s-g INVERSE OF s-NORMAL MATRICES

R.Vijayakumar
Assistant professor of Mathematics, Government Arts College(Autonomous), Kumbakonam - 612 002, India

Abstract

s - g inverse of a given square matrix is defined and its characterizations are obtained. s-hermitian idempotent matrix is defined. Properties of s - g inverse of an s-normal matrix are given.n

AMS classifications: 15A09, 15A57

Keywords:

s-normal, s-unitary, nilpotent, s-hermitian matrices.

1. Introduction:

Generalized inverse of a matrix was defined in [1] and its characterizations were obtained in [2]. Ann Lee initiated the study of secondary symmetric matrices in [3]. The concept of s-normal matrices was introduced and investigated in [4]. Some equivalent conditions on
s-normal matrices were proved in [5]. S-unitary matrices was defined and analyzed in [6]. In this paper we describe s -g inverse of a square matrix, as the unique solution of a certain set of equations. This $\mathrm{s}-\mathrm{g}$ inverse exists for particular kind of square matrices. We deal with s-g inverse of s-normal matrices. Let $\mathrm{C}_{\mathrm{n} \times \mathrm{n}}$ denote the space of $\mathrm{n} \times \mathrm{n}$ complex matrices.

If $A=\left(a_{i j}\right) \in C_{n \times n}$, then the secondary transpose of A, denoted by A^{s}, is defined as $A^{S}=\left(b_{i j}\right)$, where $b_{i j}=a_{n-j+1, n-i+1} . A^{\theta}$ denotes the conjugate secondary transpose of A. i.e. $A^{\theta}=\bar{A}^{S}$. Throughout this paper if $A \in C_{n \times n}$, then we assume that if $A \neq 0$, then $A A^{\theta} \neq 0$.

$$
\begin{equation*}
\text { (ie) } \mathrm{AA}^{\theta}=0 \Rightarrow \mathrm{~A}=0 \tag{1}
\end{equation*}
$$

\qquad
It is clear that the conjugate secondary transpose satisfies the following properties.

$$
\begin{gathered}
(\mathrm{A}+\mathrm{B})^{\theta}=\mathrm{A}^{\theta}+\mathrm{B}^{\theta} \\
(\lambda \mathrm{A})^{\theta}=\bar{\lambda} \mathrm{A}^{\theta} \\
(\mathrm{BA})^{\theta}=\mathrm{A}^{\theta} \mathrm{B}^{\theta} \\
\left(\mathrm{A}^{\theta}\right)^{\theta}=\mathrm{A}
\end{gathered}
$$

Since $\left(B A A^{\theta}-C A A^{\theta}\right)(B-C)^{\theta}=(B A-C A)(B A-C A)^{\theta}$, by using (1), we can prove that

$$
\begin{equation*}
\mathrm{BAA}^{\theta}=\mathrm{CAA}^{\theta} \Rightarrow \mathrm{BA}=\mathrm{CA} \tag{2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathrm{BA}^{\theta} \mathrm{A}=\mathrm{CA}^{\theta} \mathrm{A} \Rightarrow \mathrm{BA}^{\theta}=\mathrm{CA}^{\theta} \tag{3}
\end{equation*}
$$

\qquad

Definition 1.1:

A matrix $A \in C_{n \times n}$ is said to be secondary normal (s-normal) if $A A^{\theta}=A^{\theta} A$.

Example 1.2:

$$
\mathrm{A}=\left(\begin{array}{cc}
7+2 \mathrm{i} & 3 \\
2 & 7+5 \mathrm{i}
\end{array}\right) \text { is an s-normal matrix. }
$$

Definition 1.3:

A matrix $A \in C_{n \times n}$ is said to be secondary unitary (s-unitary) if $A A^{\theta}=A^{\theta} A=I$.

Example 1.4:

$$
\mathrm{A}=\left(\begin{array}{ll}
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right) \text { is an s-unitary matrix. }
$$

2. s-g inverse of a matrix

In this section, we find the condition for the existence of s -g inverse of a given square matrix.

