Products of Conjugate K-Normal Matrices

S.Krishnamoorthy And K.Gunasekaran
Department of Mathematics, Government Arts College (Autonomous),
Kumbakonam, Tamilnadu, India 612001.
K.Arumugam
Department of Mathematics,
A.V.C College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India 609305.

Abstract

In this paper, we discussed properties of conjugate k-normal matrices. The product of k -normal and conjugate k -normal matrices are also discussed..

AMS Classifications: 15A09, 15A57.
Keywords: k-normal, k-unitary, k-hermitian, Con-k-normal.

1. INTRODUCTION

A k -normal matrix $\mathrm{A}=\left\langle\mathrm{a}_{\mathrm{ij}}\right\rangle$ with complex elements is a matrix such that $\mathrm{AA}^{*} \mathrm{k}=\mathrm{KA}^{*} \mathrm{~A}$, where A^{*} denotes the complex conjugate transpose of A . A conjugate k -normal matrix is defined to be a complex matrix A which is such that AA^{*} $\mathrm{K}=\overline{\mathrm{KA}^{*} \mathrm{~A}}$. Here, we developed further properties of conjugate k -normal matrices, their relation, in a sense; to k-normal matrices in considered and further results concerning k -normal products are obtained including an analogous for conjugate k -normal matrices.

2. PROPERTIES OF CONJUGATE k-NORMAL MATRICES

Theorem 2.1:

A matrix A in conjugate k -normal if and only if there exists a k -unitary matrix U such that $U A U^{T}$ is a direct sum of non-negative real numbers and of 2×2 matrices of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$, where a and b are non-negative real numbers.

Proof:

Let A be conjugate k-normal, where $A=M+N$, where $M=M^{T}$ and $N=-N^{T}$.

Then, $\quad A A^{*} K=\overline{K A^{*} A}$

$$
\begin{array}{ll}
\Rightarrow & A A^{*} K=K \overline{A^{*}} \bar{A} \\
\Rightarrow & A A^{*} K=K\left(\overline{A^{-T}}\right) \bar{A} \\
\Rightarrow & A A^{*} K=K A^{T} \bar{A}
\end{array}
$$

$$
(M+N)(M+N)^{*} K=K(M+N)^{T} \overline{(M+N)}
$$

$$
(M+N)\left(M^{*}+N^{*}\right) K=K\left(M^{T}+N^{T}\right)(\bar{M}+\bar{N})
$$

$$
(M+N)\left(\bar{M}^{T}+\bar{N}^{T}\right) K=K(M-N)(\bar{M}+\bar{N}), \quad \text { since } M=M^{T} \text { and } N=-N^{T}
$$

$$
(M+N)\left(\left(\overline{M^{T}}\right)+\left(\overline{N^{T}}\right)\right) K=K(M-N)(\bar{M}+\bar{N})
$$

$$
(M+N)(\bar{M}-\bar{N}) K=K(M-N)(\bar{M}+\bar{N})
$$

$$
(M \bar{M}-M \bar{N}+N \bar{M}-N \bar{N}) K=K(M \bar{M}+M \bar{N}-N \bar{M}-N \bar{N})
$$

$$
M \bar{M} K-M \bar{N} K+N \bar{M} K-N \bar{N} K=K M \bar{M}+K M \bar{N}-K N \bar{M}-K N \bar{N}
$$

$$
-M \bar{N} K+N \bar{M} K=K M \bar{N}-K N \bar{M}
$$

$$
-M \bar{N} K-K M \bar{N}=-K N \bar{M}-N \bar{M} K
$$

Since A is conjugate k-normal. Therefore M and N is also a conjugate k -normal.
Therefore, $-M \bar{N} K-M \bar{N} K=-N \bar{M} K-N \bar{M} K$

$$
\begin{gathered}
-2 M \bar{N} K=-2 N \bar{M} K \\
M \bar{N}=N \bar{M}
\end{gathered}
$$

There exists a k-unitary matrix U such that $U M U^{T}=D$ is a k-diagonal matrix with real, non-negative elements.
Therefore, $\quad U N U^{T} \overline{U M} U^{*}=U M U^{T} U N U^{*}$

$$
\Rightarrow \quad W D=D \bar{W}, \quad \text { where } \mathrm{W}=-\mathrm{W}^{\mathrm{T}}
$$

Let U be chosen so that D is such that $d_{k(i)} \geq d_{k(j)} \geq 0$ for $\mathrm{i}<\mathrm{j}$, where $d_{k(i)}$ in the $\mathrm{i}^{\text {th }}$ k-diagonal element of D.

If $W=\left(t_{k(i) k(j)}\right)$, where $\left(t_{k(i) k(j)}\right)=-\left(t_{k(i) k(j)}\right)$,then $t_{k(i) k(j)} d_{k(j)}=d_{k(i)} t_{k(i) k(j)}$, for $\mathrm{j}>\mathrm{i}$ and three possibilities may occur: if $d_{k(i)}=d_{k(j)} \neq 0$, then $t_{k(i) k(j)}$ is real; $d_{k(i)}=d_{k(j)}=0$, then $t_{k(i) k(j)}$ is arbitrary(though $\mathrm{W}=-\mathrm{W}^{\mathrm{T}}$ still holds); and if $d_{k(i)} \neq d_{k(j)}$, then $t_{k(i) k(j)}=0$ for if $t_{k(i) k(j)}=a+i b$, then $(a+i b) d_{k(j)}=d_{k(i)}(a-i b)$ and $\mathrm{a}\left(d_{k(j)}-d_{k(i)}\right)=0$ implies $\mathrm{a}=0$ and $\mathrm{b}\left(d_{k(i)}+d_{k(j)}\right)=0$ implies $\mathrm{d}_{\mathrm{k}(\mathrm{i})}=-\mathrm{d}_{\mathrm{k}(\mathrm{j})}$ (which is not possible since $d_{k(i)}$ are real and non-negative and $d_{k(i)} \neq d_{k(j)}$) or $b=0$ so $\mathrm{t}_{\mathrm{k}(\mathrm{i}) \mathrm{k}(\mathrm{j})}=0$.

So if $\mathrm{UMU}^{\mathrm{T}}=\mathrm{d}_{\mathrm{k}(1)} \mathrm{I}_{\mathrm{k}(1)}+\mathrm{d}_{\mathrm{k}(2)} \mathrm{I}_{\mathrm{k}(2)}+\mathrm{d}_{\mathrm{k}(3)} \mathrm{I}_{\mathrm{k}(3)}+\ldots+\mathrm{d}_{\mathrm{k}(\mathrm{n})} \mathrm{I}_{\mathrm{k}(\mathrm{n})}$, where + denotes the direct sum , then $\mathrm{UNU}^{\mathrm{T}}=\mathrm{N}_{\mathrm{k}(1)}+\mathrm{N}_{\mathrm{k}(2)}+\mathrm{N}_{\mathrm{k}(3)} \ldots+\mathrm{N}_{\mathrm{k}(\mathrm{n})}$, where $\mathrm{N}_{\mathrm{k}(\mathrm{i})}=-\mathrm{N}^{\mathrm{T}} \mathrm{T}_{\mathrm{k})}$ is real and $N_{k(n)}=-N_{k(n)}^{T}$ is complex if and only if $d_{k(n)}=0$. For each real $T_{k(i)}$ there exists a real orthogonal matrix $V_{k(i)}$ so that $V_{k(i)} N_{k(i)} V^{T}{ }_{k(i)}$ is a direct sum of zero matrices and matrices of the form $\left[\begin{array}{rr}0 & b \\ -b & 0\end{array}\right]$, where \mathbf{b} is real. If $\mathbf{N}_{\mathrm{k}(\mathrm{n})}=-\mathrm{N}^{\mathrm{T}} \mathrm{k}_{\mathrm{n})}$ is complex , there exists a complex k-unitary matrix $V_{k(n)}$ such that $V_{k(n)} N_{k(n)} V_{k(n)}$, N is a direct sum of matrices of the some form , so that $\mathrm{V}=\mathrm{V}_{\mathrm{k}(1)}+\mathrm{V}_{\mathrm{k}(2)}+\mathrm{V}_{\mathrm{k}(3))}+\ldots+\mathrm{V}_{\mathrm{k}(\mathrm{n})}$, then $\mathrm{VUMU}^{\mathrm{T}} \mathrm{V}^{\mathrm{T}}$ $=\mathrm{D}$ and $\mathrm{VUNU}^{\mathrm{T}} \mathrm{V}^{\mathrm{T}}=\mathrm{F}=$ the direct sum described.

