Location of Regions Containing No Zero of a Polynomial

M. H. Gulzar

Department of Mathematics
University of Kashmir, Srinagar 190006

Abstract

In this paper we locate regions containing no zero of a polynomial whose coefficients are restricted to certain conditions.

Mathematics Subject Classification: 30C10, 30C15
Keywords and phrases: Coefficient, Polynomial, Zero.

1.Introduction and Statement of Results

The problem of locating the regions containing all, some or no zero of a polynomial is very important in the theory of polynomials. In this connection lots of papers have been published by researchers. Recently M.H.Gulzar [2] proved the following results:

Theorem A: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}(z)=\beta_{j}, j=0,1, \ldots \ldots, n$ such that for some $k_{1} \geq 1, k_{2} \geq 1,, 0<\tau_{1} \leq 1$, $0<\tau_{2} \leq 1$, either

$$
k_{1} \alpha_{n} \geq \alpha_{n-2} \geq \ldots \ldots \geq \alpha_{3} \geq \tau_{1} \alpha_{1}
$$

and $k_{2} \alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \ldots \geq \alpha_{2} \geq \tau_{2} \alpha_{0}$, if n is odd
or

$$
\begin{array}{ll}
& k_{1} \alpha_{n} \geq \alpha_{n-2} \geq \ldots \ldots \geq \alpha_{2} \geq \tau_{1} \alpha_{0} \\
\text { and } & k_{2} \alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \ldots . \geq \alpha_{3} \geq \tau_{2} \alpha_{1}, \quad \text { if } \mathrm{n} \text { is even. }
\end{array}
$$

Then, if n is odd, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{1}}{\left|a_{0}\right|}$, where

$$
\begin{gathered}
M_{1}=R^{n+2}\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left(\left|\alpha_{1}\right|+\left|\alpha_{0}\right|\right)-\tau_{1}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)-\tau_{2}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)\right. \\
\\
\left.+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right] \quad \text { for } R \geq 1
\end{gathered}
$$

and
$M_{1}=\left|a_{0}\right|+R\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\tau_{1}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)-\tau_{2}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)\right.$

$$
\left.+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \quad \text { for } \quad R \leq 1
$$

If n is even, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{2}}{\left|a_{0}\right|}$, where

$$
\begin{gathered}
M_{2}=R^{n+2}\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left(\left|\alpha_{1}\right|+\left|\alpha_{0}\right|\right)-\tau_{1}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)-\tau_{2}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)\right. \\
\\
\left.+2 \sum_{j=0}^{n}\left|\beta_{j}\right|\right] \quad \text { for } R \geq 1
\end{gathered}
$$

and

$$
\begin{aligned}
& M_{2}=\left|a_{0}\right|+R\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|+\left|\beta_{0}\right|-\tau_{1}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)-\tau_{2}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)\right. \\
&\left.+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \quad \text { for } R \leq 1 .
\end{aligned}
$$

Theorem B: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $k_{1} \geq 1, k_{2} \geq 1,, 0<\tau_{1} \leq 1,0<\tau_{2} \leq 1$, either

$$
k_{1}\left|a_{n}\right| \geq\left|a_{n-2}\right| \geq \ldots \ldots \geq\left|a_{3}\right| \geq \tau_{1}\left|a_{1}\right|
$$

and $\quad k_{2}\left|a_{n-1}\right| \geq\left|a_{n-3}\right| \geq \ldots \ldots . \geq\left|a_{2}\right| \geq \tau_{2}\left|a_{0}\right|, \quad$ if n is odd
or

$$
\begin{array}{ll}
& k_{1}\left|a_{n}\right| \geq\left|a_{n-2}\right| \geq \ldots \ldots \geq\left|a_{2}\right| \geq \tau_{1}\left|a_{0}\right| \\
\text { and } & k_{2}\left|a_{n-1}\right| \geq\left|a_{n-3}\right| \geq \ldots \ldots . \geq\left|a_{3}\right| \geq \tau_{2}\left|a_{1}\right|, \quad \text { if } n \text { is even } .
\end{array}
$$