Theorem 2.1:

The four equations

$$
\left.\begin{array}{rl}
\mathrm{AXA} & =\mathrm{A} \ldots \ldots \ldots .(4) \\
\mathrm{XAX} & =\mathrm{X} \ldots \ldots \ldots .(.5) \\
(\mathrm{AX})^{\theta} & =\mathrm{AX} \ldots \ldots \ldots \\
(\mathrm{XA})^{\theta} & =\mathrm{XA} \tag{7}
\end{array}\right)
$$

have unique solution for any $\mathrm{A} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$.

Proof:

First, we shall show that (5) and (6) are equivalent to the single equation

$$
X X^{\theta} A^{\theta}=X
$$

By substituting (6) in (5), we get (8). Conversely, (8) implies $\mathrm{AXX}^{\theta} \mathrm{A}^{\theta}=\mathrm{AX}$, the left hand side of which is s-hermitian. Hence (6) follows and substituting (6) in (8), we get (5)
Similarly, (4) and (7) are equivalent to the equation

$$
\begin{equation*}
\mathrm{XAA}^{\theta}=\mathrm{A}^{\theta} \tag{9}
\end{equation*}
$$

\qquad
Thus to find a solution for the given set of equations, it is enough to find an X satisfying (8) and (9). Now the expressions $A^{\theta} A,\left(A^{\theta} A\right)^{2},\left(A^{\theta} A\right)^{3} \ldots$ cannot all be linearly independent. (ie) there exists a relation

$$
\begin{equation*}
\lambda_{1} \mathrm{~A}^{\theta} \mathrm{A}+\lambda_{2}\left(\mathrm{~A}^{\theta} \mathrm{A}\right)^{2}+\ldots+\lambda_{\mathrm{k}}\left(\mathrm{~A}^{\theta} \mathrm{A}\right)^{\mathrm{k}}=0 \ldots \tag{10}
\end{equation*}
$$

\qquad
where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{k}}$ are not all zero. Let λ_{r} be the first non-zero λ (ie) $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{\mathrm{r}-1}=0$.
Put $B=-\lambda_{r}^{-1}\left\{\lambda_{r+1} I+\lambda_{r+2} A^{\theta} A+\ldots+\lambda_{k}\left(A^{\theta} A\right)^{k-r-1}\right\}$.
Then (10) implies $B\left(A^{\theta} A\right)^{r+1}=\left(A^{\theta} A\right)^{r}$ and applying (2) and (3) repeatedly, we get
$\mathrm{BA}^{\theta} \mathrm{AA}^{\theta}=\mathrm{A}^{\theta}$ \qquad (11) .

If we take $X=B A^{\theta}$, then X satisfies (9) by (11).
Also (9) implies $\mathrm{A}^{\theta} \mathrm{X}^{\theta} \mathrm{A}^{\theta}=\mathrm{A}^{\theta}$ and hence $\mathrm{BA}^{\theta} \mathrm{X}^{\theta} \mathrm{A}^{\theta}=\mathrm{BA}^{\theta}$. Hence X also satisfies (8). Thus $\mathrm{X}=\mathrm{BA}^{\theta}$ is a solution for the set of equations.

Now let us prove that this X is unique. Suppose that X and Y satisfy (8) and (9). By substituting (7) in (5) and (6) in (4), we obtain $Y=A^{\theta} Y^{\theta} Y$ and $A^{\theta}=A^{\theta} A Y$. Now

$$
X=X X^{\theta} A^{\theta}=X X^{\theta} A^{\theta} A Y=X A Y=X A A^{\theta} Y^{\theta} Y=A^{\theta} Y^{\theta} Y=Y
$$

Hence the solution X is unique.

