Products of Conjugate K-Normal Matrices

S.Krishnamoorthy And K.Gunasekaran

Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India 612 001.

K.Arumugam

Department of Mathematics, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India 609305.

Abstract: In this paper, we discussed properties of conjugate k-normal matrices. The product of k-normal and conjugate k-normal matrices are also discussed..

AMS Classifications: 15A09, 15A57.

Keywords: k-normal, k-unitary, k-hermitian, Con-k-normal.

1. INTRODUCTION

A k-normal matrix $A = \langle a_{ij} \rangle$ with complex elements is a matrix such that $AA^* k = KA^* A$, where A^* denotes the complex conjugate transpose of A. A conjugate k-normal matrix is defined to be a complex matrix A which is such that $AA^* K = \overline{KA^*A}$. Here, we developed further properties of conjugate k-normal matrices, their relation, in a sense; to k-normal matrices in considered and further results concerning k-normal products are obtained including an analogous for conjugate k-normal matrices.

2. PROPERTIES OF CONJUGATE k-NORMAL MATRICES

Theorem 2.1:

A matrix A in conjugate k-normal if and only if there exists a k-unitary matrix U such that UAU^{T} is a direct sum of non-negative real numbers and of 2×2 matrices

of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, where a and b are non-negative real numbers.

Proof:

Let A be conjugate k-normal, where A = M+N, where $M=M^{T}$ and $N=-N^{T}$.

Then, $AA^*K = \overline{KA^*A}$ $\Rightarrow AA^*K = K\overline{A^*A}$ $\Rightarrow AA^*K = K(\overline{A^{-T}})\overline{A}$ $\Rightarrow AA^*K = KA^T\overline{A}$ $(M+N)(M+N)^*K = K(M+N)^T(\overline{M+N})$ $(M+N)(\overline{M}^*+N^*)K = K(M^T+N^T)(\overline{M}+\overline{N})$ $(M+N)(\overline{M}^T+\overline{N}^T)K = K(M-N)(\overline{M}+\overline{N})$, since $M = M^T$ and $N = -N^T$ $(M+N)((\overline{M}^T) + (\overline{N}^T))K = K(M-N)(\overline{M}+\overline{N})$ $(M+N)(\overline{M}-\overline{N})K = K(M-N)(\overline{M}+\overline{N})$ $(M+N)(\overline{M}-\overline{N})K = K(M-N)(\overline{M}+\overline{N})$ $(M\overline{M}-M\overline{N}+N\overline{M}-N\overline{N})K = K(M\overline{M}+M\overline{N}-N\overline{M}-N\overline{N})$ $M\overline{M}K - M\overline{N}K + N\overline{M}K - N\overline{N}K = KM\overline{M} + KM\overline{N} - KN\overline{M} - KN\overline{N}$ $-M\overline{N}K + N\overline{M}K = KM\overline{N} - KN\overline{M}$

Since A is conjugate k-normal. Therefore M and N is also a conjugate k-normal.

Therefore,
$$-M \overline{N}K - M \overline{N}K = -N \overline{M}K - N \overline{M}K$$

 $-2M \overline{N}K = -2N \overline{M}K$
 $M \overline{N} = N \overline{M}$

There exists a k-unitary matrix U such that $UMU^{T} = D$ is a k-diagonal matrix with real, non-negative elements.

Therefore, $UNU^T \overline{U}\overline{M}U^* = UMU^T \underline{U}\underline{N}U^*$

 \Rightarrow $WD = D\overline{W}$, where $W = -W^T$

Let U be chosen so that D is such that $d_{k(i)} \ge d_{k(j)} \ge 0$ for i< j, where $d_{k(i)}$ in the ith k-diagonal element of D.

If $W = (t_{k(i)k(j)})$, where $(t_{k(i)k(j)}) = -(t_{k(i)k(j)})$, then $t_{k(i)k(j)}d_{k(j)} = d_{k(i)}t_{k(i)k(j)}$, for j > i and three possibilities may occur: if $d_{k(i)} = d_{k(j)} \neq 0$, then $t_{k(i)k(j)}$ is real; $d_{k(i)} = d_{k(j)} = 0$, then $t_{k(i)k(j)}$ is arbitrary(though W=-W^T still holds); and if $d_{k(i)} \neq d_{k(j)}$, then $t_{k(i)k(j)} = 0$ for if $t_{k(i)k(j)} = a + ib$, then $(a + ib)d_{k(j)} = d_{k(i)}(a - ib)$ and $a(d_{k(j)} - d_{k(i)})=0$ implies a=0 and $b(d_{k(i)} + d_{k(j)}) = 0$ implies $d_{k(i)} = -d_{k(j)}$ (which is not possible since $d_{k(i)}$ are real and non-negative and $d_{k(i)} \neq d_{k(j)}$) or b=0 so $t_{k(i)k(j)} = 0$.

