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ABSTRACT
Sufficient conditions for oscillation of solutions of Third order linear neutral delay differential
equations of the type

= <r(t) 57 (v (©) + p(O)y(t - r))> +f()y(t—0)=0

are obtained, where
p(t), f(t) € C([ty,©),R) and f(t) =0, 7(t) € C'([to,®),(0,:)), r'(t) =0,
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1. INTRODUCTION
In this paper we consider the linear neutral delay differential Equation

dt?

= <r(t) L () +p@)y(t - r))> +f(OO(E—-0)=0 (1)

where
p(t), f(t) € C([ty,©),R), and f(t) =0,
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1

r(t) € C'([ty,©),(0,0)), 7r'(t)=0 and f;:r(s) ds = o,
When p(t) = 0 the above equation reduces to the third order delay differential equation
2
= (O ¥(®) + FOGE - 6)) =0 e

The study of behavior of solutions of differential equations has been a subject of interest for
several researches. We mention the works of [3,8,10].

Oscillatory behaviour of delay differential equations is extensively studied by
[1,2,4,5,6,7,9,15] The authors studied the nonoscillatory behavior of solutions of certain first and
second order neutral delay differential equations in [12,13,14], however we find less
work concerning the oscillation criteria of third order neutral delay differential equations. We

investigate the conditions under which the solutions of equation (1) are oscillatory.
By a solution of equation (1) we mean a function y(t) € ¢ ([Ty, oo)) where T}, > t, which

satisfies (1) on [T, ). We consider only those solutions of y(t)of (1) which
satisfy sup {| y(¢t) |:t > T}>O0forall T > T, and assume that (1) possesses such solutions.
A solution of (1) is called oscillatory if it has arbitrarily large zeros on [T, o) ; otherwise

it is called nonoscillatory. Equation (1) is said to be oscillatory if all its solutions oscillate.
Unless otherwise stated, when we write a functional inequality, it will be assumed to hold for

sufficiently large t in our subsequent discussion.

2. MAIN RESULTS

We need the following in our discussion.

(H,): r(t) € C'([tg, ), (0,)),
r'(t) =0 for t > t,.

(Hy): p(t) € (Clto, ), R)

(H3): f(t) € C([ty,©),[0,x))

(H,): There exists a positive decreasing function q(t) such that f(t) = q(t) for t € [¢t,, ).

(Hs) f;: fvoo[ 2 foo f(s) ds]ldudv = o,

r(u)“u

(Hg) lim, sup fttl [ZSq(s)(l —p(s — 0))]KM(5 —0)? —r(s)]ds =, for some

K,M € (0,1) for sufficiently large t; > ¢, ,
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1
R(S) r(s)

(Hy): lim,sup f; {[2q(s)(1 = p(s — 0))] kM E=2"

K ,M € (0,1) and for sufficiently large t, > t,,

}ds =« holds for some

where R@) =[] —ds

We set
z(¢) = y(t) + p(O)y(t —7) )
Then we have the following:

Lemma 2.1. Suppose x(t) is twice continuously differentiable real valued function on [t,, ©)
such x(t) >0, x'(t) =0, and x"(t) <0 on [t,,) for some t, > t,.Then for each k with

0 < k < 1 there exists t, > t; such that

x(t—o) > (t-o)

Rl e t>t,. (4)

Proof: From the Lagrange's Mean Value Theorem we have fort > t, ,

x(t)-x(t—o)

ey = ¥ (©).forsome & suchthatt —o < § <t.

x'(t) <0 => x'(t) is non increasing

=>x'(§) <x'(t-o0),

and hence
x(t) —x(t—0) <x'(t—o)(t - (t —0)) (5)
e 20 <1+ 250 (- (- 0)) ©)

Applying Lagrange's Mean Value Theorem once again for x(t) on [t; ,t — o] for t > t; + 0o

x(t—o)—x(ty) _

t-o—t, = x'(n) for some nsuchthatt, <n<t-—o.

=>x'(n) > x'(t - 0)

x(t—o)=x'(t—o)(t—o0—t)

x(t— 0') . .
x'(t-0) — (t O-) ty
Given Ke (0,1).Thenwecanfind t, >t; +o
such that,
x(t—0) .
. )21((1: o)fort > t, (7)

From (5) and for all t > t, , we have
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. x(t) x'(t—o) _ _
ie prrm ol G (t — o))
1 . .
<1+ ) (t — (t — 0)), in view of (6)
or
x(t) <14+ t . (t-o)
x(t—o) — K(t-0) K(t-o)'
— 1 t
o (1 K) * K(t-0o)
= Yoo ,since0<K<1.
Hence

x(t—o) > K(t-o)
x(t) — t

for t > t, (8)

Lemma 2.2. Let z(t) € C3([t,,),R) and suppose that z(t) >0, z'(t) >0, z'(t) >0,

z"(t) < 0on[t,,o) forsomet; > t,. Then there exists t; > t; such that
2(t) 2 Mt 2 (t), t = T,

foreachM; O<M<1.
We define

() = {2 HE2 (1 - p(e - 0))q(e), ¢ = £, for each K and M

withO<K <1, andO< M < 1.