Definition 2.2:

Let $A \in C_{n \times n}$. The unique solution of (4), (5), (6) and (7) is called the s-g inverse (secondary generalized inverse) of A and is written as $\mathrm{A}^{\dagger \mathrm{s}}$.

Example 2.3:

$$
\text { If } \mathrm{A}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \mathrm{A}^{\dagger \mathrm{s}}=\left(\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

Note 2.4:

From (8) and (9), $\mathrm{A}^{\dagger}{ }^{\dagger}$ satisfies

$$
\left.\begin{array}{l}
A^{\dagger_{s}}\left(A^{\dagger_{s}}\right)^{\theta} A^{\theta}=A^{\dagger_{s}}=A^{\theta} A^{\dagger_{s}} A^{\dagger_{s}} \tag{12}\\
A^{\dagger_{s}} A^{\theta}=A^{\theta}=A^{\theta} A A^{\dagger_{s}}
\end{array}\right\}
$$

If λ is a scalar, then $\lambda^{\dagger \text { s }}$ means λ^{-1} when $\lambda \neq 0$ and 0 if $\lambda=0$.

3. s-g inverse of s-normal matrices

In this section s-hermitian idempotent matrix is defined. Properties of $s-g$ inverse of a given matrix are given and some results on s-normal matrices are proved.

Theorem 3.1:

Let $\mathrm{A} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$. Then
(i) $\quad\left(\mathrm{A}^{\dagger_{s}}\right)^{\dagger_{s}}=\mathrm{A}$
(ii) $\mathrm{A}^{\theta \dagger \mathrm{s}}=\mathrm{A}^{\dagger \mathrm{s}}{ }^{\theta}$.
(iii) If A is non singular, then $\mathrm{A}^{\dagger} \mathrm{s}=\mathrm{A}^{-1}$.
(iv) $\quad(\lambda \mathrm{A})^{\dagger \mathrm{s}}=\lambda^{\dagger} \mathrm{s}^{\dagger}{ }^{\dagger} \mathrm{s}$.
(v) $\quad\left(A^{\theta} A\right)^{\dagger} \mathrm{s}=\mathrm{A}^{\dagger} \mathrm{s}_{\mathrm{A}}{ }^{\dagger} \mathrm{s}^{\theta}$.
(vi) If U and V are s-unitary $(\mathrm{UAV})^{\dagger} \mathrm{s}=\mathrm{V}^{\theta} \mathrm{A}^{\dagger} \mathrm{s}^{\mathrm{U}}{ }^{\theta}$.
(vii) If $A=\sum A_{i}$, where $A_{i} A_{j}^{\theta}=0$ and $A_{i}^{\theta} A_{j}=0$ whenever $i \neq j$, then $A^{\dagger} s=\sum A_{i}^{\dagger} s$.
(viii) If A is s-normal, then $\mathrm{A}^{\dagger} \mathrm{s} A=\mathrm{AA}^{\dagger} \mathrm{s}$ and $\left(\mathrm{A}^{\mathrm{n}}\right)^{\dagger} \mathrm{s}=\left(\mathrm{A}^{\dagger} \mathrm{s}\right)^{\mathrm{n}}$.

Proof:

(i) to (vi) can be proved by substituting the right hand side of each in the defining relations for the required s-g inverse in each case. To prove (v) we need (12) and to prove (vii) we require the fact that $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}^{\dagger} \mathrm{s}=0$ and $\mathrm{A}_{\mathrm{i}}^{\dagger} \mathrm{s} \mathrm{A}_{\mathrm{j}}=0$ if $\mathrm{i} \neq \mathrm{j}$ which follows from $\mathrm{A}_{\mathrm{j}}^{\dagger} \mathrm{s}=\mathrm{A}_{\mathrm{j}}^{\theta} \mathrm{A}_{\mathrm{j}}^{\dagger} \mathrm{s} \mathrm{A}_{\mathrm{j}}^{\dagger} \mathrm{s}$ and $\mathrm{A}_{\mathrm{i}}^{\dagger} \mathrm{s}=\mathrm{A}_{\mathrm{i}}^{\dagger} \mathrm{s} \mathrm{A}_{\mathrm{i}}^{\dagger} \mathrm{s}{ }^{\theta} \mathrm{A}_{\mathrm{i}}^{\theta}$. (v) and (12) imply $\mathrm{A}^{\dagger} \mathrm{s} \mathrm{A}=\left(\mathrm{A}^{\theta} \mathrm{A}\right)^{\dagger} \mathrm{s} \mathrm{A}^{\theta} \mathrm{A}$ and $\mathrm{AA}^{\dagger} \mathrm{s}=\left(\mathrm{AA}^{\theta}\right)^{\dagger} \mathrm{s} \mathrm{AA}^{\theta}$ and hence the first part of (viii) follows. The second part is a consequence of the first part.