Therefore, $\mathrm{V} \mathrm{U} \mathrm{A}^{\mathrm{T}} \mathrm{V}^{\mathrm{T}}=\mathrm{D}+\mathrm{F}$ which is the desired form.

Properties of conjugate k-normal matrices:

Let A and B are two conjugate k -normal matrices such that $A \bar{B}=B \bar{A}$, then A and B can be simultaneously brought in to the above k-normal form under the same U (with generalization to a finite number) but not conversely; if A is conjugate k -normal, $A \bar{A}$ is k-normal in the usual sense, but not conversely and if A is conjugate k -normal and $A \bar{A}$ is real, there is real orthogonal matrix which gives the above form.

Properties of con k-normal matrices not obtained in this section but of subsequent use are the following:

(a) A is conk-normal iff $\mathrm{A}=\mathrm{HU}=\mathrm{UH}^{\mathrm{T}}$ Where H is k-hermitian and U is k-unitary.

For if $\mathrm{A}=\mathrm{HU}$ is a polar form of A , then $\mathrm{U}^{*} \mathrm{HU}=\mathrm{L}$ is such that $\mathrm{A}=\mathrm{HU}=\mathrm{UL}$ and if $A A^{*}=A^{T} \bar{A}$ then $\mathrm{H}^{2}=\left(\mathrm{L}^{\mathrm{T}}\right)^{2}$ and since this is a k-hermitian matrix with nonnegative roots, $\mathrm{H}=\mathrm{L}^{\mathrm{T}}$ and $\mathrm{A}=\mathrm{HU}=\mathrm{UH}^{\mathrm{T}}$. The converse is immediate.

This same result may be seen as follows. If $\mathrm{UAU}^{2}=\mathrm{F}$ is the k -normal form in theorem $1, F=D_{K(r)}, V=V D_{k(r)}$, where $D_{K(r)}$ is real K - diagonal and V is a direct sum of 1's or block in the form $\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{-112}\left[\begin{array}{cc}a & b\rceil \\ -b & a\end{array}\right]^{\text {which are k- unitary. }}$
Therefore, $A=U^{*} D_{k(r)} U U^{*} V \bar{U}=U^{*} V U U^{T} D_{k(r)} \bar{U}$ this exhibits the polar form in another guise.
(b) A is both k-normal \& con k-normal if and only if $\mathrm{A}=\mathrm{HU}=\mathrm{UH}=\mathrm{UH}^{\mathrm{T}}$. So $H=H^{T}=H^{*}$ so that H is real.
(c) if $\mathrm{A}=\mathrm{HU}=\mathrm{UH}^{\mathrm{T}}$ is con k -normal, then UH is con k -normal, if and only if $\mathrm{HU}^{2}=$ $U^{2} H$,(i.e.) if and only if HU^{2} is k-normal . For if $U H$ is con k-normal . $\mathrm{UH}=\mathrm{H}^{\mathrm{T}} \mathrm{U}$ so that $\mathrm{HU}^{2}=\mathrm{UH}^{\mathrm{T}} \mathrm{U}=\mathrm{U}^{2} H$, and if $\mathrm{HU}^{2}=\mathrm{U}^{2} H$, then $\mathrm{HUU}=\mathrm{UH}^{\mathrm{T}} \mathrm{U}=\mathrm{UUH}$ or $H^{\mathrm{T}} \mathrm{U}=$ UH.
(d) A matrix A is con k- normal if and only if A can be written $A=S W=\bar{W} S$ where $\mathrm{M}=\mathrm{M}^{\mathrm{T}}$ and W is k -unitary. If A is con k -normal, from the above
$A=U^{*} F \bar{U}=U^{*} D_{k(r)} \bar{U} V^{T} V \bar{U}=M W=U^{*} V U U^{*} D_{k(r)} \bar{U}=\bar{W} M$, where $M=U^{*} D_{k(r)} \bar{U}$
is symmetric and $W=U^{T} V \bar{U}$ is k-unitary. Conversely,
if $A=M W=\bar{W} M, A A^{*}=M W W^{*} M^{*}=A^{T} \bar{A}=M^{T} W^{*} W \bar{M}$.

Remarks 2.2:

If B is con k -normal and if $\mathrm{B}=\mathrm{MU}$ where $\mathrm{M}=\mathrm{M}^{\mathrm{T}}$ and U ia k -unitary, it does not necessarily follow that $\mathrm{B}=\bar{U} S$, but it is possible to find an M_{1} and U_{1} such that $B=M_{1} U_{1}=\overline{U_{1}} M_{1}$ holds. This may be seen as follows .If $\mathrm{B}=\mathrm{MU}$ is con k -normal, let V be k-unitary such that $\mathrm{VMV}^{\mathrm{T}}=\mathrm{D}$ is k -diagonal, real and non-negative, so that $V B V^{T}=V S V^{T} \bar{V} U V^{T}=D W$ is con k-normal from which $D W W^{*} \bar{D}=W^{T} D^{T} D W$ or since D is real, $\mathrm{WD}^{2}=\mathrm{D}^{2} \mathrm{~W}$ and $\mathrm{WD}=\mathrm{DW}$ since D is non-negative.
Then $B=\left(V^{*} D \bar{V}\right)\left(V^{T} W \bar{V}\right)=M V=\left(V^{*} W V\right)\left(V^{*} D V\right)$ which is not necessarily $=$ $\bar{U} S=\left(V^{*} W V\right)\left(V^{*} D \bar{V}\right)$. However, if $\mathrm{D}=\mathrm{r}_{1} \mathrm{I}_{1+} \mathrm{r}_{2} \mathrm{I}_{2+} \mathrm{r}_{3} \mathrm{I}_{3+\ldots}+\mathrm{r}_{\mathrm{n}} \mathrm{I}_{\mathrm{n}}, \mathrm{r}_{\mathrm{i}}>\mathrm{r}_{\mathrm{j}}$ for $\mathrm{i}>\mathrm{j}$, then $\mathrm{w}=\mathrm{w}_{1+} \mathrm{w}_{2+} \mathrm{w}_{3}+\ldots+\mathrm{w}_{\mathrm{n}}$. Since each W_{i} is k -unitary, it is con k -normal and hence there
exist k-unitary Xi so that $X_{i} W_{i} X_{i}^{T}=F_{i}$ is in the k-normal form of theorem 1.
If $\mathrm{x}=\mathrm{x}_{1+} \mathrm{X}_{2+} \mathrm{x}_{3+\ldots}+\mathrm{x}_{\mathrm{n}}$, then
$X V B U^{T} X^{T}=X D W X^{T}=D X W X^{T}=D F=F D$, where $F=F_{1}+F_{2}+\square+F_{n}$.
So, $B=\left(V^{*} X^{*} D \bar{X} \bar{V}\right)\left(V^{T} X^{T} F \bar{X} \bar{V}\right)=\left(V^{*} X F X V\right)\left(V^{*} X^{*} D X V\right)=M U$
$\Rightarrow B=\overline{U_{1}} M_{1}$
and $\quad M_{1}=V^{*} X^{*} D \bar{X} \bar{V} \neq V^{*} D \bar{V}=M$

$$
U_{1}=V^{T} X^{T} F \bar{X} \bar{V} \neq V^{T} W \bar{V}=U .
$$

3. k-NORMAL PRODUCTS OF MATRICES:

In this section, if A, B and AB are k -normal matrices, the BA is k -normal, a necessary and sufficient condition that the products, AB of two k -normal matrices A and B be k -normal is that each commute with the k -hermitian polar matrix of each other .First a generalization of this theorem is obtained here and then an analogous for the con k -normal case is developed.