So if $UMU^{T} = d_{k(1)}I_{k(1)} + d_{k(2)}I_{k(2)} + d_{k(3)}I_{k(3)} + ... + d_{k(n)}I_{k(n)}$, where + denotes the direct sum, then $UNU^{T} = N_{k(1)} + N_{k(2)} + N_{k(3)} \dots + N_{k(n)}$, where $N_{k(i)} = -N^{T}_{k(i)}$ is real and $N_{k(n)} = -N^{T}_{k(n)}$ is complex if and only if $d_{k(n)} = 0$. For each real $T_{k(i)}$ there exists a real orthogonal matrix $V_{k(i)}$ so that $V_{k(i)} N_{k(i)} V^{T}_{k(i)}$ is a direct sum of zero matrices and matrices of the form $\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$, where b is real. If $N_{k(n)} = -N^{T}_{k(n)}$ is complex, there exists a complex k-unitary matrix $V_{k(n)}$ such that $V_{k(n)} N_{k(n)} V_{k(n)}$, N is a direct sum of matrices of the some form ,so that $V = V_{k(1)} + V_{k(2)} + V_{k(3)} + \ldots + V_{k(n)}$, then $VUMU^{T}V^{T} = D$ and $VUNU^{T}V^{T} = F$ =the direct sum described.

Therefore, V U A $U^T V^T = D + F$ which is the desired form.

Properties of conjugate k-normal matrices:

Let A and B are two conjugate k-normal matrices such that $A\overline{B} = B\overline{A}$, then A and B can be simultaneously brought in to the above k-normal form under the same U (with generalization to a finite number) but not conversely; if A is conjugate k-normal, $A\overline{A}$ is k-normal in the usual sense, but not conversely and if A is conjugate k-normal and $A\overline{A}$ is real, there is real orthogonal matrix which gives the above form.

Properties of con k-normal matrices not obtained in this section but of subsequent use are the following:

(a) A is conk-normal iff $A = HU = UH^T$ Where H is k-hermitian and U is k-unitary.

For if A = HU is a polar form of A, then $U^*HU = L$ is such that A = HU = UL and if $AA^* = A^T \overline{A}$ then $H^2 = (L^T)^2$ and since this is a k-hermitian matrix with nonnegative roots, $H = L^T$ and $A = HU = UH^T$. The converse is immediate. This same result may be seen as follows. If $UAU^{T} = F$ is the k-normal form in theorem 1, $F = D_{K(r)}, V = VD_{k(r)}$, where $D_{K(r)}$ is real K- diagonal and V is a direct sum of 1's or block in the form $(a^{2}+b^{2})^{-1/2}\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ which are k- unitary.

Therefore, $A = U^* D_{k(r)} U U^* V \overline{U} = U^* V U U^T D_{k(r)} \overline{U}$ this exhibits the polar form in another guise.

(b) A is both k-normal & con k-normal if and only if $A = HU = UH = UH^{T}$. So $H = H^{T} = H^{*}$ so that H is real.

(c) if $A = HU=UH^{T}$ is con k-normal, then UH is con k-normal, if and only if $HU^{2} = U^{2}H$, (i.e.) if and only if HU^{2} is k-normal. For if UH is con k-normal .UH = $H^{T}U$ so that $HU^{2} = UH^{T}U = U^{2}H$, and if $HU^{2} = U^{2}H$, then $HUU = UH^{T}U = UUH$ or $H^{T}U = UH$.

(d) A matrix A is con k- normal if and only if A can be written $A = SW = \overline{WS}$ where $M = M^{T}$ and W is k-unitary. If A is con k-normal, from the above

$$A = U^* F \overline{U} = U^* D_{k(r)} \overline{U} V^T V \overline{U} = M W = U^* V U U^* D_{k(r)} \overline{U} = \overline{W} M \text{ , where } M = U^* D_{k(r)} \overline{U}$$

is symmetric and $W = U^T V \overline{U}$ is k-unitary. Conversely,

if $A = MW = \overline{W}M$, $AA^* = MWW^*M^* = A^T\overline{A} = M^TW^*W\overline{M}$.