Then, if n is odd, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{3}}{\left|a_{0}\right|}$, where

$$
\begin{aligned}
& M_{3}=R^{n+2}\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)+2\left(\left|a_{1}\right|+\left|a_{0}\right|\right)\right. \\
&\left.\quad-\left(\tau_{1}\left|a_{1}\right|+\tau_{2}\left|a_{0}\right|\right)(\cos \alpha-\sin \alpha+1)+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right]
\end{aligned}
$$

$$
\text { for } R \geq 1
$$

and

$$
\begin{aligned}
& M_{3}=\left|a_{0}\right|+R\left[k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
&\left.\quad-\left(\tau_{1}\left|a_{1}\right|+\tau_{2}\left|a_{0}\right|\right)(\cos \alpha-\sin \alpha+1)+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right] \mathrm{s}
\end{aligned}
$$

$$
\text { for } R \leq 1 \text {. }
$$

If n is even, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed

$$
\begin{aligned}
& \frac{1}{\log c} \log \frac{M_{4}}{\left|a_{0}\right|}, \text { where } \\
& M_{4}=R^{n+2}\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)+2\left(\left|a_{1}\right|+\left|a_{0}\right|\right)\right. \\
& \left.\quad-\left(\tau_{1}\left|a_{0}\right|+\tau_{2}\left|a_{1}\right|\right)(\cos \alpha-\sin \alpha+1)+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right]
\end{aligned}
$$

and

$$
\begin{gathered}
M_{4}=\left|a_{0}\right|+R\left[\left(k_{1}\left|a_{n}\right|+k_{2} \mid a_{n-1}\right)(\cos \alpha+\sin \alpha+1)+2\left(\left|a_{1}\right|+\left|a_{0}\right|\right)\right. \\
\left.-\left(\tau_{1}\left|a_{0}\right|+\tau_{2}\left|a_{1}\right|\right)(\cos \alpha-\sin \alpha+1)+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right]
\end{gathered}
$$

In this paper, we find regions which contain no zero of the polynomials in Theorems 1 and 2 and prove the following results:
Theorem 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}(z)=\beta_{j}, j=0,1, \ldots \ldots, n \quad$ such that for some $k_{1} \geq 1, k_{2} \geq 1,, 0<\tau_{1} \leq 1$, $0<\tau_{2} \leq 1$, either

$$
k_{1} \alpha_{n} \geq \alpha_{n-2} \geq \ldots \ldots \geq \alpha_{3} \geq \tau_{1} \alpha_{1}
$$

and $\quad k_{2} \alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \ldots \geq \alpha_{2} \geq \tau_{2} \alpha_{0}$, if n is odd
or

$$
k_{1} \alpha_{n} \geq \alpha_{n-2} \geq \ldots \ldots \geq \alpha_{2} \geq \tau_{1} \alpha_{0}
$$

and $\quad k_{2} \alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \ldots \geq \alpha_{3} \geq \tau_{2} \alpha_{1}$, if n is even.
Then, if n is odd, $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{5}}$, for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{6}}$ for $R \leq 1$, where

$$
\begin{aligned}
M_{5}= & R^{n+2}\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|-\tau_{1}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)\right. \\
& \left.-\tau_{2}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right]
\end{aligned}
$$

and

$$
M_{6}=R\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|-\tau_{1}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)\right.
$$

$$
\left.-\tau_{2}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] .
$$

If n is even, then $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{7}}$, for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{8}}$ for $R \leq 1$, where

$$
\begin{aligned}
M_{7}=R^{n+2} & {\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|-\tau_{1}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)\right.} \\
& \left.-\tau_{2}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right]
\end{aligned}
$$

and

$$
\begin{aligned}
M_{8}= & R\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|-\tau_{1}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)\right. \\
& \left.-\tau_{2}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] .
\end{aligned}
$$