Theorem 3.1: Let A and B be a k -normal matrices and AB and BA are k -normal.
Then $K\left(A^{*} A\right) B=B\left(A A^{*}\right) K$ and $K\left(B^{*} B\right) A=A\left(B B^{*}\right) K$.
Proof:
If AB and BA are k -normal. Let U be a k -unitary matrix such that
$U A U^{*} K=D$ is diagonal, $d_{k(i)} \bar{d}_{k(i)} \geq d_{k(j)} \bar{d}_{k(j)} \geq 0$ for $\mathrm{i}<\mathrm{j}$.
Let $U B U^{*} K=B_{1}=b_{k(i) k(i)}$. since AB and BA are k-normal.
Then $A B B^{*} A^{*} K=K B^{*} A^{*} A B \Rightarrow D B_{1} B_{1}^{*} D^{*} K=K B_{1}^{*} D^{*} D B_{1}$
By equating diagonal elements it follows that
$\sum_{j=1}^{n} d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}=\sum_{j=1}^{n} d_{k(j)} \bar{d}_{k(j)} b_{k(j) k(i)} \bar{b}_{k(j) k(i)} \quad \rightarrow(1)$ for $\mathrm{i}=1,2 \ldots \mathrm{n}$.
Similarly, $B A A^{*} B^{*} K=K A^{*} B^{*} B A \Rightarrow B_{1} D D^{*} B_{1}^{*} K=K D^{*} B_{1}^{*} B_{1} D$
$\Rightarrow \sum_{j=1}^{n} d_{k(j)} \bar{d}_{k(j)} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}=\sum_{j=1}^{n} \bar{d}_{k(i)} d_{k(i)} \bar{b}_{k(j) k(i)} b_{k(j) k(i)} \rightarrow(2)$.
Let $\mathrm{i}=1$, from (1) and (2)
$\Rightarrow \sum_{j=1}^{n} d_{k(1)} \bar{d}_{k(1)} b_{k(1) k(j)} \bar{b}_{k(1) k(j)}=\sum_{j=1}^{n} d_{k(j)} \bar{d}_{k(j)} b_{k(j) k(1)} \bar{b}_{k(j) k(1)} \rightarrow(3)$

$$
\sum_{j=1}^{n} d_{k(j)} \bar{d}_{k(j)} b_{k(1) k(j)} \bar{b}_{k(1) k(j)}=\sum_{j=1}^{n} \bar{d}_{k(1)} d_{k(1)} \bar{b}_{k(j) k(1)} b_{k(j) k(1)} \rightarrow(4)
$$

Now (3)-(4), we
get,
$\sum_{j=1}^{n}\left(d_{k(1)} \bar{d}_{k(1)}-d_{k(j)} \bar{d}_{k(j)}\right) b_{k(1) k(j)} \bar{b}_{k(1) k(j)}=\sum_{j=1}^{n}\left(d_{k(j)} \bar{d}_{k(j)}-\bar{d}_{k(1)} d_{k(1)}\right) b_{k(j) k(1)} \bar{b}_{k(j) k(1)}$
$\sum_{j=1}^{n}\left(d_{k(1)} \bar{d}_{k(1)}-d_{k(j)} \bar{d}_{k(j)}\right)\left(b_{k(1) k(j)} \bar{b}_{k(1) k(j)}+b_{k(j) k(1)} \bar{b}_{k(j) k(1)}\right)=0$
$d_{k(1)} \bar{d}_{k(1)}=d_{k(2)} \bar{d}_{k(2)}=\ldots . . .=d_{k(t)} \bar{d}_{k(t)}>d_{k(t+1)} \bar{d}_{k(t+1)} ;$
Then $b_{k(1) k(j)} \bar{b}_{k(1) k(j)}+b_{k(j) k(1)} \bar{b}_{k(j) k(1)}=0$, for $\mathrm{j}=\mathrm{t}+1, \mathrm{t}+2, \ldots \mathrm{n}$.
Since $d_{k(1)} \bar{d}_{k(1)}-d_{k(j)} \bar{d}_{k(j)}=0$ or positive value and is the latter for $\mathrm{j}>\mathrm{t}$
So $b_{k(1) k(j)}=0$ and $b_{k(j) k(1)}=0$ for $\mathrm{j}=\mathrm{t}+1, \mathrm{t}+2 \ldots \mathrm{n}$.
For $\mathrm{i}=2,3, \ldots \mathrm{t}$ is turn it follows that $b_{k(i) k(j)}=0$ and $b_{k(j) k(i)}=0$, for $\mathrm{i}=1,2 \ldots \mathrm{t}$ and $\mathrm{j}=\mathrm{t}+1, \mathrm{t}+2, \ldots \mathrm{n}$.
Let $U A U^{*} K=D=r_{1} D_{1}+r_{2} D_{2}+\ldots \ldots+r_{s} D_{s}$, where the r_{i} are real, $r_{i}>r_{j}$ for $i<j$ and the D_{i} are k-unitary.

Then by repeating the above process it follows that $U B U^{*} K=B_{1}=C_{1}+C_{2}+\ldots \ldots+C_{s}$ is conformal to D . it follows from the given condition that $\quad\left(r_{i} D_{i}\right) C_{i} C_{i}^{*}\left(D_{i}^{*} r_{i}\right) K=K C_{i}^{*}\left(r_{i} D_{i}^{*}\right)\left(D_{i} r_{i}\right) C_{i}$
and $C_{i}\left(r_{i} D_{i}\right)\left(D_{i}^{*} r_{i}\right) C_{i}^{*} K=K\left(r_{i} D_{i}^{*}\right) C_{i}^{*} C_{i}\left(D_{i} r_{i}\right)$
$\Rightarrow D_{i} C_{i} C_{i}^{*} K=K C_{i}^{*} C_{i} D_{i}$ and $D_{i} C_{i} C_{i}^{*} K=K C_{i}^{*} C_{i} D_{i}$ if $r_{i}>0$
If $r_{s}=0, D_{s}$ is arbitrary insofar as D is concerned and so may be chosen so that $D_{s} C_{s} C_{s}^{*} K=K C_{s}^{*} C_{s} D_{s}$ in which case D_{s} may not be diagonal. But whether or not this is done, it follows that $D B_{1} B_{1}^{*} K=K B_{1}^{*} B_{1} D$ and $B_{1} D D^{*} K=K D^{*} D B_{1}$ so that $K\left(A^{*} A\right) B=B\left(A A^{*}\right) K$ and $K\left(B^{*} B\right) A=A\left(B B^{*}\right) K$.