Remarks 2.2:

If B is con k-normal and if B=MU where $M=M^{T}$ and U ia k-unitary, it does not necessarily follow that $B=\overline{U}S$, but it is possible to find an M_{1} and U_{1} such that $B = M_{1}U_{1} = \overline{U_{1}}M_{1}$ holds. This may be seen as follows .If B=MU is con k-normal, let V be k-unitary such that $VMV^{T}=D$ is k-diagonal, real and non-negative, so that $VBV^{T} = VSV^{T}\overline{V}UV^{T} = DW$ is con k-normal from which $DWW^{*}\overline{D} = W^{T}D^{T}DW$ or since D is real, $WD^{2}=D^{2}W$ and WD=DW since D is non-negative. Then $B = (V * D\overline{V})(V^{T}W\overline{V}) = MV = (V^{*}WV)(V * DV)$ which is not necessarily = $\overline{U}S = (V^{*}WV)(V^{*}D\overline{V})$. However, if $D = r_{1}I_{1+} r_{2}I_{2+} \tau_{3}I_{3+...} + r_{n}I_{n}$, $r_{i} > r_{j}$ for i > j, then $w = w_{1+} w_{2+} w_{3} + ... + w_{n}$. Since each W_{i} is k-unitary, it is con k-normal and hence there exist k-unitary Xi so that X_i W_i X_i^T = F_i is in the k-normal form of theorem 1. If $x = x_{1+}x_{2+}x_{3+...} + x_n$, then $XVBU^T X^T = XDWX^T = DXWX^T = DF = FD$, where $F = F_1 + F_2 + \Box + F_n$. So, $B = (V^*X^*D\overline{X}\overline{V})(V^TX^TF\overline{X}\overline{V}) = (V^*XFXV)(V^*X^*DXV) = MU$ $\Rightarrow B = \overline{U_1}M_1$

and $M_1 = V^* X^* D \overline{X} \overline{V} \neq V^* D \overline{V} = M$

$$U_1 = V^T X^T F \overline{X} \overline{V} \neq V^T W \overline{V} = U.$$

3. k-NORMAL PRODUCTS OF MATRICES:

In this section, if A, B and AB are k-normal matrices, the BA is k-normal, a necessary and sufficient condition that the products, AB of two k-normal matrices A and B be k-normal is that each commute with the k-hermitian polar matrix of each other .First a generalization of this theorem is obtained here and then an analogous for the con k-normal case is developed.

Theorem 3.1: Let A and B be a k-normal matrices and AB and BA are k-normal.

Then $K(A^*A)B = B(AA^*)K$ and $K(B^*B)A = A(BB^*)K$.

Proof:

If AB and BA are k-normal. Let U be a k-unitary matrix such that

 $UAU^*K = D$ is diagonal, $d_{k(i)}\overline{d}_{k(i)} \ge d_{k(j)}\overline{d}_{k(j)} \ge 0$ for i < j.

Let $UBU^*K = B_1 = b_{k(i) k(i)}$.since AB and BA are k-normal. Then $ABB^*A^*K = KB^*A^*AB \implies DB_1B_1^*D^*K = KB_1^*D^*DB_1$

By equating diagonal elements it follows that

$$\sum_{j=1}^{n} d_{k(i)} \overline{d}_{k(i)} \ b_{k(i) \ k(j)} \ \overline{b}_{k(i) \ k(j)} = \sum_{j=1}^{n} d_{k(j)} \overline{d}_{k(j)} \ b_{k(j) \ k(i)} \ \overline{b}_{k(j) \ k(i)} \ \rightarrow (1) \text{ for } i = 1, 2...n.$$

Similarly, $BAA^*B^*K = KA^*B^*BA \implies B_1DD^*B_1^*K = KD^*B_1^*B_1D$

$$\Rightarrow \sum_{j=1}^{n} d_{k(j)} \overline{d}_{k(j)} b_{k(i) k(j)} \overline{b}_{k(i) k(j)} = \sum_{j=1}^{n} \overline{d}_{k(i)} d_{k(i)} \overline{b}_{k(j) k(i)} b_{k(j) k(i)} \to (2).$$

Let i=1, from (1) and (2)

$$\Rightarrow \sum_{j=1}^{n} d_{k(1)} \overline{d}_{k(1)} \ b_{k(1) \ k(j)} \overline{b}_{k(1) \ k(j)} = \sum_{j=1}^{n} d_{k(j)} \overline{d}_{k(j)} \ b_{k(j) \ k(1)} \ \overline{b}_{k(j) \ k(1)} \ \rightarrow (3)$$

$$\sum_{j=1}^{n} d_{k(j)} \overline{d}_{k(j)} \ b_{k(1) \ k(j)} \ \overline{b}_{k(1) \ k(j)} = \sum_{j=1}^{n} \overline{d}_{k(1)} d_{k(1)} \ \overline{b}_{k(j) \ k(1)} \ b_{k(j) \ k(1)} \ \rightarrow (4)$$

