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Abstract - This paper deals with an investigation 
on a Discrete Host-Commensal species with limited 
resources and mortality rate for the commensal.  The 
model comprises of a commensal (S1), host (S2) that 
would benefit S1, without getting effected either 
positively or adversely.  The model is characterized 
by a couple of first order non-linear ordinary 
differential equations.  All possible equilibrium points 
are identified based on the model equations at two 
stages and criteria for their stability are discussed.   
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1. INTRODUCTION 

   Ecology relates to the study of living beings in 
relation to their living styles.  Research in the area 
of theoretical ecology was initiated by Lotka [4] 
and by Volterra [5].  Since then many 
mathematicians and ecologists contributed to the 
growth of this area of knowledge as reported in the 
treatises of Meyer [6], Kushing [7], Paul colinvaux 
[8], Kapur [9] etc.  The ecological interactions can 
be broadly classified as Prey – predation, 
Competition, Commensalim, Ammensalism, 
Neutralism and so on.  N.C.Srinivas [10] studied 
competitive eco-systems of two species and three 
species with limited and unlimited resources.  
Later, Lakshminarayan [11], Lakshminarayan and 
Pattabhi Ramacharyulu [12] studied Prey-predator 
ecological models with a partial cover for the prey 
and alternate food for the predator. Stability 
analysis of competitive species was carried out by 
Archana Reddy, Pattabhi Ramacharyulu and 
Krishna Gandhi [3] and by Bhaskara Rama Sarma 
and Pattabhi Ramacharyulu [13], while Ravindra 
Reddy [15] investigated mutualism between two 
species.  Recently Phani Kumar [14] studied some 
mathematical models of ecological commensalism 
and Acharyulu [1, 2] investigated Ammensalism 
between two species.   

    The present investigation is a study of a discrete 
host-commensal species with limited resources and 
mortality rate for the commensal.  Figure-1 shows 
the schematic sketch of the system under 
investigation. 

 

 

 

 

            Fig 1: Schematic sketch of the system 
 

     Commensalism is a symbiotic interaction 
between two populations where one population (S1) 
gets benefit from (S2) while the other (S2) is neither 
harmed nor benefited due to the interaction with 
(S1). The benefited species (S1) is called the 
commensal and the other (S2) is called the host.  
Examples of commensalism are (i) A squirrel in an 
oak tree gets a place to live and food for its 
survival, while the tree remains neither benefited 
nor harmed. (ii)The clownfish shelters among the 
tentacles of the sea anemone, while the sea 
anemone is not effected.  
 

2. BASIC EQUATIONS 

    The model equations for two species host-
commensal species with limited resources and 
mortality rate for the commensal is given by the 
following system of first order non-linear 
differential equations employing the following 
notation. 

 
 
 
 

S1 S2 

          Commensal of S2 
          (Gets benefit from S2 

 

Host of S1 (Not  
effected by the 
interaction with  
S1) 
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NOTATION ADOPTED: 
 
N1(t): The population strength of commensal 
species (S1) 
N2(t): The population strength of host species 
(S2) 
t : Time instant 
ai : Natural growth rates of Si, i = 1, 2 
aii : Self inhibition coefficient of Si, i = 1, 2 
a12: Commensal coefficient of S1 

Ki = 
ii

i

a
a

 : Carrying capacities of Si, i = 1,2 

     If the death rate is greater than the birth rate for 
any species, we continue to use the same notation 
as natural growth rate with negative sign for the 
rate of difference. 
    Further the variables N1, N2 are non-negative and 
the model parameters a1, a2, a11, a12, a22 are 
assumed to be non-negative constants. 
 