Theorem 3.2:

Let $A=P W=W P$ both polar form of the k -normal matrix A . Then $\mathrm{AB} \& \mathrm{BA}$ are k-normal iff $B=N W^{*}$, where N is k-normal and $P N=N P$

Proof:

Let $C_{k(i)}=H_{k(i)} U_{k(i)}=U_{k(i)} L_{k(i)}$ be the polar form of the $C_{k(i)}$.
Then $U_{k(i)}^{*} H_{k(i)} U_{k(i)}=L_{k(i)}$.
So that $U_{k(i)}^{*} C_{k(i)} C_{k(i)}^{*} U_{k(i)}=C_{k(i)}^{*} C_{k(i)}$ or $U_{k(i)}^{*} C_{k(i)} C_{k(i)}^{*}=C_{k(i)}^{*} C_{k(i)} U_{k(i)}^{*}$.
Also from the above $D_{k(i)} C_{k(i)} C_{k(i)}^{*}=C_{k(i)}^{*} C_{k(i)} D_{k(i)}$.
Let $R_{k(i)}=\bar{D}_{k(i)} U_{k(i)}^{*}$.
Then $\quad R_{k(i)} C_{k(i)} C_{k(i)}^{*}=\bar{D}_{k(i)} U_{k(i)}^{*} C_{k(i)}^{*} C_{k(i)}$

$$
\begin{aligned}
& =\bar{D}_{k(i)} C_{k(i)}^{*} C_{k(i)} U_{k(i)}^{*} \\
& =C_{k(i)}^{*} C_{k(i)} \bar{D}_{k(i)} U_{k(i)}^{*} \\
& =C_{k(i)}^{*} C_{k(i)} R_{k(i)}, \text { where } R_{k(i)} \text { is k-unitary }\left(r_{k(s)}=0, D_{k(s)}\right. \text { may be }
\end{aligned}
$$ chosen $=U_{k(s)}^{*}$ as describe above). So $R_{k(i)} H_{k(i)}^{2}=H_{k(i)}^{2} R_{k(i)}$ and since $H_{k(i)}$ has positive or zero roots, $R_{k(i)} H_{k(i)}=H_{k(i)} R_{k(i)}$ and so $H_{k(i)} R_{k(i)}^{*}=R_{k(i)}^{*} H_{k(i)}$.

Then, $A=U^{*} D U=U^{*} D_{k(i)} U U^{*} D_{k(i)} U=P W=P W$ and

$$
\begin{aligned}
B & =U^{*} B_{k(i)} U=U^{*}\left(c_{k(1)}+c_{k(2)}+\ldots . .+c_{k(s)}\right) U \\
& =U^{*}\left(H_{k(1)} U_{k(1)}+H_{k(2)} U_{k(2)}+\ldots .+H_{k(s)} U_{k(s)}\right) U \\
& =U^{*}\left(H_{k(1)} R_{k(1)}^{*} \bar{D}_{k(1)}+H_{k(2)} R_{k(2)}^{*} \bar{D}_{k(2)}+\ldots .+H_{k(s)} R_{k(s)}^{*} \bar{D}_{k(s)}\right) U \\
& =N W^{*}, \text { where } N=U^{*}\left(H_{k(1)} R_{k(1)}^{*}+H_{k(2)} R_{k(2)}^{*}+\ldots .+H_{k(s)} R_{k(s)}^{*}\right) U
\end{aligned}
$$

(which is k-normal since the k-hermition $H_{k(i)}$ and k-unitary $R_{k(i)}^{*}$ commute) and $W^{*}=U^{*}\left(\bar{D}_{k(1)}+\bar{D}_{k(2)}+\ldots .+\bar{D}_{k(3)}\right) U$ it is evident that $P N=N P$

Conversely, if $A=P W=W P$ and $B=N W^{*}$ an described, then $A B=W P N W^{*}$ which is obviously k-normal is $B A=N W^{*} W P=N P$.

It is early seen that $B=N W^{*}$ is k-normal iff $N W^{*}=W^{*} N$ if $B=N W^{*}=(H R) W^{*}$ is can k-normal then $B=H\left(R W^{*}\right)=\left(R W^{*}\right) H^{T}=R H W^{*}$ (from property a) so $W^{*} H^{T}=H W^{*}$ or $W H=H^{T} W$ and $W\left(B B^{*}\right)=\left(B^{*} B\right) W$.

Remark 3.3:

If A is k-normal .if B is conk-normal and if $A B$ is k-normal, if does not necessarily follow that $B A$ is k-normal though it can occur.

For example 3.4:

If $B=H U=U H^{T}$ is con k -normal and if $A=U^{*}$, then $A B=U^{*} U H^{T}=H^{T}$ and $B A=H U V^{*}=H$ are both k-normal. But the following is an example in which $A B$ is k-normal but not $B A$.Let $B=H U=U H^{T}$ be conk-normal but not k-normal (ie H is not real by property (b)) and let H be non-singular.

Let $A=H^{-1}$ which is k-hamitian (so k-normal) and not conk-normal (since H^{-1} is not real). Then $A B=H^{-1} H U=U$ is k-normal. If $B A$ were also k-normal, then by the above theorem $\quad\left(A^{*} A\right) B=B\left(A A^{*}\right)$ and $\quad\left(B^{*} B\right) A=A\left(B B^{*}\right)$ but $\left(B^{*} B\right) A=\left(H^{T}\right)^{2} H^{-1}$ and $A\left(B B^{*}\right)=(H)^{-1}\left(H^{2}\right)$ and if there were equal, $\left(H^{T}\right)^{2}=H^{2}$ would follow which means that $H^{2}=\left(H^{T}\right)^{2}=\left(H^{*}\right)^{2}$ so that H^{2} is real. But this is not possible for if $H=V D V^{*}$ where D is k-diagonal with the real elements (since H is non-singular), then $H^{2}=V D^{2} V^{*}=\bar{V} D^{2} V^{T}$ if H^{2} is real so that $V^{T} V D^{2}=D^{2} V^{T} V$ so $V^{T} V D=D V^{T} V$ so $V D V^{*}=\bar{V} D V^{T}=H$ is real which contradicts the above consumption. But the following theorem result when A and B are both con k - normal.

Theorem 3.5:

If A and B are con k -normal and if AB is k -normal, then BA is k-normal.
Proof:
Let U be a k-unitary matrix such that $U A U^{T}=F$ is the k -normal form described in theorem 1 and where $F F^{*}=F F^{T}=r_{k(1)}^{2} I_{k(1)}+r_{k(2)}^{2} I_{k(2)}+\ldots+r_{k(n)}^{2}, I_{k(n)}$ which is real k-diagonal with $r_{k(1)}^{2}>r_{k(2)}^{2}>\ldots>r_{k(n)}^{2} \geq 0$.

These $r_{k(i)}^{2}$ may be either the squares of k-diagonal elements of F or they may arise when matrices of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ are squared. Assume that any of the letter where $r_{k(i)}^{2}$ are equal are arranged first in a given block followed by any k-diagonal elements whose square is the same $r_{k(i)}^{2}$.
Let $\bar{U} B U^{*}=B \quad$ which is conk-normal and then $U A U^{T} \bar{U} B U^{*}=F B \quad$ is k-normal. Let V be the k - unitary matrix $\sqrt{2^{-1}}\left[\begin{array}{ll}1 & i\rceil \\ i & 1\end{array}\right]$ then the following matrix relation holds, independent of a and b .

$$
\left.V=\begin{array}{l}
\left\lceil\begin{array}{ll}
a & b\rceil \\
\lfloor
\end{array} \quad V^{*}=\begin{array}{ll}
\left\lceil a-b^{i}\right. & 0 \\
-b & a
\end{array}\right\rfloor
\end{array} \begin{array}{cc}
\\
0 & a+b^{i} \\
\hline
\end{array}\right]
$$

Let $F=F_{k(1)}+F_{k(2)}+\ldots . .+F_{k(n)}$ where the direct sum is conformable to that of $F F^{*}$ given above (i.e., $F_{k(i)} F_{k(i)}^{*}=r_{k(i)}^{2} I_{k(i)}$) and consider $F_{k(1)}=G_{k(1)}+G_{k(2)}+\ldots . .+G_{k(t)}+r_{k(t)} I$ where each $G_{k(i)}$ is 2×2 as described above and I is an identity matrix of proper size.