Combining Theorem 1 and Theorem A, we get the following result:
Corollary 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with
$\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}(z)=\beta_{j}, j=0,1, \ldots \ldots, n$ such that for some $k_{1} \geq 1, k_{2} \geq 1,, 0<\tau_{1} \leq 1$, $0<\tau_{2} \leq 1$, either

$$
\begin{array}{ll}
& k_{1} \alpha_{n} \geq \alpha_{n-2} \geq \ldots \ldots \geq \alpha_{3} \geq \tau_{1} \alpha_{1} \\
\text { and } & k_{2} \alpha_{n-1} \geq \alpha_{n-3} \geq \ldots . . . \geq \alpha_{2} \geq \tau_{2} \alpha_{0}, \quad \text { if } \mathrm{n} \text { is odd }
\end{array}
$$

or

$$
\begin{array}{ll}
& k_{1} \alpha_{n} \geq \alpha_{n-2} \geq \ldots \ldots \geq \alpha_{2} \geq \tau_{1} \alpha_{0} \\
\text { and } & k_{2} \alpha_{n-1} \geq \alpha_{n-3} \geq \ldots \ldots . . \geq \alpha_{3} \geq \tau_{2} \alpha_{1}, \quad \text { if } \mathrm{n} \text { is even. }
\end{array}
$$

Then, if n is odd, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{5}} \leq|z| \leq \frac{R}{c}, R \geq 1$ does not exceed $\frac{1}{\log c} \log \frac{M_{1}}{\left|a_{0}\right|}$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{6}} \leq|z| \leq \frac{R}{c}, R \leq 1$ does not exceed $\frac{1}{\log c} \log \frac{M_{2}}{\left|a_{0}\right|}$ where $M_{1}, M_{2}, M_{5}, M_{6}$ are as given in Theorem 1 and Theorem A.

If n is even, then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{7}} \leq|z| \leq \frac{R}{c}, R \geq 1$ does not exceed $\frac{1}{\log c} \log \frac{M_{3}}{\left|a_{0}\right|}$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{8}} \leq|z| \leq \frac{R}{c}, R \leq 1$ does not exceed $\frac{1}{\log c} \log \frac{M_{4}}{\left|a_{0}\right|}$ where $M_{3}, M_{4}, M_{7}, M_{8}$ are as given in Theorem 1 and Theorem A.

Theorem 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $k_{1} \geq 1, k_{2} \geq 1,, 0<\tau_{1} \leq 1,0<\tau_{2} \leq 1$, either

$$
k_{1}\left|a_{n}\right| \geq\left|a_{n-2}\right| \geq \ldots \ldots \geq\left|a_{3}\right| \geq \tau_{1}\left|a_{1}\right|
$$

and $\quad k_{2}\left|a_{n-1}\right| \geq\left|a_{n-3}\right| \geq \ldots \ldots \geq\left|a_{2}\right| \geq \tau_{2}\left|a_{0}\right|, \quad$ if n is odd
or

$$
\begin{array}{ll}
& k_{1}\left|a_{n}\right| \geq\left|a_{n-2}\right| \geq \ldots . . \geq\left|a_{2}\right| \geq \tau_{1}\left|a_{0}\right| \\
\text { and } & k_{2}\left|a_{n-1}\right| \geq\left|a_{n-3}\right| \geq \ldots . . \geq\left|a_{3}\right| \geq \tau_{2}\left|a_{1}\right|, \quad \text { if } n \text { is even } .
\end{array}
$$

Then, if n is odd, $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{9}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{10}}$ for $R \leq 1$, where

$$
\begin{aligned}
M_{9}= & R^{n+2}\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)\right. \\
& -\left(\tau_{1}\left|a_{1}\right|+\tau_{2}\left|a_{0}\right|\right)(\cos \alpha-\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
& \left.+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right]
\end{aligned}
$$

and

$$
\begin{aligned}
M_{10}= & |G(z)| R\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)\right. \\
& -\left(\tau_{1}\left|a_{1}\right|+\tau_{2}\left|a_{0}\right|\right)(\cos \alpha-\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
& \left.+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right] .
\end{aligned}
$$

If n is even, then $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{11}}$ for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{12}}$ for $R \leq 1$, where

$$
M_{11}=R^{n+2}\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)\right.
$$

$$
\begin{aligned}
& -\left(\tau_{1}\left|a_{0}\right|+\tau_{2}\left|a_{1}\right|\right)(\cos \alpha-\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
& \left.+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right]
\end{aligned}
$$

and

$$
\begin{aligned}
M_{12}= & R\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)\right. \\
& -\left(\tau_{1}\left|a_{0}\right|+\tau_{2}\left|a_{1}\right|\right)(\cos \alpha-\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
& \left.+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right] .
\end{aligned}
$$