Theorem 3.2:

A necessary and sufficient condition for the equation $\mathrm{AXB}=\mathrm{D}$ to have a solution is
$\mathrm{AA}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s} \mathrm{B}=\mathrm{D}$, in which case the general solution is

$$
\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s}+\mathrm{Y}-\mathrm{A}^{\dagger} \mathrm{s} \mathrm{AYBB}^{\dagger} \mathrm{s}
$$

where Y is arbitrary.

Proof:

If X satisfies $\mathrm{AXB}=\mathrm{D}$, then $\mathrm{D}=\mathrm{AXB}=\mathrm{AA}^{\dagger} \mathrm{s} \mathrm{AXBB}{ }^{\dagger} \mathrm{s} \mathrm{B}=\mathrm{AA}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s} \mathrm{B}$.
Conversely, if $\mathrm{D}=\mathrm{AA}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s} \mathrm{B}$, then $\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s}$ is a particular solution of $\mathrm{AXB}=\mathrm{D}$, since $\mathrm{AXB}=\mathrm{AA}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s} \mathrm{B}=\mathrm{D}$.

If $\mathrm{Y} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$, then any expression of the form $\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{s}_{\mathrm{DB}}{ }^{\dagger} \mathrm{s}+\mathrm{Y}-\mathrm{A}^{\dagger} \mathrm{s}^{\dagger} \mathrm{AYBB}{ }^{\dagger} \mathrm{s}$ is a solution of $\mathrm{AXB}=\mathrm{D}$ and conversely, if X is a solution of $\mathrm{AXB}=\mathrm{D}$, then $\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{s} \mathrm{DB}^{\dagger} \mathrm{s}+\mathrm{X}-\mathrm{A}^{\dagger} \mathrm{s} \mathrm{AXBB}{ }^{\dagger} \mathrm{s}$ satisfies $\mathrm{AXB}=\mathrm{D}$. Hence the theorem.

Corollary 3.3:

The matrix equations $\mathrm{AX}=\mathrm{B}$ and $\mathrm{XD}=\mathrm{E}$ have a common solution if and only if each equation has a solution and $\mathrm{AE}=\mathrm{BD}$.

Proof:

It is easy to see that the conditions is necessary. Conversely, $\mathrm{A}^{\dagger} \mathrm{s} \mathrm{B}$ and $\mathrm{ED}^{\dagger} \mathrm{s}$ are solutions of $\mathrm{AX}=\mathrm{B}$ and $\mathrm{XD}=\mathrm{E}$ and hence $\mathrm{AA}^{\dagger} \mathrm{s} \mathrm{B}=\mathrm{B}$ and $\mathrm{ED}^{\dagger} \mathrm{S} \mathrm{D}=\mathrm{E}$. Also $\mathrm{AE}=\mathrm{BD}$. By using these facts, it can be proved that $\mathrm{X}=\mathrm{A}^{\dagger} \mathrm{s} \mathrm{B}+\mathrm{ED}^{\dagger} \mathrm{s}-\mathrm{A}^{\dagger} \mathrm{s} \mathrm{AED}^{\dagger} \mathrm{s}$ is a common solution of the given equations.