Let $W_{k(1)}=V+V+\ldots .+V+I$ be conformable to $F_{k(i)}$, define $W_{k(i)}$ for each $F_{k(i)}$, in like manner and let $W=W_{k(1)}+W_{k(2)}+\ldots . .+W_{k(n)}$ if $r_{k(n)}=0, W_{k(n)}=I$. Then $W F W^{*}=D$ is complex k-diagonal, where $d_{k(i)}$ is the $\mathrm{i}^{\text {th }}$ diagonal element $d_{k(i)} \bar{d}_{k(i)} \geq d_{k(i+1)} \bar{d}_{k(i+1)}$.Then $W\left(U A U^{T}\right) W^{*} W\left(\sigma B U^{*}\right) W^{*}=\left(W F W^{*}\right)\left(W B_{k(1)}{ }^{W^{*}}\right)=D B_{k(2)}$ is k-normal for $B_{k(2)}=W B_{k(1)} W^{*}$ or $B_{k(1)}=W^{*} B \quad W$.

Since B_{1} is con k - normal, $B_{k(1)} B_{k(1)}^{*}=B^{T}{ }_{k(1)} B_{k(1)}$,
so that $W^{*} B_{k(2)} W W^{*} B_{k(2)}^{*} W=W^{T} B_{k(2)}^{*} \bar{W} W^{T} \underline{B}_{k(2)} \bar{W}$ or that $B_{k(2)} B_{k(2)}^{*} W W^{T}=W W^{T} B_{k(2)}^{T} \underline{-}_{k(2)}$.

Now $V V^{T}$ is a matrix of the form $\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]$, so that $W W^{T}$ is a direct sum of matrices of this form and 1's.

Let $\quad B_{k(2)}=\left(b_{k(i) k(j)}\right) \quad$ and \quad consider $\left(W W^{T}\right)^{*} B_{k(2)} B_{k(2)}^{*}\left(W W^{T}\right)=B_{k(2)}^{T} \bar{B}_{k(2)}$. Let $B_{k(2)} B_{k(2)}^{*}=\left(c_{k(i) k(j)}\right), B_{k(2)}^{T} \bar{B}_{k(2)}=\left(f_{k(i) k(j)}\right), C_{k(i) k(j)}$ and $f_{k(i) k(j)}$ are identifiable with the $b_{k(i) k(j)}$, both matrices being k -hermitian.

Consider two cases:

(a) if $d_{k(1)} \bar{d}_{K(1)}=d_{k(j)} \bar{d}_{K(j)}$ for all j (where $d_{k(j)}$ is the j k-diagonal element of D), then $D=n D_{K(u)}$, where $\quad D_{K(u)}$ is k-unitary k-diagonal. Since $W F B_{k(1)} W^{*}=D B_{k(2)}=n D_{k(u)} B_{k(2)}=D_{k(u)}\left(n B_{k(2)}\right) \quad$ is \quad k-normal, and then $\bar{D}_{k(u)}\left(D_{k(u)} B_{k(2)} n\right) D_{k(u)}=B_{k(2)} D=W B_{k(1)} F W^{*} \quad$ is k-normal as is $B_{k(1)} F=\bar{U} B U^{*} U A U^{T}$ so $B A$ is k-normal.
(b) If $l_{k(i)} \bar{d}_{k(i)} \neq d_{k(j)} \bar{d}_{k(j)}$ for some j , let $d_{k(1)} d_{k(1)}=d_{k(2)} d_{k(2)}=\ldots=d_{k(1)} \bar{d}_{k(1)}$ for $1 \leq l \leq n \quad$ (so that $d_{k(l)} \bar{d}_{k(l)}>d_{k(l+1)} d_{k(l+1)}$).

Suppose $F_{k(1)}=G_{k(1)}+G_{k(2)}+r_{k(1)} I_{k(1)}$ where $I_{k(1)}$ is the 2×2 identify matrix. From $\left(W W^{T}\right)^{*} B_{k(2)} B_{k(2)}^{*}\left(W W^{T}\right)=B_{k(2)}^{T} \bar{B}_{k(2)}$ and fact that $W_{k(1)}=V+V+I_{k(1)}$, it follow that

$$
\begin{aligned}
& c_{k(1) k(1)}=\sum b_{k(1) k(i)} \bar{b}_{k(1) k(i)}=\sum b_{k(i) k(2)} \bar{b}_{k(i) k(2)}=f_{k(2) k(2)} \\
& c_{k(2) k(2)}=\sum b_{k(2) k(i)} \bar{b}_{k(2) k(i)}=\sum b_{k(i) k(1)} \bar{b}_{k(i) k(1)}=f_{k(1) k(1)} \\
& c_{k(3) k(3)}=\sum b_{k(3) k(i)} \bar{b}_{k(3) k(i)}=\sum b_{k(i) k(4)} \bar{b}_{k(i) k(4)}=f_{k(4) k(4)} \\
& c_{k(4) k(4)}=\sum b_{k(4) k(i)} \bar{b}_{k(4) k(i)}=\sum b_{k(i) k(3)} \bar{b}_{k(i) k(3)}=f_{k(3) k(3)} \\
& c_{k(5) k(5)}=\sum b_{k(5) k(i)} \bar{b}_{k(5) k(i)}=\sum b_{k(i) k(5)} \bar{b}_{k(i) k(5)}=f_{k(5) k(5)} \\
& c_{k(6) k(6)}=\sum b_{k(6) k(i)} \bar{b}_{k(()) k(i)}=\sum b_{k(i) k(6)} \bar{b}_{k(i) k(6)}=f_{k(()) k(6)}
\end{aligned}
$$

$D B_{k(2)}$ is k-normal so that the following relations also hold.

$$
\begin{aligned}
& d_{k(1)} \bar{d}_{k(1)} \sum b_{k(1) k(i)} \bar{b}_{k(1) k(i)}=\sum d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(1)} \bar{b}_{k(i) k(1)} \\
& d_{k(2)} \bar{d}_{k(2)} \sum b_{k(2) k(i)} \bar{b}_{k(2) k(i)}=\sum d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(2)} \bar{b}_{k(i) k(2)} \\
& d_{k(3)} \bar{d}_{k(3)} \sum b_{k(3) k(i)} \bar{b}_{k(3) k(i)}=\sum d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(3)} \bar{b}_{k(i) k(3)}
\end{aligned}
$$

$$
\begin{aligned}
& d_{k(4)} \bar{d}_{k(4)} \sum b_{k(4) k(i)} \bar{b}_{k(4) k(i)}=\sum d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(4)} \bar{b}_{k(i) k(4)} \\
& d_{k(5)} \bar{d}_{k(5)} \sum b_{k(5) k(i)} \bar{b}_{k(5) k(i)}=\sum d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(5)} \bar{b}_{k(i) k(5)} \\
& d_{k(6)} \bar{d}_{k(6)} \sum b_{k(6) k(i)} \bar{b}_{k(6) k(i)}=\sum d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(6)} \bar{b}_{k(i) k(6)} .
\end{aligned}
$$