Now (3)-(4), we

get,

$$\begin{split} \sum_{j=1}^{n} (d_{k(1)}\overline{d}_{k(1)} - d_{k(j)}\overline{d}_{k(j)}) \ b_{k(1)\ k(j)}\overline{b}_{k(1)\ k(j)} = \sum_{j=1}^{n} (d_{k(j)}\overline{d}_{k(j)} - \overline{d}_{k(1)}d_{k(1)}) \ b_{k(j)\ k(1)}\overline{b}_{k(j)\ k(1)} \\ \sum_{j=1}^{n} (d_{k(1)}\overline{d}_{k(1)} - d_{k(j)}\overline{d}_{k(j)}) (b_{k(1)\ k(j)}\overline{b}_{k(1)\ k(j)} + b_{k(j)\ k(1)}\overline{b}_{k(j)\ k(1)}) = 0 \\ d_{k(1)}\overline{d}_{k(1)} = d_{k(2)}\overline{d}_{k(2)} = \dots = d_{k(i)}\overline{d}_{k(i)} > d_{k(i+1)}\overline{d}_{k(i+1)}; \\ \text{Then } b_{k(1)\ k(j)}\overline{b}_{k(1)\ k(j)} + b_{k(j)\ k(1)}\overline{b}_{k(j)\ k(1)} = 0, \text{ for } j = t+1, t+2, \dots n. \\ \text{Since } d_{k(1)}\overline{d}_{k(1)} - d_{k(j)}\overline{d}_{k(j)} = 0 \text{ or positive value and is the latter for } j > t \\ \text{So } b_{k(1)k(j)} = 0 \text{ and } b_{k(j)\ k(1)} = 0 \text{ for } j = t+1, t+2... n. \\ \text{For } i = 2,3, \dots t \text{ is turn it follows that } b_{k(i)\ k(j)} = 0 \text{ and } b_{k(j)\ k(i)} = 0, \text{ for } i = 1,2...t \text{ and } \\ j = t+1, t+2, \dots n. \end{split}$$

Let $UAU^*K = D = r_1D_1 + r_2D_2 + \dots + r_sD_s$, where the r_i are real, $r_i > r_j$ for

i < j and the D_i are k-unitary.

Then by repeating the above process it follows that

 $UBU^*K = B_1 = C_1 + C_2 + \dots + C_s$ is conformal to D. it follows from the given

condition that $(r_i D_i) C_i C_i^* (D_i^* r_i) K = K C_i^* (r_i D_i^*) (D_i r_i) C_i$

and $C_i(r_i D_i) (D_i^* r_i) C_i^* K = K (r_i D_i^*) C_i^* C_i (D_i r_i)$ $\Rightarrow D_i C_i C_i^* K = K C_i^* C_i D_i$ and $D_i C_i C_i^* K = K C_i^* C_i D_i$ if $r_i > 0$

If $r_s = 0$, D_s is arbitrary insofar as D is concerned and so may be chosen so that

 $D_s C_s C_s^* K = K C_s^* C_s D_s$ in which case D_s may not be diagonal. But whether or not this is done, it follows that $DB_1B_1^*K = KB_1^*B_1D$ and $B_1DD^*K = KD^*DB_1$ so that $K(A^*A)B = B(AA^*)K$ and $K(B^*B)A = A(BB^*)K$.

Theorem 3.2:

Let A = PW = WP both polar form of the k-normal matrix A. Then AB & BA are k-normal iff $B = NW^*$, where N is k-normal and PN = NP

Proof:

Let $C_{k(i)} = H_{k(i)}U_{k(i)} = U_{k(i)}L_{k(i)}$ be the polar form of the $C_{k(i)}$.

Then $U_{k(i)}^* H_{k(i)} U_{k(i)} = L_{k(i)}$.

So that $U_{k(i)}^* C_{k(i)} C_{k(i)}^* U_{k(i)} = C_{k(i)}^* C_{k(i)}$ or $U_{k(i)}^* C_{k(i)} C_{k(i)}^* = C_{k(i)}^* C_{k(i)} U_{k(i)}^*$.

Also from the above $D_{k(i)}C_{k(i)}C_{k(i)}^* = C_{k(i)}^*C_{k(i)}D_{k(i)}$.

Let
$$R_{k(i)} = \overline{D}_{k(i)}U_{k(i)}^*$$
.