Definition 3.4:

\quad A matrix $\mathrm{E} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$ is said to be s-hermitian idempotent matrix if $\mathrm{EE}^{\theta}=\mathrm{E}$ (ie) $\mathrm{E}=\mathrm{E}^{\theta}$ and
$E^{2}=E$.

Theorem 3.5:

(ii) $\quad \mathrm{K}$ is idempotent \Leftrightarrow there exist s-hermitian idempotents E and F such that $\mathrm{K}=(\mathrm{FE})^{\dagger} \mathrm{s}$ in which case $\mathrm{K}=\mathrm{EKF}$.

Proof:

Proof of (i) is obvious. If K is idempotent, then $K^{2}=K$. By (i) of theorem 3.1,
$\left.K=\left\{\left(\mathrm{K}^{\dagger_{\mathrm{s}}} \mathrm{K}\right)\right)\left(\mathrm{KK}^{\dagger_{\mathrm{s}}}\right)\right\}^{\dagger_{\mathrm{s}}}$. Now if we take $\mathrm{E}=\mathrm{KK}^{\dagger} \mathrm{s}$ and $\mathrm{F}=\mathrm{K}^{\dagger} \mathrm{s} \mathrm{K}$, they will satisfy our requirements. Conversely, if $\mathrm{K}=(\mathrm{FE})^{\dagger_{\mathrm{s}}}$ then $\mathrm{K}=\mathrm{EFPEF}$, where $\mathrm{P}=(\mathrm{FE})^{\dagger_{\mathrm{s}} \theta}(\mathrm{FE})^{\dagger_{\mathrm{s}}}(\mathrm{FE})^{\dagger_{\mathrm{s}} \theta}$ (Here we use the fact $Q^{\dagger_{s}}=Q^{\theta}\left(Q^{\dagger_{s}}{ }^{\theta} Q^{\dagger_{s}} Q^{\dagger_{s} \theta}\right) Q^{\theta}$ by (12)). Therefore $K=E K F$ and hence $\mathrm{K}^{2}=\mathrm{E}(\mathrm{FE})^{\dagger_{\mathrm{s}}} \mathrm{FE}(\mathrm{FE})^{\dagger_{\mathrm{s}}} \mathrm{F}=\mathrm{E}(\mathrm{FE})^{\dagger_{\mathrm{s}}} \mathrm{F}=\mathrm{K}$. Hence K is idempotent.

Note 3.6:

(1) s-hermitian idempotent matrices are s-normal matrices.
(2) The s-g inverse of an s-hermitian idempotent matrix is also s-hermitian idempotent matrix.

Conclusion:

s -g inverse of a given square matrix is defined and the condition for the existence of s -g inverse of a matrix is obtained . s-g inverse of an s- normal matrix is classified. s-g inverses of other special type of matrices may also be obtained and their characterizations can be developed.

References:

[1]. Weddurburn, J.H.M., Lectures on matrices, colloq. Publ. Amer. Math. Soc. No.17, 1934.
[2]. Isarel-Adi Ben and Greville Thomas M E; Generalized inverses: Theory and Applications; A wiley interscience publications Newyork, 1974.
[3]. Ann Lee: Secondary symmetric, secondary skew symmetric, secondary orthogonal matrices; Period math. Hungary 7, 63-76, 1976.
[4]. S. Krishnamoorthy, R. Vijayakumar, On s-normal matrices, Journal of Analysis and Computation, Vol 2, 2009.
[5]. S. Krishnamoorthy, R. Vijayakumar, Some characteristics on s-normal matrices, International Journal of Computational and Applied mathematics, Vol.4, No.1, 49-53, 2009.
[6] S. Krishnamoorthy, R. Vijayakumar, Some equivalent conditions on s-normal matrices, International Journal of Contemporary Mathematical Sciences, Vol.4, No.29, 1449-1454, 2009.