Since $d_{k(1)} \bar{d}_{k(1)}=d_{k(2)} \bar{d}_{k(2)}$, can combining the first two relations in each of these sets,

$$
\begin{aligned}
& d_{k(1)} \bar{d}_{k(1)}\left(\sum b_{k(1) k(i)} \bar{b}_{k(1) k(i)}+\sum b_{k(2) k(i)} \bar{b}_{k(2) k(i)}\right)=d_{k(1)} \bar{d}_{k(1)} \\
& \quad\left(\sum b_{k(i) k(1)} \bar{b}_{k(i) k(1)}+b_{k(i) k(2)} \bar{b}_{k(2)}\right) \text { so that } \\
& \left(\sum d_{k(1)} \bar{d}_{k(1)}-d_{k(i)} \bar{d}_{k(i)}\right)\left(b_{k(i) k(1)} \bar{b}_{k(i) k(1)}+b_{k(i) k(2)} \bar{b}_{k(i) k(2)}\right)=0 \\
& d_{k(1)} \bar{d}_{k(1)}=d_{k(j)} \bar{d}_{k(j)} \text { for } j=1,2, \ldots, 6 \text { but for } \mathrm{j} \text { beyond } 6, \\
& d_{k(1)} \bar{d}_{k(1)}-d_{k(j)} \bar{d}_{k(j)}>0 \text { so that } b_{k(i) k(1)} \bar{b}_{k(i) k(1)}+b_{k(i) k(2)} \bar{b}_{k(i) k(2)}=0 \text { or } b_{k(i) k(1)}=0 \text { and } \\
& b_{k(i) k(2)}=0 \text { for } i=7,8, \ldots, n .
\end{aligned}
$$

Similarly, $b_{k(i) k(3)}=0$ and $b_{k(i) k(4)}=0$ for $i>6$
The third relations in each set give $b_{k(i) k(5)}=0$ and $b_{k(i) k(6)} \geq 0$ for $i>6$.
On adding all 6 relation in the first set

$$
\sum_{i, j=1}^{6} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}+\sum_{i=1}^{6} \sum_{j=7}^{n} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}=\sum_{i, j=1}^{6} b_{k(i)(j)} \bar{b}_{k(i) k(j)}+\sum_{i=7}^{n} \sum_{j=1}^{6} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}
$$

and on cancelling the first summations on each side,

$$
\sum_{i=1}^{6} \sum_{j=7}^{n} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}=\sum_{i=7}^{n} \sum_{j=1}^{6} b_{k(i) k(j)} \bar{b}_{k(i) k(j)} .
$$

But the right side is 0 from the above, so the left side is 0 and so $b_{k(i) k(j)}=0$ for $i=1,2, \ldots, 6$.

From this it is evident that this procedure may be repeated, and that if $D=r_{k(1)} D_{k(1)}+r_{k(2)} D_{k(2)}+\ldots+r_{k(n)} D_{k(n)}$, where $D_{k(i)}$ are unitary and the $r_{k(i)}$ nonnegative real, as above then $B_{k(2)}=C_{k(1)}+C_{k(2)}+\ldots+C_{k(n)}$ conformable to D.

Then, $r_{k(i)} D_{k(i)} C_{k(i)}$ is k-normal so $D_{k(i)}^{*}\left(D_{k(i)} C_{k(i)} r_{k(i)}\right) D_{k(i)}=C_{k(i)} r_{k(i)} D_{k(i)}$ is k-normal. So $B_{k(2)} \mathrm{D}$ is k-normal. So $B_{k(i)} F$ and so $\bar{U} B U^{*} U A U^{T}$ and BA.

Theorem 3.6:

If A and B are con k -normal, then AB is k -normal if and only if $A^{*} A B=B A A^{*}$ and $A B B^{*}=B^{*} B A$ (i.e. if and only if each is k-normal relative to the other).

Proof:
Let AB is k-normal, from the above $D^{*} D B_{k(2)}=B_{k(2)} D D^{*}$ so that $F^{*} F B_{k(1)}=B_{k(1)} F F^{*}$ or $A^{*} A B=B A A^{*}$.

Similarly, since $\quad D B_{k(2)} \quad$ is k-normal, $\quad D B_{k(2)} B_{k(2)}^{*} D=B_{k(2)}^{*}, D D B_{k(2)} \quad$ so $D B_{k(2)} B_{k(2)}^{*}=B_{k(1)}^{*} B_{k(1)} F$ or $A B B^{*}=B^{*} B A$.

The converse is directly verifiable.

Theorem 3.7:

Let A and B be con k -normal. If AB is k -normal, then $\mathrm{A}=\mathrm{LW}=\mathrm{WL}^{T}$ (with L is k-hermition \& W is k-unitary) and $L^{T} N=N L^{T}$ and conversely.

Proof:

Let $U A U^{T}=F=W^{*} D W=W^{*} D \quad W W^{*} D \quad W$ (where $\quad D_{k(r)}$ and $D_{k(u)}$ are the khermition and k-unitary ${ }^{k(r)}$ polar matrices of ${ }^{\xi(\mu)}$ D) and $\bar{U} B U^{*}=B_{k(1)}=W^{*} B_{k(2)} W=W^{*}\left(C_{k(1)}+C_{k(2)}+\ldots+C_{k(n)}\right) W$.

As in the proof of theorem 3 it follows that for all i , $D_{k(i)}^{*} C_{k(i)} C_{k(i)}^{*}=C_{k(i)}^{*} C_{k(i)} D_{k(i)}$ and $U_{k(i)}^{*} C_{k(i)} C_{k(i)}^{*}=C_{k(i)}^{*} C_{k(i)} U_{k(i)}^{*}$, with $U_{k(i)}$ is defined there, so that when $R_{k(i)}=\bar{D}_{k(i)} U_{k(i)}^{*}$
(where, D here, $=r_{k(1)} D_{k(1)}+r_{k(2)} D_{k(2)}+\ldots+r_{k(n)} D_{k(n)}$ as earlier),

$$
\text { then } C_{k(i)}=H_{k(i)} U_{k(i)}=H_{k(i)} R_{k(i)}^{*} \underline{-}_{k(i)} \text { with } H_{k(i)} R_{k(i)}=R_{k(i)} H_{k(i)} \text {. }
$$

Then, since $W D_{k(r)}=D_{k(r)} W, U A U^{T}=W^{*} D K_{(r)} W W^{*} D_{k(u)} W=D_{k(r)}\left(W^{*} D_{k(u)} W\right)$
and $\quad A=\left(U^{*} D_{k(r)} U\right)\left(U^{*} W^{*} D_{k(u)} W \bar{U}\right)=L X$

$$
A=\left(U^{*} W^{*} D_{k(u)} W \bar{U}\right)\left(U^{T} D_{k(r)} \bar{U}\right)=X L^{T}
$$

With $L=U^{*} D \quad U$ k-hermitian and $X=U^{*} W^{*} D \quad W U$ k-unitary.
Also, $\bar{U} B U^{*}=W^{k(v)}\left(H_{k(1)} R_{k(1)}^{*} \bar{D}_{k(1)}+H_{k(2)} R_{k(2)}^{*} \bar{D}_{k(2)}{ }^{k(u)}+\ldots+H_{k(n)} R_{k(n))}^{*} \bar{D}_{k(n)}\right) W=N_{k(1)} \mathrm{Y}$,
where $\quad N_{k(1)}=W^{*}\left(H_{k(1)} R_{k(1)}^{*}+H_{k(2)} R_{k(2)}^{*}+\ldots .+H_{k(n)} R_{k(n)}^{*}\right) W \quad$ is \quad k-normal \quad and $\mathrm{Y}=W^{*}\left(\bar{D}_{k(1)}+\bar{D}_{k(2)}+\ldots .+\bar{D}_{k(n)}\right) W$ is k-unitary, then $B=U^{T} N_{k(1)} y U=\left(U^{T} N_{k(1)} \bar{U}\right)\left(U^{T} y U\right)=N X^{*}$, where $N=U^{T} N_{k(1)} \bar{U}$ is k-normal and $X^{*}=U^{T} y U=U^{T} W^{*} \bar{D}_{k(u)} W U$.
Also, $L^{T} N=N L^{T}$ since $D_{k(r)} N_{k(1)}=N_{k(1)} D_{k(v)}, \bar{D}_{k(v)} N_{k(1)}=N_{k(1)} D_{k(v)}$.
So $\left(\bar{U} \bar{L} U^{T}\right)\left(\overline{U N} N U^{T}\right)=\left(\overline{U N} U^{T}\right)\left(\bar{U} \bar{L} U^{T}\right)$.
So $L^{T} N=N L^{T}$. The converse is immediate.