Then $R_{k(i)}C_{k(i)}C_{k(i)}^* = \overline{D}_{k(i)}U_{k(i)}^*C_{k(i)}C_{k(i)}$

 $= \overline{D}_{k(i)}C_{k(i)}^*C_{k(i)}U_{k(i)}^*$

 $= C_{k(i)}^* C_{k(i)} \overline{D}_{k(i)} U_{k(i)}^*$ = $C_{k(i)}^* C_{k(i)} R_{k(i)}$, where $R_{k(i)}$ is k-unitary ($r_{k(s)} = 0$, $D_{k(s)}$ may be

chosen $=U_{k(s)}^{*}$ as describe above). So $R_{k(i)}H_{k(i)}^{2} = H_{k(i)}^{2}R_{k(i)}$ and since $H_{k(i)}$ has positive or zero roots, $R_{k(i)}H_{k(i)} = H_{k(i)}R_{k(i)}$ and so $H_{k(i)}R_{k(i)}^{*} = R_{k(i)}^{*}H_{k(i)}$.

Then, $A = U^* D U = U^* D_{k(i)} U U^* D_{k(i)} U = P W = P W$ and

$$B = U^* B_{k(i)} U = U^* (c_{k(1)} + c_{k(2)} + \dots + c_{k(s)}) U$$

= $U^* (H_{k(1)} U_{k(1)} + H_{k(2)} U_{k(2)} + \dots + H_{k(s)} U_{k(s)}) U$
= $U^* (H_{k(1)} R_{k(1)}^* \overline{D}_{k(1)} + H_{k(2)} R_{k(2)}^* \overline{D}_{k(2)} + \dots + H_{k(s)} R_{k(s)}^* \overline{D}_{k(s)}) U$
= NW^* , where $N = U^* (H_{k(1)} R_{k(1)}^* + H_{k(2)} R_{k(2)}^* + \dots + H_{k(s)} R_{k(s)}^*) U$

(which is k-normal since the k-hermition $H_{k(i)}$ and k-unitary $R_{k(i)}^*$ commute) and $W^* = U^* \left(\overline{D}_{k(1)} + \overline{D}_{k(2)} + \dots + \overline{D}_{k(3)} \right) U$ it is evident that PN = NP

Conversely, if A = PW = WP and $B = NW^*$ an described, then $AB = WPNW^*$ which is obviously k-normal is $BA = NW^*WP = NP$. It is early seen that $B = NW^*$ is k-normal iff $NW^* = W^*N$ if $B = NW^* = (HR)W^*$ is can k-normal then $B = H(RW^*) = (RW^*)H^T = RHW^*$ (from property a) so $W^*H^T = HW^*$ or $WH = H^TW$ and $W(BB^*) = (B^*B)W$.

Remark 3.3:

If A is k-normal if B is conk-normal and if AB is k-normal, if does not necessarily follow that *BA* is k-normal though it can occur.

For example 3.4:

If $B = HU = UH^{T}$ is con k-normal and if $A = U^{*}$, then $AB = U^{*}UH^{T} = H^{T}$ and $BA = HUV^{*} = H$ are both k-normal. But the following is an example in which *AB* is k-normal but not *BA*.Let $B = HU = UH^{T}$ be conk-normal but not k-normal (ie H is not real by property (b)) and let H be non-singular.

Let $A = H^{-1}$ which is k-hamitian (so k-normal) and not conk-normal (since H^{-1} is not real). Then $AB = H^{-1}HU = U$ is k-normal. If BA were also k-normal, then by the above theorem $(A^*A)B = B(AA^*)$ and $(B^*B)A = A(BB^*)$ but $(B^*B)A = (H^T)^2 H^{-1}$ and $A(BB^*) = (H)^{-1}(H^2)$ and if there were equal, $(H^T)^2 = H^2$ would follow which means that $H^2 = (H^T)^2 = (H^*)^2$ so that H^2 is real. But this is not possible for if $H = VDV^*$ where D is k-diagonal with the real elements (since H is non-singular), then $H^2 = VD^2V^* = \overline{V}D^2V^T$ if H^2 is real so that $V^TVD^2 = D^2V^TV$ so $VDV^* = \overline{V}DV^T = H$ is real which contradicts the above consumption. But the following theorem result when A and B are both con k- normal.

Theorem 3.5:

If A and B are con k-normal and if AB is k-normal, then BA is k-normal.

Proof:

Let U be a k-unitary matrix such that $UAU^{T} = F$ is the k-normal form described in theorem 1 and where $FF^{*} = FF^{T} = r_{k(1)}^{2}I_{k(1)} + r_{k(2)}^{2}I_{k(2)} + \dots + r_{k(n)}^{2}$, $I_{k(n)}$

which is real k-diagonal with $r_{k(1)}^2 > r_{k(2)}^2 > ... > r_{k(n)}^2 \ge 0$.