The derivative form of the basic model equations 
for the growth rates of S1, S2 are 

21
1 1 11 1 12 1 2

dN a N a N a N N
dt

       (1) 

2
22222

2 NaNa
dt

dN
                             (2)  (2)

 
The discrete form of the equations (1) and (2) is 
 
N1(t + 1) =  1N1(t) –

1

2
11a N (t)   

                12 1 2+ a N (t) N (t)  (3) 
 

2
2 2 2 22 2N (t + 1) = N (t)  a N (t)    (4) 

 
where 1 1 2 21 , 1a a       (5) 
 

3. EQUILIBRIUM STATES 

Stage I: 

The system under investigation has three 

equilibrium states given by  

Ni(t + 1) = Ni(t), i = 1,2 (6) 

(i) Fully washed out state 

 E0: 1 2N 0, N 0   

(ii) The state in which only the host survives 

and the commensal is washed out 

 E1: 1 2 2N = 0, N = K  

 (iii) Co-existent state (Commensal and host 

both survive) 

E2:  12 2 
1 21 2

11

a KN = -K ,N =K
a

  

This state exists only when 12 2 
1

11

a K >K
a

 

4. STABILITY OF EQUILIBRIUM 

STATES 

4.1 Stability of E0(0,0): 

N1(t) = N1(t+1) = N1(t+2)= …= 0 

N2(t) = N2(t+1) = N2(t+2)=  … = 0 

 i.e.  N1(t + r)=0, N2(t+r) = 0 , where r is an integer 

4.2 Stability of E1(0, K2): 

N1(t) = N1(t+1) = N1(t+2)= ……= 0 

N2(t) = N2(t+1) = N2(t+2)= ……= K2 

i.e. N1(t + r) = 0, N2(t + r) = K2, where r is an 

integer  

Hence, E1(0, K2) is stable. 

4.3 Stability of E2 ( Ν ,Ν )1 2 : 

N1(t) = N1(t + 1) = N1(t + 2) = …. = 12

11

2a
a
  - K1 

N2(t) = N2(t + 1) = N2(t + 2) = ... = K2 

i.e. N1(t + r) = 12 2 
1

11

a K K
a

 , N2(t + r) = ….= K2 , 

where r is an integer 

Hence, E2 1 2(N , N )  is stable. 

At this stage all the three equilibrium states E0, E1, 
E2 are stable. 
 
Stage II: 

The system under investigation has thirteen 

equilibrium states given by   

Ni (t + 2) = Ni (t), i = 1, 2 

(i) Fully washed out state 

E0: 1 2N 0, N 0  . 

(ii)  States in which only the host survives and the 

commensal is washed out. 

E1: 1 2 2N 0, N K   

E2: 1N 0,
2

2 2
2

22

(a  + 2) + 4
N ,

2
a

a


  

       when a2 > 2 
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E3: 1N 0,
2

2 2
2

22

(a  + 2) 4
N ,

2
a

a
 

   

       when a2 > 2 

E4: 1 2

22

2N 0, N ,
a

  when a2 = 2 

(iii) Co-existent states (or) Normal steady    

        states. 

E5: 12 2
1 1

11

a KN = K ,
a

  2N = K2 

E6: 
2

1 1
1

11

(b  + 2) + 4
N = ,

2a
b 

 2N = K2, when 

b1>2,  where b1 = a12 K2 -a1 

E7: 
2

1 1
1

11

(b  + 2)  4
N = ,

2a
b 

 2N = K2, when 

b1 > 2 

E8: 1

11

2N ,
a

  2N = K2, when b1 = 2 

E9: 12
1 21

11 22 22

2a 2N =   K , N =
a a a

 ,            

when  a2  = 2 

E10: 
2

1 1
1

11

(d +2) + d 4
N = ,

2a


2N = 
22

2
a

,  when 

a2  = 2 and d1 > 2,  

where  d1 = 12

22

2a
a

-a1 

E11: 
2

1 1
1

11

(d  + 2)  d 4
N = ,

2a
 

2

22

2N ,
a

  

when a2  =2 and d1 > 2  

E12: 1N  = 
11

2
a

, 2N  = 
22

2
a

, when a2 = 2  

and d1 = 2 
 

5. STABILITY OF EQUILIBRIUM 
STATES 

 
      The stability of the equilibrium points E0, E1 
and E5 have been discussed already in the stage I.  
Now we will discuss the stability of equilibrium 
points except these three points in this stage. 
 