4. CON k-NORMAL PRODUCT OF MATRICES

It is possible if A is k-normal and B is can K-normal that $A B$ us cab k-normal, for example, any can k-normal matrix $C=H U=U H^{T}$ and $A=H$, then $A C=H^{2} U=H U H^{T}=U\left(H^{T}\right)^{2}$ is con k-normal, the following theorem clarify this matter.

Theorem 4.1:

If A is k -normal and B is con- k -normal, then AB is con k -normal if and only if $A B B^{*}=B B^{*} A$ and $\bar{B} A A^{*}=A^{T} \bar{A} \bar{B}$ or $B \bar{A} A^{*}=A^{*} A B$.

Proof:
By the condition, then $(A B)(A B)^{*}=A B B^{*} A^{*}=B B^{*} A A^{*} \quad$ and $(A B)^{T}(\overline{A B})=B^{T} A^{T} \bar{A} \bar{B}=B^{T} \bar{B} A A^{*}$ which are equal. Conversely, let AB be can k normal and let $U A U^{*}=D=d_{k(1)} I_{k(1)}+d_{k(2)} I_{k(2)}+\ldots .+d_{k(n)} I_{k(n)}$, where $d_{k(i)} \bar{d}_{k(i)}>d_{k(j)} \bar{d}_{k(j)}, i>j$. let $U B^{T} U^{T}=B_{k(1)}=\left(b_{k(i) k(j)}\right)$.

If $(A B)(A B)^{*}=A B B^{*} A^{*}=A B^{T} \bar{B} A^{*}=(A B)^{T}(\overline{A B})=B^{T} A^{T} \bar{A} \bar{B}=B^{T} \bar{A} A^{T} \bar{B}$, then

$$
\left(U A U^{*}\right)\left(U B^{T} U^{T} U \bar{B} U^{*}\right)\left(U A^{*} U^{*}\right)=\left(U B^{T} U^{T}\right)\left(\bar{U} \bar{A} U^{T} \overline{U A}^{T} U^{T}\right)\left(\bar{U} \bar{B} U^{*}\right)
$$

So that $D B_{k(1)} B_{k(1)}^{*} D^{*}=B_{k(1)} \bar{D} D B_{k(1)}^{*}$.
Equating k-diagonal elements an each side of this relation,
$\sum_{j=1}^{n} d_{k(i)} \bar{d}_{k(i)} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}=\sum_{j=1}^{n} d_{k(j)} \bar{d}_{k(j)} b_{k(i) k(j)} \bar{b}_{k(i) k(j)} . i=1,2, \ldots, n$ (or)
$\sum_{j=1}^{n}\left(d_{k(i)} \bar{d}_{k(i)}-d_{k(j)} \bar{d}_{k(j)}\right) b_{k(i) k(j)} \bar{b}_{k(T) k(j)}=0$
Let $d_{k(1)} \bar{d}_{k(1)}=d_{k(2)} \bar{d}_{k(2)}=\ldots . d_{k(l)} d_{k(l)}>d_{k(l+1)} d_{k(l+1)}$. Then $b_{k(i)(j)}=0$ for $i=1,2, \ldots l$ and $j=l+1, l+2, \ldots, n$.
Since $B_{k(1)}$ is con k-normal,

$$
\sum_{j=1}^{n} b_{k(i) k(j)} \bar{b}_{k(i) k(j)}=\sum_{j=1}^{n} b_{k(j) k(i)} \bar{b}_{k(j) k(i)} \text { for } i=1,2, . . n
$$

On adding the first ' l 'of these equations and cancelling, $b_{k(i) k(j)}=0$ for $i=l+1, l+2, \ldots n$ and $i=l+1, l+2, \ldots n$ in this manner if $D=r_{k(1)} D_{k(i)}+\ldots .+r_{k(t)} D_{k(t)}$ with $r_{k(i)}>r_{k(i+1)}$ and $D_{k(i)}$ is k-unitary, then $B_{k(1)}=C_{k(1)}+C_{k(2)}+\ldots .+c_{k(t)}$ conformal to D. since $r_{k(i)} D_{k(i)} D_{k(i)}^{*} r_{k(i)} C_{k(i)}^{T}=r_{k(i)}^{2} C_{k(i)}^{T}=C_{k(i)}^{T} r_{k(i)}^{2}=C_{k(i)}^{T} r_{k(i)} D_{k(i)} D_{k(i)}^{*} r_{k(i)}$ for all i, $D D^{*} B_{k(1)}^{T}=B_{k(1)}^{T} D D^{*}$ and so $U^{*} D D^{*} U U^{*} B_{k(i)}^{T} \bar{U}=U^{*} B_{k(1)}^{T} U U^{T} D D^{*} U . A^{*} A B=B A^{T} \bar{A}$ or $A A^{*} B=B A^{T} \bar{A}$ or $A^{T} \bar{A} \bar{B}=\bar{B} A A^{*}$

Also $\quad D\left(B_{k(1)} B_{k(1)}^{*} D^{*}\right)=B_{k(1)} \bar{D} D B_{k(1)}^{*}=\bar{D} D B_{k(1)}^{*}=D\left(\bar{D} B_{k(1)} \bar{B}_{k(1)}^{*}\right) \quad$ so that $C_{k(i)} C_{k(i)}^{*}\left(r_{k(i)} \bar{D}_{k(i)}\right)=\left(r_{k(i)} \bar{D}_{k(i)}\right) C_{k(i)} C_{K(i)}^{*}$ for $i=1,2, . t$
(If $r_{k(t)}=0$, this is stile true and $D_{k(t)}$ may be chosen to be the identify matrix.)
Therefore, $B_{k(1)} B_{k(1)}^{*} D^{*}=D^{*} B_{k(1)} B_{k(1)}^{*}$ and $U B^{T} U^{T} U \bar{B} U^{*} U A^{*} U^{*}=U A^{*} U^{*} U B^{T} U^{T} \bar{U} \bar{B}_{k(1)} U^{*}$ so $\quad B^{T} B A^{*}=A^{*} B^{T} B$ or $A B^{T} \bar{B}=B^{T} \bar{B} A$.

Corollary 4.2:

Let A be k -normal, B can k -normal, if AB is con- k -normal, then $B \bar{A}$ is con k normal and conversely.

Proof:
By theorem7, $U A U^{*} U B U^{T}=D B_{k(1)}^{T} \quad$ is con \quad k-normal, and if $D=D_{k(r)} D_{k(u)}, D_{k(r)} \quad$ real \quad and $\quad D_{k(u)} \quad$ is \quad k-unitary, then since $\bar{D}_{k(u)}=D_{k(u)}^{*}, D_{k(u)}^{*}\left(D B_{k(1)}^{T}\right) \bar{D}_{k(u)}=D_{k(r)} B_{k(1)}^{T} \bar{D}_{k(u)}=B_{k(1)}^{T} D_{k(r)} \underline{D}_{k(u)}=B_{k(1)}^{T} \underset{\sim}{D}$ is con k-normal as are $U B U^{T} \bar{U} \bar{A} U^{T}$ and $B \bar{A}$. Conversely

If A is k -normal and B is con k -normal, $B \bar{A}$ is con k -normal if and only if AB is con k-normal if and only if ($\left.B^{T} \bar{B}\right) A=A\left(B B^{*}\right)$ and $\left(A^{T} \bar{A}\right) \bar{B}=\bar{B}\left(A A^{*}\right)$.