These $r_{k(i)}^2$ may be either the squares of k-diagonal elements of F or they may arise when matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ are squared. Assume that any of the letter where $r_{k(i)}^2$ are equal are arranged first in a given block followed by any k-diagonal elements whose square is the same $r_{k(i)}^2$.

Let $\overline{UBU}^* = B$ which is conk-normal and then $UAU^T \overline{UBU}^* = FB$ is k-normal. Let V be the k – unitary matrix $\sqrt{2^{-1}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$ then the following matrix relation holds,

independent of a and b.

$$V = \begin{bmatrix} a & b \\ & V^* = \begin{bmatrix} a - b^i & 0 \\ \\ & -b & a \end{bmatrix} \quad \begin{bmatrix} 0 & a + b^i \end{bmatrix}$$

Let $F = F_{k(1)} + F_{k(2)} + \dots + F_{k(n)}$ where the direct sum is conformable to that of FF^* given above (i.e., $F_{k(i)}F_{k(i)}^* = r_{k(i)}^2I_{k(i)}$) and consider $F_{k(1)} = G_{k(1)} + G_{k(2)} + \dots + G_{k(t)} + r_{k(t)}I$ where each $G_{k(i)}$ is 2 x 2 as described above and I is an identity matrix of proper size.

Let $W_{k(1)} = V + V + \dots + V + I$ be conformable to $F_{k(i)}$, define $W_{k(i)}$ for each $F_{k(i)}$, in like manner and let $W = W_{k(1)} + W_{k(2)} + \dots + W_{k(n)}$ if $r_{k(n)} = 0$, $W_{k(n)} = I$. Then $WFW^* = D$ is complex k-diagonal, where $d_{k(i)}$ is the ith diagonal element $d_{k(i)}\overline{d}_{k(i)} \ge d_{k(i+1)}\overline{d}_{k(i+1)}$. Then $W(UAU^T)W^*W(UBU^*)W^* = (WFW^*)(WB_{k(1)}W^*) = DB_{k(2)}$ is k-normal for $B_{k(2)} = WB_{k(1)}W^*$ or $B_{k(1)} = W^*B^{k(2)}W$.

Since B_1 is con k – normal, $B_{k(1)}B_{k(1)}^* = B_{k(1)}^T B_{k(1)}$,

so that $W^* B_{k(2)} W W^* B_{k(2)}^* W = W^T B_{k(2)}^* \overline{W} W^T \underline{B}_{k(2)} \overline{W}$ or that $B_{k(2)} B_{k(2)}^* W W^T = W W^T B_{k(2)}^T \underline{B}_{k(2)}$.

Now VV^T is a matrix of the form $\begin{bmatrix} 0 & i \\ i & 0 \\ 0 \end{bmatrix}$, so that WW^T is a direct sum of matrices of

this form and 1's.

ISSN: 2231-5373

Let $B_{k(2)} = (b_{k(i)k(j)})$ and consider $(WW^T)^* B_{k(2)}B^*_{k(2)}(WW^T) = B^T_{k(2)}\overline{B}_{k(2)}$. Let $B_{k(2)}B^*_{k(2)} = (c_{k(i)k(j)}), B^T_{k(2)}\overline{B}_{k(2)} = (f_{k(i)k(j)}), C_{k(i)k(j)}$ and $f_{k(i)k(j)}$ are identifiable with the $b_{k(i)k(j)}$ both matrices being k-hermitian.

Consider two cases:

- (a) if $d_{k(1)}\overline{d}_{K(1)} = d_{k(j)}\overline{d}_{K(j)}$ for all j (where $d_{k(j)}$ is the j k-diagonal element of D), then $D = nD_{K(u)}$, where $D_{K(u)}$ is k-unitary k-diagonal. Since $WFB_{k(1)}W^* = DB_{k(2)} = nD_{k(u)}B_{k(2)} = D_{k(u)}(nB_{k(2)})$ is k-normal, and then $\overline{D}_{k(u)}(D_{k(u)}B_{k(2)}n)D_{k(u)} = B_{k(2)}D = WB_{k(1)}FW^*$ is k-normal as is $B_{k(1)}F = \overline{U}BU^*UAU^T$ so BA is k-normal.
- (b) If $l_{k(i)}\overline{d}_{k(i)} \neq d_{k(j)}\overline{d}_{k(j)}$ for some j, let $d_{k(1)}d_{k(1)} = d_{k(2)}d_{k(2)} = \dots = d_{k(1)}\overline{d}_{k(1)}$ for $1 \le l \le n$ (so that $d_{k(l)}\overline{d}_{k(l)} > d_{k(l+1)}\underline{d}_{k(l+1)}$).