Proof : We define a function H(t) fort > t, > t, as
HE) = (t— t)2(0) - M2 7). (©)

and H'(t) = (t —t,)z'(t) +z(t) — Zﬂ{z(t — t,)z'(t) + (t — t,)? 2" (t)}

H'(8) = 2(6) + (t— ;)1 - M)z '(6) — 2222 7o) (10)
Now we have to prove that H'(t) > 0.
By Taylors Theorem,
we have

2(t) = 2(t;) + (t — £)2' (1) + 2= 2'(1)) + L2 27, + 0(¢ — 1)

2(t) 2 2( 1) + (t — )2 (6) + 2= 2'(t;)

ISSN: 2231-5373 http://www.ijmttjournal.org Page 360




International Journal of Mathematics Trends and Technology —Volume 4 Issue 11 — December 2013

> 2(t,) + (t — 1)z (1) + 2 2'(r)
From (10)
(D) = 2(1;) + (- )2 (1) + L222 27(0)
+(e— )1 - M)z (6) - 2ED 47(r)

Hence H'(t) >0
H(t,) =0.wehave H(t) > H(t,) =0 foreveryt > t,.

Then from (9)
(¢ - t)z(t) - 22D 2 )
ie 2(t) > MR 4 (p)
ie ﬂ > M _Mh
z'(t) 2 2
or ZZ(—(?) > for t>¢,. (11)

Hence the lemma.

Theorem 2.3. Assume that, (H,) — (H,) hold, then equation (1) is oscillatory

Proof. Suppose, if possible that the equation (1) has a nonoscillatory solution. Without loss of
generality supposes that y(t) is a positive solution of equation (1). Then there exists three
possible cases for z(t).

(i) z(t)>0,2z() <0, z'(t)>0; z"(t) <0,

(ii) z(t)>0,z'(t) >0, z'(t)>0; z"(t) <0,

(iii) z(t) > 0,z'(t) >0, z'(¢t) <0;(r(t)(z'(t))) <0
fort>t; >ty

e

Casel: z(t) >0,z'(t) <0,z'(t)>0; z"(t) <0,

Since z(t) > 0 andz (t) < 0, then there exists finite limit lim,_,, z(t) = k
We shall prove that k = 0.

Assume that k > 0. Then for any ¢ > 0, we have k + ¢ > z(t) >k,
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Let 0< ¢ < X1P)

From (3), we have
y(t) =z(t) —p(t)y(t — 1)
>k —p(t)z(t — 1)

>k —plk+ ¢)

=m(k+ ¢)

> mz(t).
where m = %

Now from the equation (1) we have

%(r(t)i(y(t) +p(t)y(t - r))> =- f®)y(t— o)

dt?

. (r(t) (z”(t))) < —F(O)mzt— o)
-(r0 (2 ©®)) " = -[-f@Omatc - o))
~-(r0 (2 ®)) " = [f@Omae - o)1

Integrating the above inequality from t to o we get

-7 (10 (2'®)) ‘e = m [ ()20 - 0)as

()2 ) = (@) (2’O)] = m [ f()z(s — o )ds
r(®) (z'(®) = m [ f(s)z(s - o )ds
Using the fact that, z(t — o) >k,
we obtain
r(0)z"(t) = mk [[, f(s)ds].
2"(t) = mk[— [ f(s)ds].

r(t) °t

Integrating between t to oo we have

72" @ dt = mk [T [ f(s)ds] du.

z'(:0) — 2'(t) = mk [ ﬁ I f(s)ds] du.
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—z'(t) = mk [ ﬁ I f(s)ds] du . (16)
Integrating from t; to o , we get
— [ 2@dt 2 mk [ [}1 -

~[2(=) — 2(t)] = mk [ [} [ f(s)ds] dudv.

f:f(s)ds] dudv .

—z(w0) + z(t)) = mk f;j f:[ﬁf:f(s)ds] dudv .

2(t) 2 mk J [ — [ f(s)ds]dudv . (17)

v tr(u)

This contradicts (Hs) .
The inequality 0 < y(t) < z(t)

implies lim,_,y()=0

Casell: z(t)>0,z'(t) >0, z'(t)>0;z"(t) <0,

If we set

z(t) = y(t) + p(t)y(t — 1)
we obtain, further,
y(t) = z(t) —p(®)y(t — 1)
y({t—0)=2z(t—0)—p(t—0)y(t—0—r1)
>z(t—0)—pt—0o)y(t—o)
>[1 - p(t —0)]z(t — o) (18)
From (1) we have