Therefore, if A is k-normal and B is con k-normal, BA is con k-normal if and only if $\left(B^{T} \bar{B}\right) \bar{A}=\bar{A}\left(B B^{*}\right)$ and $\left(A^{*} A\right) \bar{B}=\bar{B}\left(\bar{A} A^{T}\right)$ is replace A by \bar{A} in the preceding, or ($\left.B^{*} B\right) A=A\left(\bar{B} B^{T}\right)$ and $\left(A^{*} A\right) \bar{B}=\bar{B}\left(\bar{A} A^{T}\right)$, thus exhibiting the fact that when AB is con k-normal, BA is not necessary so.

Theorem 4.3:
If $A=P W=W P$ is k-normal and $B=L V=V L^{T}$ is con k-normal (where $\mathrm{P} \& \mathrm{~L}$ and k -hermitian and W and V are k -unitary) then AB is con k -normal if and only if $P L=L P, P V=V P^{T}$ and $W L=L W$.

Proof:
If three relations hold, then $A B=P W L V=P L W V$ on one hand, and $A B=W P L V=W L P V=W L V P^{T}=W V L^{T} P^{T}=W V(P L)^{T}$ con k-normal since $P L$ is k-hermitian and $W V$ is k-unitary.

Conversely, let $A=U^{*} D U=\left(U^{*} D_{k(r)} U\right)\left(U^{*} D_{k(r)} U\right)=P W$
and $B=U^{*} B_{k(1)}^{T} \bar{U}=\left(U^{*} L_{k(1)} U\right)\left(U^{*} V_{k(1)} \bar{U}\right)=L V=V L^{T}$
where $L_{k(i)}$ and $V_{k(i)}$ are k-hermit ion and k-unitary and direct sums conformable to $B_{k(1)}^{T}$ and D.

A direct check shows that $P L=L P \quad$ and $P V=V P^{T}$, also $W L=U^{*} D_{k(u)} L_{k(1)} U=U^{*} L_{k(1)} D_{k(u)} U=L W$ since $D_{k(u)} B_{k(1)} B_{k(1)}^{*}=B_{k(1)} B_{k(1)}^{*} D_{k(u)}$ implies $D_{k(u)} L_{k(1)}=L_{k(1)} D_{k(u)}$

Note:

A sufficient condition for the simultaneously reduction of A and B is given by the following.

Theorem 4.4:

If A is k -normal, B is con k -normal and $A B=B A^{T}$ then $W A W^{*}=D$ and $W B^{T} W=F$, the k -normal form of theorem 1 , where W is a k-unitary matrix, also AB is con k -normal.

Proof:
Let $U A U^{*}=D$, k-diagonal and $U B U^{T}=B_{k(2)}$ which is con k-normal. Then $A B=B A^{T}$ implies $D B_{k(2)}=U A U^{*} U B U^{T}=U B U^{T} \overline{U A} A^{T}=B_{k(2)} D^{T}=B_{k(2)} D . \quad$ Let $D=C_{k(1)} I_{k(1)}+C_{k(2)} I_{k(2)}+\ldots .+C_{k(n)} I_{k(n)}$, where the $C_{k(i)}$ are complex and $C_{k(i)} \neq C_{k(j)}$ for $i \neq j$ and $B_{k(2)}=C_{k(1)}+\ldots .+C_{k(n)}$. Let $V_{k(i)}$ be k-unitary such that $V_{k(i)} C_{k(i)} V_{k(i)}^{T}=F_{k(i)}=$ the real k-normal form of theorem1, and let $V=V_{k(1)}+V_{k(2)}+\ldots .+V_{k(n)}$. Then $V U A U^{*} V^{*}=D, V U B U^{T} V^{T}=F=$ a direct sum of the $\quad F_{k(i)}$. Also, $A B=B A^{T} \quad$ implies $\quad B^{T} A^{T}=A B^{T}$ and \quad so $A B B^{*} A^{*}=A B^{T} \bar{B} A^{*}=B^{T} A^{T} \bar{A} \bar{B}=(A B)^{T}(\overline{A B})$.

It is also possible for the product of two k -normal matrices A and B to the con k normal, if $U=H U=U H^{T}$ is con-k-normal and if $A=U$ and $B=H$ this is so or if $L V=V L^{T}$ is con-k-normal and if $A=U L=L U$ is k -normal with L k-hermit ion and V and U is k-unitary, for $B=V, A B=(U L) V=L(U V)=(U V) L^{T}$ con-k-normal .

But if in the first example, $U^{2} H$ is not k-normal then $H U$ is not con k-normal so that $B A$ is not necessarily con k -normal through of theorem 2 can be obtained which states the following if A is k -normal, then AB and $A B^{T}$ one con k-normal if $A B B^{*}=B^{T} \bar{B} A, B B^{*} A=A B^{T} \bar{B}$ and $\bar{B} A A^{*}=A^{T} \bar{A} \bar{B}$. (The proof is not included here
because of is similarity to that above). When B is con-k-normal, two of these conditions merge into due in theorem7.

It is possible for the product of two con-k-normal matrices to be con-k-normal, but no such single analogous necessary and sufficient conditions of exhibited above are available.

These may be seen of follows. Two non-real complex commutative matrices $M=M^{T} \& N=N^{T}$ can form a con k-normal (and non real symmetric) matrix MN (such that NM is also con k-normal) which need not be k-normal be k-normal. Then two symmetric matrices.

$$
x=\left[\begin{array}{ll}
i & i+i \\
1+l & -i
\end{array}\right], \quad y=\left[\begin{array}{cc}
1+2 i & 3-4 i \\
3-4 i & -(1+2 i)
\end{array}\right]
$$

Are such that Z is real, k-normal and con k-normal (and not symmetric). Finally, if U and V are two complex k-unitary matrices of the same order, they can to chosen so UV is non-real complex, k -normal and con k -normal. If $A=M+X+U$ and $B=N+Y+V, A B=M N+X Y+U V$ where A and B are con k-normal as in AB (but not symmetric). A single impaction of these matrices shows that relations on the order of $\left(B^{T} \bar{B}\right) A=A\left(B B^{*}\right)=\left(B B^{*}\right)$ and $\left(A^{T} \bar{A}\right) \bar{B}=\left(A A^{*}\right) \bar{B}=\bar{B}\left(A A^{*}\right)$ do not necessarily hold, these are sufficient, however, to guarantee that AB is con k -normal (as direct verification from the definition will show).

Reference:

[1]. Hill, R.D., Water, S.R., "On k-real and k-hermitian matrices," Linear Alg. Appl. Vol.169(1992), pp.17-29.
[2]. Krishnamoorthy, K., and Subash, R., "On k-normal matrices" International J. of Math.Sci. \& Engg. Appls. Vol. 5 No. II (2011), pp. 119-130.
[3]. Krishnamoorthy, S., Gunasekaran, K., and Arumugam, K., "On Con k-normal Matrices" International Journal of Current ResearchVol. 4, Issue, 01, pp.167-169, January, 2012
[4]. Wiegmann, N., "Normal Products of Matrices" Duke Math.Journal 15(1948), 633-638.