Combining Theorem 2 and Theorem B, we get the following result:
Corollary 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $k_{1} \geq 1, k_{2} \geq 1,, 0<\tau_{1} \leq 1,0<\tau_{2} \leq 1$, either

$$
k_{1}\left|a_{n}\right| \geq\left|a_{n-2}\right| \geq \ldots \ldots \geq\left|a_{3}\right| \geq \tau_{1}\left|a_{1}\right|
$$

and $\quad k_{2}\left|a_{n-1}\right| \geq\left|a_{n-3}\right| \geq \ldots . . . \geq\left|a_{2}\right| \geq \tau_{2}\left|a_{0}\right|, \quad$ if n is odd
or

$$
k_{1}\left|a_{n}\right| \geq\left|a_{n-2}\right| \geq \ldots \ldots \geq\left|a_{2}\right| \geq \tau_{1}\left|a_{0}\right|
$$

and $\quad k_{2}\left|a_{n-1}\right| \geq\left|a_{n-3}\right| \geq \ldots . . . \geq\left|a_{3}\right| \geq \tau_{2}\left|a_{1}\right|$, if n is even.
Then, if n is odd, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{9}} \leq|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{3}}{\left|a_{0}\right|}$ for $R \geq 1$ and the the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{10}} \leq|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{3}}{\left|a_{0}\right|}$ for $R \leq 1$ where M_{3}, M_{9}, M_{10} are as given in Theorem 2 and Theorem B. If n is even, the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{11}} \leq|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{4}}{\left|a_{0}\right|}$ for $R \geq 1$ and the the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{M_{12}} \leq|z| \leq \frac{R}{c}(R>0, c>1)$ does not exceed $\frac{1}{\log c} \log \frac{M_{4}}{\left|a_{0}\right|}$ for $R \leq 1$ where M_{4}, M_{11}, M_{12} are as given in Theorem 2 and Theorem B.

For different values of the parameters, we get many interesting results from the above results.

2. Lemma

For the proofs of the above results, we make use of the following lemma:
Lemma: Let $P(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that for some real $\alpha, \beta,\left|\arg a_{j}-\beta\right| \leq \alpha \leq \frac{\pi}{2}, 0 \leq j \leq n$, and $\left|a_{j}\right| \geq\left|a_{j-1}\right|, 0 \leq j \leq n$, then

$$
\left|a_{j}-a_{j-1}\right| \leq\left(\left|a_{j}\right|-\left|a_{j-1}\right|\right) \cos \alpha+\left(\left|a_{j}\right|+\left|a_{j-1}\right|\right) \sin \alpha .
$$

The above lemma 3 is due to Govil and Rahman [1].

3. Proofs of Theorems

Proof of Theorem 1: Let n be odd. Consider the polynomial

$$
\begin{aligned}
& F(z)=(1- \\
&=(1)\left.z^{2}\right) P(z) \\
&=\left.z^{2}\right)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right) \\
&=-\alpha_{n} z^{n+2}-\alpha_{n-1} z^{n+1}+\left(1-k_{1}\right) \alpha_{n} z^{n}+\left(1-k_{2}\right) \alpha_{n-1} z^{n-1} \\
&+\left(k_{1} \alpha_{n}-\alpha_{n-2}\right) z^{n}+\left(k_{2} \alpha_{n-1}-\alpha_{n-3}\right) z^{n-1}+\left(\alpha_{n-2}-\alpha_{n-4}\right) z^{n-2} \\
&+\left(\alpha_{n-3}-\alpha_{n-5}\right) z^{n-3}+\ldots \ldots+\left(\alpha_{4}-\alpha_{2}\right) z^{4}+\left(\alpha_{3}-\tau_{1} \alpha_{1}\right) z^{3} \\
&+\left(\tau_{1} \alpha_{1}-\alpha_{1}\right) z^{3}+\left(\alpha_{2}-\tau_{2} \alpha_{0}\right) z^{2}+\alpha_{1} z+i\left\{-\beta_{n} z^{n+2}-\beta_{n-1} z^{n+1}\right. \\
&\left.+\left(\beta_{n}-\beta_{n-2}\right) z^{n}+\ldots \ldots+\left(\beta_{2}-\beta_{0}\right) z^{2}+\beta_{1} z\right\}+a_{0} \\
&= a_{0} \\
&+G(z), \text { where } \\
& G(z)=- \alpha_{n} z^{n+2}-\alpha_{n-1} z^{n+1}+\left(1-k_{1}\right) \alpha_{n} z^{n}+\left(1-k_{2}\right) \alpha_{n-1} z^{n-1} \\
&+\left(k_{1} \alpha_{n}-\alpha_{n-2}\right) z^{n}+\left(k_{2} \alpha_{n-1}-\alpha_{n-3}\right) z^{n-1}+\left(\alpha_{n-2}-\alpha_{n-4}\right) z^{n-2} \\
&+\left(\alpha_{n-3}-\alpha_{n-5}\right) z^{n-3}+\ldots . .+\left(\alpha_{4}-\alpha_{2}\right) z^{4}+\left(\alpha_{3}-\tau_{1} \alpha_{1}\right) z^{3} \\
&+\left(\tau_{1} \alpha_{1}-\alpha_{1}\right) z^{3}+\left(\alpha_{2}-\tau_{2} \alpha_{0}\right) z^{2}+\left(\tau_{2} \alpha_{0}-\alpha_{0}\right) z^{2}+\alpha_{1} z+i\left\{-\beta_{n} z^{n+2}\right. \\
&\left.\quad-\beta_{n-1} z^{n+1}+\left(\beta_{n}-\beta_{n-2}\right) z^{n}+\ldots \ldots . .+\left(\beta_{2}-\beta_{0}\right) z^{2}+\beta_{1} z\right\}
\end{aligned}
$$