Suppose $F_{k(1)} = G_{k(1)} + G_{k(2)} + r_{k(1)}I_{k(1)}$ where $I_{k(1)}$ is the 2×2 identify matrix. From $(WW^T)^* B_{k(2)}B_{k(2)}^* (WW^T) = B_{k(2)}^T \overline{B}_{k(2)}$ and fact that $W_{k(1)} = V + V + I_{k(1)}$, it follow that

$$c_{k(1)k(1)} = \sum b_{k(1)k(i)}\overline{b}_{k(1)k(i)} = \sum b_{k(i)k(2)}\overline{b}_{k(i)k(2)} = f_{k(2)k(2)}$$

$$c_{k(2)k(2)} = \sum b_{k(2)k(i)}\overline{b}_{k(2)k(i)} = \sum b_{k(i)k(1)}\overline{b}_{k(i)k(1)} = f_{k(1)k(1)}$$

$$c_{k(3)k(3)} = \sum b_{k(3)k(i)}\overline{b}_{k(3)k(i)} = \sum b_{k(i)k(4)}\overline{b}_{k(i)k(4)} = f_{k(4)k(4)}$$

$$c_{k(4)k(4)} = \sum b_{k(4)k(i)}\overline{b}_{k(4)k(i)} = \sum b_{k(i)k(3)}\overline{b}_{k(i)k(3)} = f_{k(3)k(3)}$$

$$c_{k(5)k(5)} = \sum b_{k(5)k(i)}\overline{b}_{k(5)k(i)} = \sum b_{k(i)k(5)}\overline{b}_{k(i)k(5)} = f_{k(5)k(5)}$$

 $c_{k(6)k(6)} = \sum b_{k(6)k(i)}\overline{b}_{k(6)k(i)} = \sum b_{k(i)k(6)}\overline{b}_{k(i)k(6)} = f_{k(6)k(6)}$ $DB_{k(2)}$ is k-normal so that the following relations also hold.

$$\begin{aligned} d_{k(1)}\overline{d}_{k(1)}\sum b_{k(1)k(i)}\overline{b}_{k(1)k(i)} &= \sum d_{k(i)}\overline{d}_{k(i)}b_{k(i)k(1)}\overline{b}_{k(i)k(1)} \\ d_{k(2)}\overline{d}_{k(2)}\sum b_{k(2)k(i)}\overline{b}_{k(2)k(i)} &= \sum d_{k(i)}\overline{d}_{k(i)}b_{k(i)k(2)}\overline{b}_{k(i)k(2)} \\ d_{k(3)}\overline{d}_{k(3)}\sum b_{k(3)k(i)}\overline{b}_{k(3)k(i)} &= \sum d_{k(i)}\overline{d}_{k(i)}b_{k(i)k(3)}\overline{b}_{k(i)k(3)} \end{aligned}$$

ISSN: 2231-5373

$$\begin{split} &d_{k(4)}\overline{d}_{k(4)}\sum b_{k(4)k(i)}\overline{b}_{k(4)k(i)} = \sum d_{k(i)}\overline{d}_{k(i)}b_{k(i)k(4)}\overline{b}_{k(i)k(4)} \\ &d_{k(5)}\overline{d}_{k(5)}\sum b_{k(5)k(i)}\overline{b}_{k(5)k(i)} = \sum d_{k(i)}\overline{d}_{k(i)}b_{k(i)k(5)}\overline{b}_{k(i)k(5)} \\ &d_{k(6)}\overline{d}_{k(6)}\sum b_{k(6)k(i)}\overline{b}_{k(6)k(i)} = \sum d_{k(i)}\overline{d}_{k(i)}b_{k(i)k(6)}\overline{b}_{k(i)k(6)} \ . \end{split}$$

Since $d_{k(1)}\overline{d}_{k(1)} = d_{k(2)}\overline{d}_{k(2)}$, can combining the first two relations in each of these sets,

$$\begin{aligned} d_{k(1)} \overline{d}_{k(1)} \left(\sum b_{k(1)k(i)} \overline{b}_{k(1)k(i)} + \sum b_{k(2)k(i)} \overline{b}_{k(2)k(i)} \right) &= d_{k(1)} \overline{d}_{k(1)} \\ \left(\sum b_{k(i)k(1)} \overline{b}_{k(i)k(1)} + b_{k(i)k(2)} \overline{b}_{k(2)} \right) \text{ so that} \end{aligned}$$

$$\left(\sum_{k(1)} d_{k(1)} - d_{k(i)} \overline{d}_{k(i)}\right) \left(b_{k(i)k(1)} \overline{b}_{k(i)k(1)} + b_{k(i)k(2)} \overline{b}_{k(i)k(2)}\right) = 0$$