5.1 Stability of E2: 
 

N1(t) = N1(t + 1) = N1(t + 2) =………………….. = 

0, i.e. N1(t + r) = 0 

where r is an integer. 
N2(t) = N2(t + 2) = N2(t + 4) =………………….. = 

2
2 2

22

(a  + 2) + a - 4
2a

 

N2(t + 1) = N2(t + 3) = N2 (t + 5) =………= 
2

2 2

22

(a  + 2) - a - 4
2a

 

 i.e. 
2

2 2
2

22

(a  + 2) + a  4
N (t+2r) =

2a


 and  

2
2 2

2
22

(a  + 2)  a  4
N (t + 2r + 1) =

2a
 

 

where r is an integer. 
Hence, E2 oscillates finitely between 

2
2 2

22

(a  + 2) + a  4
2a


 and 

2
2 2

22

(a  + 2)  a  4
2a
 

, where a2>2 

 
5.2 Stability of E3: 

 

N1(t) =  N1(t + 1) =  N1(t + 2) = …= 0, i.e. N1(t + r) 

= 0, where r is an integer. 

N2(t) = N2 (t + 2) = N2 (t + 4) = 

………=
2

2 2

22

(a  + 2)  a  4
2a
 

, where a2>2 

N2(t + 1) = N2 (t + 3) = N2 (t + 5) = 

………=
2

2 2

22

(a  + 2) + a  4
2a


 

i.e. N2 (t + 2r) = 
2

2 2

22

(a  + 2)  a  4
2a
 

  and 

2
2 2

2
22

(a  + 2)  a  4
N (t + 2r + 1) =

2a
 

 

where r is an integer. 
Hence, E3 oscillates between 

2 2
2 2 2 2

22 22

(a  + 2)  a  4 (a  + 2) + a  4
and

2a 2a
  

, where a2>2 
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5.3 Stability of E4: 
 

N1(t) =  N1(t + 1) =  N1(t + 2) = …= 0 

N2(t) = N2 (t + 1) = N2 (t + 2) = … =
22

2
a

 

N1(t + r) = 0,  N2(t + r) =
22

2
a

 , where r is an 

integer.    Hence, E4 is Stable. 
 
 
5.4 Stability of E6: 
 

N1(t) = N1(t + 2) = N1(t + 4)= ……= 

2
1 1

11

(b  + 2) + b - 4
2a

, b1>2 

N1(t + 1) = N1(t + 3) = N1(t + 5)= ……= 
2

1 1

11

(b  + 2)  b  4
2a
 

 

i.e. N1 (t +2r) = 
2

1 1

11

(b  + 2) + b - 4
2a

 and  

2
1 1

1
11

(b  + 2)  b  4
N (t + 2r + 1) =

2a
 

 

where  r is an integer 

N2(t) = N2(t + 1) = N2(t + 2) =…= K2 
 

i.e. N2 (t + r) = K2 , where r is an integer 

Hence, E6 oscillates finitely between 

2 2
1 1 1 1

11 11

(b  + 2) + a - 4 (b  + 2) - b - 4
and

2a 2a
 

5.5 Stability of E7: 

N1(t) = N1(t + 2) = N1(t + 4)= ……= 

2
1 1

11

(b  + 2) - b - 4
2a

 

N1(t + 1) = N1(t + 3) = N1(t + 5)= ……= 

2
1 1

11

(b  + 2) + b - 4
2a

 

i.e. N1 (t +2r) = 
2

1 1

11

(b  + 2) - b - 4
2a

 and 

2
1 1

1
11

(b  + 2)  b  4
N (t + 2r + 1) =

2a
 

 

where  r is an integer 

N2(t) = N2(t + 1) = N2(t + 2) =………= K2 

N2(t + r) = K2 ,  where r is an integer 

Hence, E17 oscillates between 

2 2
1 1 1 1

11 11

(b  + 2) - b - 4 (b  + 2) + b - 4
and

2a 2a
 

5.6 Stability of E8: 

N1(t) = N1(t + 1) = N1(t + 2) =… = 
11

2
a

 