[FOlZ®]] + @y - =0,
[+ ©®]] < -a@®yc—0),

[ro[z®]] =-a@ [1-pt -zt - o), (19)

so that [r(®)[z'(®)]]'< 0
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We define the function ¢ by

r(®)(z'(t)
pt)=t o t=>t;. (20)
_ r()('®) r(£)(z'(t) y’
v O="0m T e )
r(t)(z' (1) r(0)(z"(t) y r(£)(z'(t))?
= : +t(—= —t———
z'(t) ( z'(t) ) (z(1)?
o(t) () (t) y CAO))
= == +t(—2) — ,
. Tt e ) e oo (21)
(t) Z(t 0) ")
< —tq(t)(1 —p(t —
< a1 —p(t — o)) o(O)
, w(t) z(t-0) 9%
¢ )< — = —tqA-pt=-9) 5"~ o (22)
Also from lemma 2.1 with x(t) = z'(t), we have
x(t—o) k(t—o) .
0 = . t—o=t
z'('t—a) s k(t-o)
z (t) — t
1 k(t—o) 1 .
= e =z — T for t—o=>t >t (23)
and by Lemma 2.2 for M and by (22),
z(t—a)> K(t-o) z(t—o)
z'(t) — t ' zZ'(t-o)
> K(t—a). M(t—o)
t 2
> ﬂ_(t—a)z
2 t
(24)
Combining (22) and (24) we get
/ @ _ ol — KM (E-0)? 92
o' () £ L2 — ()1 - p(t - ) L E _ (25)
. . . 1v?
Using the inequality Vx—Ux? <= T U>0
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with x:<p(t);U:trL(t);V:%.
we have o'(t) < —tq(t)(l—p(t—a))%@ﬁ 4<
Integrating the last inequality from t, to t, we obtain
oL as)A=pls — o)) 3KM(s —0) 2 =7 "21ds < o(t2) , (26)

which contradicts (Hg).

We now consider

Caselll: z(t)>0,z'(t) >0, z'(t) <0;(r()(2z"'(®))' <0

We define the function @ by

o(t) = —r(t)z(,f;)(t)) Lt>t. 27)
Then @(t) <0. Noting that (¢)(z"(t)) is nonincreasing, we get
r(s)z"(s) < r(t)z'(¢), s=t=t

Dividing the above inequality by r(s), and integrating it from ¢t tol, we get

l r(s)z"(s) l r(t)z (t)
= s )= ds

[l 2" (s)ds < r(©)z"(6) fj% d
zZ()—z'(@) <r(t)z"(®) ft e )
z()<z@)+r@)z"(®) ft e )

on letting I — o, we have

0<z'(t) +r(t)z"(t)R(t).
—r(t)z"(t)R(t) < z'(t)

—R(b) T(f)ft)(t) <1

Hence by (27) we get —R(t) 0(¢t) < 1. (28)
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Differentiating (27) we get

2O ®)) -c@(z' O )zt

0 () = @ (0)?

ZOEOE'W) | cOE" )
0(0) = z'(t)z'(t) (' (1))?

0'(¢) = (r®OE'@)  c@E ©ONz'(@)

z'(t) z'()z'(t)
_ (ro@E"®))’ z"(t)
o'(t) = o O(t) (t)
(r®OE'@)  (91)?
Thus (t) 20 O (29)

Since z(t) >0,z () >0, z'(t) <O.
It follows from (1), (19), (24) and (29) that there exists a t; > t, such that

vy — rOE'®)  (9m)
Qj(t) z'(t) r(t)

0(t) = —9WapC-oNzt=0) _ (o(0)*

z'(t) r(t)
R N

Multiplying (30) by R(t) and integrating it from ¢ ; to t we have

£ RGO < - [ q(s)L—p(s — ) L5 - ¢ EO pioyas

RO = R(E) B(t ) + [}, == 0(s)ds + [ q(s)(1 = p(s — 0)) 2D s

t 9%(s)
+ ft3m R(S)ds <0

set with —@(s);U = —R(s) V= (s)
2

Using the inequality Ux?—Vx = _21% U>0

we have

JL Ta(s)@ = p(s = o)) ALt Jds< R(t)O(ts)+1  (31)

1
2 s 4R(s)()
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Letting t — oo, we obtain a contradiction to (H,). Therefore all the solutions of the equation

(1) are oscillatory.

Example2.4:

Consider the neutral delay differential equation,

dt?

L (&[0 he-z)hrer(-2)=0 @

Here, r(t)=et, p(t) == 7=2m, f(t)=e

49 1
o= Tﬂ and q(t) ==

t

and
R() = [ —ds ="

Let K =0.4 and M = 0.4 Then we observe that all the conditions of Theorem 2.3 are
satisfied. Hence all solutions of the equation (32) are oscillatory.

3. Summary:
In this work, an attempt is made to establish the conditions under which the

solutions of neutral delay differential equation (1) are oscillatory.
We wish to mention here, under suitable conditions one can show

that all solutions of a more general equation

L0 [Sn @ {5 () +pOye - DI+ FOGE - c)=0 (33
are oscillatory following the lines of Theorem 2.3.
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