For $|z| \leq R$, we have by using the hypothesis

$$
\begin{aligned}
& |G(z)| \leq\left|\alpha_{n}\right| R^{n+2}+\left|\alpha_{n-1}\right| R^{n+1}+\left(k_{1}-1\right)\left|\alpha_{n}\right| R^{n}+\left(k_{2}-1\right)\left|\alpha_{n-1}\right| R^{n-1}+\left(k_{1} \alpha_{n}-\alpha_{n-2}\right) R^{n-2} \\
& +\left(k_{2} \alpha_{n-1}-\alpha_{n-3}\right) R^{n-1}+\left(\alpha_{n-2}-\alpha_{n-4}\right) R^{n-2}+\ldots \ldots+\left(\alpha_{4}-\alpha_{2}\right) R^{4} \\
& +\left(\alpha_{3}-\tau_{1} \alpha_{1}\right) R^{3}+\left(1-\tau_{1}\right)\left|\alpha_{1}\right| R^{3}+\left(\alpha_{2}-\tau_{2} \alpha_{0}\right) R^{2}+\left(1-\tau_{2}\right)\left|\alpha_{0}\right| R^{2} \\
& +\left|\alpha_{1}\right| R+\left|\beta_{n}\right| R^{n+2}+\left|\beta_{n-1}\right| R^{n+1}+\left(\left|\beta_{n}\right|+\left|\beta_{n-2}\right|\right) R^{n}+\ldots \ldots \\
& +\left(\left|\beta_{2}\right|+\left|\beta_{0}\right|\right) R^{2}+\left|\beta_{1}\right| R \\
& \leq R^{n+2}\left[\left|\alpha_{n}\right|+\left|\alpha_{n-1}\right|+\left(k_{1}-1\right)\left|\alpha_{n}\right|+\left(k_{2}-1\right)\left|\alpha_{n-1}\right|+k_{1} \alpha_{n}-\alpha_{n-2}+k_{2} \alpha_{n-1}\right. \\
& -\alpha_{n-3}+\alpha_{n-2}-\alpha_{n-4}+\ldots . .+\alpha_{4}-\alpha_{2}+\alpha_{3}-\tau_{1} \alpha_{1} \\
& \left.+\left(1-\tau_{1}\right)\left|\alpha_{1}\right|+\alpha_{2}-\tau_{2} \alpha_{0}+\left(1-\tau_{2}\right)\left|\alpha_{0}\right|+\left|\alpha_{1}\right|+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \\
& =R^{n+2}\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|-\tau_{1}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)\right. \\
& \left.-\tau_{2}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] \\
& =M_{5} \text { for } R \geq 1
\end{aligned}
$$

and for $R \leq 1$

$$
\begin{aligned}
|G(z)| \leq & R\left[k_{1}\left(\left|\alpha_{n}\right|+\alpha_{n}\right)+k_{2}\left(\left|\alpha_{n-1}\right|+\alpha_{n-1}\right)+2\left|\alpha_{1}\right|+\left|\alpha_{0}\right|-\tau_{1}\left(\left|\alpha_{1}\right|+\alpha_{1}\right)\right. \\
& \left.\quad-\tau_{2}\left(\left|\alpha_{0}\right|+\alpha_{0}\right)+\left|\beta_{0}\right|+2 \sum_{j=1}^{n}\left|\beta_{j}\right|\right] . \\
= & M_{6}
\end{aligned}
$$