N2(t) = N2(t + 1) = N2(t + 2) =… = K2 

i.e. N1(t + r) = 
11

2
a

 and N2(t + r) = K2 , where r is 

an integer 
Hence, E8 is stable 
 

5.7 Stability of E9: 

N1(t) = N1(t + 1) = N1 (t + 2) =….. = 12
1

11 22

2a  K
a a

   

N2(t) = N2(t + 1) = N2 (t + 2) =……….. = 
22

2
a

 

i.e. N1 (t + r) = 12
1

11 22

2a  K
a a

  and N2 (t + r) = 
22

2
a

 , 

where r is an integer 

Hence, E9 is stable 
 

5.8 Stability of E10:  

N1(t) = N1(t + 2) = N1(t + 4) =…… = 
2

1 1

11

(d  + 2) + d - 4
2a

, d1>2 

 

N1(t + 1) = N1(t + 3) = N1(t + 5) =………= 
2

1 1

11

(d  + 2) - d - 4
2a

, d1>2 
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i.e. N1 (t +2r) = 
2

1 1

11

(d  + 2) + d - 4
2a

 and   

2
1 1

1
11

(d  + 2)  d  4
N (t + 2r + 1) =

2a
 

, d1>2 

where r is an integer 

N2(t) = N2(t + 1) = N2 (t + 2) =… = 
22

2
a

 

N2(t + r) = 
22

2
a

, where r is an integer 

Hence, E10 oscillates finitely between 

2
1 1

11

(d  + 2)  d  4
2a
 

 and 

2
1 1

11

(d  + 2)  d  4
2a
 

  

5.9 Stability of E11: 

N1(t) = N1(t + 2) = N1(t + 4) =…= 
2

1 1

11

(d  + 2)  d  4
2a
 

 

 

N1(t + 1) = N1(t + 3) = N1(t + 5) =…= 
2

1 1

11

(d  + 2) + d  4
2a


 

 

i.e. N1 (t +2r) = 
2

1 1

11

(d  + 2)  d  4
2a
 

 and   

2
1 1

1
11

(d  + 2)  d  4
N (t + 2r + 1) =

2a
 

 

where r is an integer 

N2(t) = N2(t + 1) = N2 (t + 2) =…= 
22

2
a

 

i.e. N2(t + r) = 
22

2
a

, where r is an integer 

Hence, E11 oscillates finitely between 

2
1 1

11

(d  + 2) - d - 4
2a

 and 
2

1 1

11

(d  + 2) + d - 4
2a

  

5.10 Stability of E12: 

N1(t) = N1(t + 1) = N1(t + 2) =…= 
11

2
a

 

N2(t) = N2(t + 1) = N2(t + 2) =…= 
22

2
a

 

i.e. N1(t + r) = 
11

2
a

 and N2(t + r) =  
22

2
a

 , where r 

is an integer 

Hence, E12 is stable. 

At this stage, of all thirteen equilibrium points, 

only the seven equilibrium points are stable. 

 

6. CONCLUSIONS 

The present paper deals with the study on discrete 

host-commensal species with limited resources and 

mortality rate for the commensal. The model 

comprises of a commensal (S1), a host (S2) that 

benefit S1, without getting effected either positively 

or adversely.  All possible equilibrium points of the 

model are identified based on the model equations 

at two stages.   

Stage-I :    i iN t +1 = N t  ; i = 1, 2 

Stage-II :    i iN t + 2 = N t  ; i = 1, 2 

In Stage-I there are only three equilibrium points, 

while the Stage-II there would be thirteen 

equilibrium points.  All the three equilibrium points 

in Stage-I are found to be stable while in stage-II 

only seven are stable and remaining six are 

oscillatory. 
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