we have,

$$\begin{split} t_{Re} &- S_y^2 = W_1 S_y^2 + W_1 S_y^2 e_0 + W_2 \frac{e_2}{2} + W_2 \frac{e_2^2}{4} - \\ W_1 S_y^2 \frac{\theta e_1}{2} - W_1 S_y^2 \frac{\theta e_0 e_1}{2} + W_2 \frac{\theta e_1 e_2}{4} + W_1 S_y^2 \frac{3}{8} \theta^2 e_1^2 - \\ S_y^2 \end{split}$$

(3.2)

where ,  $e_0$  and  $e_1$  are defined earlier and

$$\theta = \frac{\gamma S_x^2}{\gamma S_x^2 + \beta}$$

Now 
$$B(t_{Re}) = E(t_{Re} - S_y^2) = (W_1 - 1)S_y^2 + W_2 \frac{c_x^2}{4n} - W_1 S_y^2 \frac{\theta}{2n} (\lambda_{22} - 1) + W_2 \frac{\theta}{4n} \lambda_{03} C_x + \frac{3}{8} W_1 S_y^2 \frac{\theta^2}{n} (\lambda_{04} - 1)$$
  
(3.3)

Then  $MSE(t_{Re}) = S_y^4 + W_1^2 S_y^4 A_1 + W_2^2 A_2 + 2W_1 S_y^4 A_3 + 2W_2 S_y^2 A_4 + 2W_1 W_2 S_y^2 A_5$ 

where,

$$A_{1} = 1 + \frac{1}{n}(\lambda_{40} - 1) + \frac{\theta^{2}}{n}(\lambda_{04} - 1) - \frac{2\theta}{n}(\lambda_{22} - 1)$$

$$A_{2} = \frac{C_{x}^{2}}{4n}$$

$$A_{3} = -1 + \frac{\theta}{2n}(\lambda_{22} - 1) - \frac{3\theta^{2}}{8n}(\lambda_{04} - 1)$$

$$A_{4} = -\frac{C_{x}^{2}}{4n} - \frac{\theta}{4n}\lambda_{03}C_{x}$$

$$A_{5} = \frac{C_{x}^{2}}{4n} - \frac{1}{2n}\lambda_{21}C_{x} + \frac{\theta}{2n}\lambda_{03}C_{x}$$

Partially differentiating eq<sup>n</sup> (3.4) with respect to  $W_1$  and  $W_2$  and equating to zero, we get the optimum value of  $W_1$  and  $W_2$  as

$$W_1(opt.) = \frac{A_4 A_5 - A_2 A_3}{A_1 A_2 - A_5^2}$$
 and

$$W_2(opt.) = \frac{S_y^2 A_3 A_5 - A_1 A_4}{A_1 A_2 - A_5^2}$$

(3.5) Putting (3.5) in (3.4), we get the optimum mean squared error of the estimator  $t_{Re}$  as

Min. 
$$MSE(t_{Re}) =$$
  
 $S_{y}^{4} \left[ 1 + \frac{2A_{3}A_{4}A_{5} - A_{2}A_{3}^{2} - A_{1}A_{4}^{2}}{A_{1}A_{2} - A_{5}^{2}} \right]$ 
(3.6)

Min. 
$$MSE(t_{Re}) = S_y^4 [1 + R]$$
  
(3.7)

where 
$$R = \frac{2A_3A_4A_5 - A_2A_3^2 - A_1A_4^2}{A_1A_2 - A_5^2}$$
, and  $A_1$ ,

 $A_2, A_3, A_4$  and  $A_5$  defined earlier.

(3.4)

(iii) Kadilar and Cingi (2006) estimator  $t_2$  if

| Estimators                                                                                                                                         | Constants |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
|                                                                                                                                                    | γ         | β              |
| $t_{Re1} = \begin{bmatrix} W_1 s_y^2 \end{bmatrix}$                                                                                                | 1         | 1              |
| $+ W_2\left(\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right) exp\left[\frac{(S_x^2 - s_x^2)}{(S_x^2 + s_x^2) + 2}\right]$    |           |                |
| $t_{Re2} = \begin{bmatrix} W_1 s_y^2 \end{bmatrix}$                                                                                                | 1         | C <sub>x</sub> |
| $+ W_2\left(\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right) exp\left[\frac{(S_x^2 - s_x^2)}{(S_x^2 + s_x^2) + 2C_x}\right]$ |           |                |
| $t_{Re3} = \begin{bmatrix} W_1 s_y^2 \end{bmatrix}$                                                                                                | 1         | S <sub>x</sub> |
| $+ W_2\left(\frac{\overline{X} - \overline{x}}{\overline{X} + \overline{x}}\right) exp\left[\frac{(S_x^2 - s_x^2)}{(S_x^2 + s_x^2) + 2S_x}\right]$ |           |                |

## Table-1: Members of class of estimators $t_{Re}$

## 4. Efficiency comparison of the estimator $t_{Re}$ with the estimators $t_i$ (i = 0, 1, 2, 3, 4, 5, 6, 7)

From (2.1), (2.8), (2.14) and (3.7), it is observed that the proposed estimator would be more efficient than