Since $\mathrm{G}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{G}(0)=0$, it follows by Schwarz Lemma that for $|z| \leq R,|G(z)| \leq M_{5}|z|$ for $R \geq 1$ and $|G(z)| \leq M_{6}|z|$ for $R \leq 1$.
Hence, for $R \geq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-M_{5}|z| \\
& >0
\end{aligned}
$$

if $|z|<\frac{\left|a_{0}\right|}{M_{5}}$.
And for $R \leq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-M_{6}|z| \\
& >0
\end{aligned}
$$

if $|z|<\frac{\left|a_{0}\right|}{M_{6}}$.
This shows that $\mathrm{F}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{5}}$, for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{6}}$ for $R \leq 1$.
Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, it follows that $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{5}}$, for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{6}}$ for $R \leq 1$, thereby proving
Theorem 1 when n is odd.
The proof for even n is similar and is omitted.

Proof of Theorem 2: : Let n be odd. Consider the polynomial

$$
\begin{aligned}
F(z)= & (1- \\
= & \left.z^{2}\right) P(z) \\
= & (1- \\
= & \left.z^{2}\right)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots \ldots+a_{1} z+a_{0}\right) \\
= & a_{n} z^{n+2}-a_{n-1} z^{n+1}+\left(1-k_{1}\right) a_{n} z^{n}+\left(1-k_{2}\right) a_{n-1} z^{n-1} \\
& +\left(k_{1} a_{n}-a_{n-2}\right) z^{n}+\left(k_{2} a_{n-1}-a_{n-3}\right) z^{n-1}+\left(a_{n-2}-a_{n-4}\right) z^{n-2} \\
& +\left(a_{n-3}-a_{n-5}\right) z^{n-3}+\ldots \ldots+\left(a_{4}-a_{2}\right) z^{4}+\left(a_{3}-\tau_{1} a_{1}\right) z^{3} \\
& +\left(\tau_{1} a_{1}-a_{1}\right) z^{3}+\left(a_{2}-\tau_{2} a_{0}\right) z^{2}+\left(\tau_{2} a_{0}-a_{0}\right) z^{2}+a_{1} z+a_{0} \\
=a_{0} & +G(z), \text { where } \\
G(z)=- & a_{n} z^{n+2}-a_{n-1} z^{n+1}+\left(1-k_{1}\right) a_{n} z^{n}+\left(1-k_{2}\right) a_{n-1} z^{n-1} \\
& +\left(k_{1} a_{n}-a_{n-2}\right) z^{n}+\left(k_{2} a_{n-1}-a_{n-3}\right) z^{n-1}+\left(a_{n-2}-a_{n-4}\right) z^{n-2} \\
& +\left(a_{n-3}-a_{n-5}\right) z^{n-3}+\ldots \ldots+\left(a_{4}-a_{2}\right) z^{4}+\left(a_{3}-\tau_{1} a_{1}\right) z^{3} \\
& +\left(\tau_{1} a_{1}-a_{1}\right) z^{3}+\left(a_{2}-\tau_{2} a_{0}\right) z^{2}+\left(\tau_{2} a_{0}-a_{0}\right) z^{2}+a_{1} z
\end{aligned}
$$