(i) Usual unbiased estimator  $s_y^2(t_0)$  if

$$R < \frac{\lambda_{40} - 1}{n} - 1$$

(ii) Isaki (1983) estimator  $t_1$  if

$$R < \left(\frac{\lambda_{40} + \lambda_{04} - 2\lambda_{22}}{n}\right) - 1$$

$$(4.2)$$

$$R < \frac{1}{n} \left[ (\lambda_{40} - 1) + \left( \frac{S_x^2}{S_x^2 - C_x} \right)^2 (\lambda_{04} - 1) - 2 \left( \frac{S_x^2}{S_x^2 - C_x} \right) (\lambda_{22} - 1) \right] - 1$$

$$(4.3)$$

(iv) Kadilar and Cingi (2006) estimator  $t_3$  if

$$R < \frac{1}{n} \left[ (\lambda_{40} - 1) + \left( \frac{S_x^2}{S_x^2 - \beta_2 x} \right)^2 (\lambda_{04} - 1) - 2 \left( \frac{S_x^2}{S_x^2 - \beta_2 x} \right) (\lambda_{22} - 1) \right] - 1$$

$$(4.4)$$

(v) Kadilar and Cingi (2006) estimator  $t_4$  if

$$R < \frac{1}{n} \left[ \left( \lambda_{40} - 1 \right) + \left( \frac{S_x^2 \beta_2 x}{S_x^2 \beta_2 x - C_x} \right)^2 (\lambda_{04} - 1) - 2 \left( \frac{S_x^2 \beta_2 x}{S_x^2 \beta_2 x - C_x} \right) (\lambda_{22} - 1) \right] - 1$$

$$(4.5)$$

(vi) Kadilar and Cingi (2006) estimator  $t_5$  if

$$R < \frac{1}{n} \left[ (\lambda_{40} - 1) + \left( \frac{S_x^2 C_x}{S_x^2 C_x - \beta_2 x} \right)^2 (\lambda_{04} - 1) - 2 \left( \frac{S_x^2 C_x}{S_x^2 C_x - \beta_2 x} \right) (\lambda_{22} - 1) \right] - 1$$

$$(4.6)$$

(vii) Updhyaya and Singh (199a) estimator  $t_6\,$  if

$$R < \frac{1}{n} \left[ (\lambda_{40} - 1) + \left( \frac{S_x^2}{S_x^2 + \beta_2 x} \right)^2 (\lambda_{04} - 1) - 2 \left( \frac{S_x^2}{S_x^2 + \beta_2 x} \right) (\lambda_{22} - 1) \right] - 1$$

$$(4.7)$$

(viii) Lone and Tailor (2015) estimator  $t_7$  if

$$R < -K^*$$

(4.8)

## 5. Empirical study

To illustrate the performance of estimators  $t_{Rei}$  and min.( $t_{Re}$ ) over the existing estimators, we consider a natural population from [Singh(2003), p. 1111-1112]. The description of population is given below.

*y*: Amount (in \$000) of real estate farm loans in different state during 1997,

*x*: Amount (in \$000) of non-real estate farm loans in different state during 1997.

#### Table 5.1

$$\begin{split} \lambda_{40} &= 3.5822, \, \lambda_{04} = 4.5247, \, \lambda_{22} = 2.8411, \\ \lambda_{21} &= 0.9387, \, \lambda_{03} = 1.5936, \, \overline{Y} = 555.43, \end{split}$$

 $\overline{X} = 878.16, C_x = 1.2351, C_y = 1.0529, n = 10$ 

Table 5.2

Percent Relatives Efficiencies of  $S_y^2$ ,  $t_i(i = 0, 1, 2, 3, 4, 5, 6)$  and  $T_i(i = 1, 2, 3)$  with respect to  $S_y^2$ 

| Estimators       | PRE      |
|------------------|----------|
| $t_0$            | 100      |
| $t_1$            | 156.0173 |
| $t_2$            | 156.0157 |
| $t_3$            | 156.0168 |
| $t_4$            | 156.0172 |
| $t_5$            | 156.0176 |
| $t_6$            | 156.0179 |
| $t_7$            | 163.8827 |
| $t_{Re1}$        | 230.7596 |
| $t_{Re2}$        | 230.7596 |
| t <sub>Re3</sub> | 226.3102 |

#### 6. Conclusion

In table 5.2, it is observed that the proposed estimator is more efficient than the usual unbiased estimator, Isaki (J. Am. Stat. Assoc.78: 117-123, 1983), Kadilar and Cingi (Appl. Math. & Comput., 173, 1047-1059), Upadhyaya and Singh (Vikram Math. J. 19, 14-17, 1999a) and Lone and Tailor (Pak. J. Stat. Oper.res. Vol.XI, No.2, pp 213-220, 2015).

#### REFEREENCES

1. Isaki, C. T. (1983). Variance estimation using auxiliary information. J. Amer. Statist. Assoc. 78, 117-123.

2. Kadilar, C. and Cingi, H. (2006). Ratio estimators for the population in simple and stratified random sampling. Applied Maths. & Comp., 173, 1047-1059.

3. S. Singh (2003). Advanced sampling theory with applications, Kluwer Academic Press.

4.Tailor, R. and Lone, H. A. (2015). A family of estimators for estimating population variance using auxiliary information in sample survey. Pak. J. Stat. Oper. Res. Vol.XI, No.2, pp 213-220.

5. Upadhyaya, L. N. and Singh, H. P. (1999a). An estimator for finite population variance that utilizes the kurtosis of an auxiliary variable in sample survey. Vikram Math. J. 19, 14-17.

6. Singh, R., Chouhan, P., Sawan, N., Smarandache, F., (2009a). Improvement in estimating the population mean using exponential estimator in simple random sampling. Bulletin of Statistics & Economics, Vol.3, A09, 13-18.