For $|z| \leq R$, we have by using the hypothesis and Lemma

$$
\begin{aligned}
|G(z)| \leq\left|a_{n}\right| & R^{n+2}+\left|a_{n-1}\right| R^{n+1}+\left(k_{1}-1\right)\left|a_{n}\right| R^{n}+\left(k_{2}-1\right)\left|a_{n-1}\right| R^{n-1}+\left|a_{1}\right| R \\
& +\left\{\left(k_{1}\left|a_{n}\right|-\left|a_{n-2}\right|\right) \cos \alpha+\left(k_{1}\left|a_{n}\right|+\left|a_{n-2}\right|\right) \sin \alpha\right\} R^{n} \\
& +\left\{\left(k_{2}\left|a_{n-1}\right|-\left|a_{n-3}\right|\right) \cos \alpha+\left(k_{2}\left|a_{n-1}\right|+\left|a_{n-3}\right|\right) \sin \alpha\right\} R^{n-1} \\
& +\left\{\left(\left|a_{n-2}\right|-\left|a_{n-4}\right|\right) \cos \alpha+\left(\left|a_{n-2}\right|+\left|a_{n-4}\right|\right) \sin \alpha\right\} R^{n-2} \\
& +\ldots \ldots .+\left\{\left(\left|a_{4}\right|-\left|a_{2}\right|\right) \cos \alpha+\left(\left|a_{4}\right|+\left|a_{2}\right|\right) \sin \alpha\right\} R^{4} \\
& +\left\{\left(\left|a_{3}\right|-\tau_{1}\left|a_{1}\right|\right) \cos \alpha+\left(\left|a_{3}\right|+\tau_{1}\left|a_{1}\right|\right) \sin \alpha\right\} R^{3} \\
& +\left\{\left(\left|a_{2}\right|-\tau_{2}\left|a_{0}\right|\right) \cos \alpha+\left(\left|a_{2}\right|+\tau_{2}\left|a_{0}\right|\right) \sin \alpha\right\} R^{2} \\
& +\left(1-\tau_{1}\right)\left|a_{1}\right| R^{3}+\left(1-\tau_{2}\right)\left|a_{0}\right| R^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq R^{n+2}\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)\right. \\
& \quad-\left(\tau_{1}\left|a_{1}\right|+\tau_{2}\left|a_{0}\right|\right)(\cos \alpha-\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
& \left.\quad+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right] \\
& =M_{9} \quad \text { for } R \geq 1
\end{aligned}
$$

and for $R \leq 1$

$$
\begin{aligned}
|G(z)| \leq & R\left[\left(k_{1}\left|a_{n}\right|+k_{2}\left|a_{n-1}\right|\right)(\cos \alpha+\sin \alpha+1)\right. \\
& -\left(\tau_{1}\left|a_{1}\right|+\tau_{2}\left|a_{0}\right|\right)(\cos \alpha-\sin \alpha+1)+2\left|a_{1}\right|+\left|a_{0}\right| \\
& \left.+2 \sin \alpha \sum_{j=2}^{n-2}\left|a_{j}\right|\right] \\
= & M_{10} .
\end{aligned}
$$

Since $\mathrm{G}(\mathrm{z})$ is analytic for $|z| \leq R, \mathrm{G}(0)=0$, it follows by Schwarz Lemma that for $|z| \leq R,|G(z)| \leq M_{9}|z|$ for $R \geq 1$ and $|G(z)| \leq M_{10}|z|$ for $R \leq 1$.
Hence, for $R \geq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-M_{9}|z| \\
& >0
\end{aligned}
$$

if $|z|<\frac{\left|a_{0}\right|}{M_{9}}$.
And for $R \leq 1$,

$$
\begin{aligned}
|F(z)| & =\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-M_{10}|z| \\
& >0
\end{aligned}
$$

if $|z|<\frac{\left|a_{0}\right|}{M_{10}}$.
This shows that $\mathrm{F}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{9}}$, for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{10}}$ for $R \leq 1$.

Since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, it follows that $\mathrm{P}(\mathrm{z})$ has no zero in $|z|<\frac{\left|a_{0}\right|}{M_{9}}$, for $R \geq 1$ and no zero in $|z|<\frac{\left|a_{0}\right|}{M_{10}}$ for $R \leq 1$, thereby proving Theorem 2 when n is odd.
The proof for even n is similar and is omitted.

References

[1] N. K. Govil and Q. I. Rahman, On the Enestrom- Kakeya Theorem, Tohoku Math. J. 20(1968), 126-136.
[2] M. H. Gulzar, Zeros of a Complex Polynomial in a Given Disk, International Journal of Advanced Scientific and Technjcal Research, Issue 3, Volume 5, 2013, 168-180.