$$d_{k(1)} \overline{d}_{k(1)} = d_{k(j)} \overline{d}_{k(j)} \text{ for } j = 1, 2, \dots, 6 \text{ but for j beyond } 6,$$

$$d_{k(1)} \overline{d}_{k(1)} - d_{k(j)} \overline{d}_{k(j)} > 0 \text{ so that } b_{k(i)k(1)} \overline{b}_{k(i)k(1)} + b_{k(i)k(2)} \overline{b}_{k(i)k(2)} = 0 \text{ or } b_{k(i)k(1)} = 0 \text{ and }$$

$$b_{k(i)k(2)} = 0 \text{ for } i = 7, 8, \dots, n.$$

Similarly, $b_{k(i)k(3)} = 0$ and $b_{k(i)k(4)} = 0$ for i > 6

The third relations in each set give $b_{k(i)k(5)} = 0$ and $b_{k(i)k(6)} \ge 0$ for i > 6.

On adding all 6 relation in the first set

$$\sum_{i,j=1}^{6} b_{k(i)k(j)} \overline{b_{k(i)k(j)}} + \sum_{i=1}^{6} \sum_{j=7}^{n} b_{k(i)k(j)} \overline{b_{k(i)k(j)}} = \sum_{i,j=1}^{6} b_{k(i)(j)} \overline{b_{k(i)k(j)}} + \sum_{i=7}^{n} \sum_{j=1}^{6} b_{k(i)k(j)} \overline{b_{k(i)k(j)}} - \sum_{i=7}^{6} b_{k(i)k(j)} - \sum_{i=7}^{6$$

and on cancelling the first summations on each side,

$$\sum_{i=1}^{6} \sum_{j=7}^{n} b_{k(i)k(j)} \overline{b}_{k(i)k(j)} = \sum_{i=7}^{n} \sum_{j=1}^{6} b_{k(i)k(j)} \overline{b}_{k(i)k(j)} \,.$$

But the right side is 0 from the above, so the left side is 0 and so $b_{k(i)k(j)} = 0$ for i = 1, 2, ..., 6.

From this it is evident that this procedure may be repeated, and that if $D = r_{k(1)}D_{k(1)} + r_{k(2)}D_{k(2)} + \dots + r_{k(n)}D_{k(n)}$, where $D_{k(i)}$ are unitary and the $r_{k(i)}$ non-negative real, as above then $B_{k(2)} = C_{k(1)} + C_{k(2)} + \dots + C_{k(n)}$ conformable to D.

Then, $r_{k(i)}D_{k(i)}C_{k(i)}$ is k-normal so $D_{k(i)}^*(D_{k(i)}C_{k(i)}r_{k(i)})D_{k(i)} = C_{k(i)}r_{k(i)}D_{k(i)}$ is k-normal. So $B_{k(2)}D$ is k-normal. So $B_{k(i)}F$ and so $\overline{U}BU^*UAU^T$ and BA.

Theorem 3.6:

If A and B are con k-normal, then AB is k-normal if and only if $A^*AB = BAA^*$ and $ABB^* = B^*BA$ (i.e. if and only if each is k-normal relative to the other).

Proof:

Let AB is k-normal, from the above $D^*DB_{k(2)} = B_{k(2)}DD^*$ so that $F^*FB_{k(1)} = B_{k(1)}FF^*$ or $A^*AB = BAA^*$.

Similarly, since $DB_{k(2)}$ is k-normal, $DB_{k(2)}B^*_{k(2)}D = B^*_{k(2)}, DDB_{k(2)}$ so $DB_{k(2)}B^*_{k(2)} = B^*_{k(1)}B_{k(1)}F$ or $ABB^* = B^*BA$.

The converse is directly verifiable.

Theorem 3.7:

Let A and B be con k-normal. If AB is k-normal, then $A = LW = WL^{T}$ (with L is k-hermition & W is k-unitary) and $L^{T}N = NL^{T}$ and conversely.

Proof:

Let $UAU^{T} = F = W^{*}DW = W^{*}D$ $WW^{*}D$ W (where $D_{k(r)}$ and $D_{k(u)}$ are the khermition and k-unitar^{k(r)} polar matrices of D) and $\overline{U}BU^{*} = B_{k(1)} = W^{*}B_{k(2)}W = W^{*}(C_{k(1)} + C_{k(2)} + \dots + C_{k(n)})W$.

As in the proof of theorem 3 it follows that for all i, $D_{k(i)}^*C_{k(i)}C_{k(i)}^* = C_{k(i)}^*C_{k(i)}D_{k(i)}$ and $U_{k(i)}^*C_{k(i)}C_{k(i)}^* = C_{k(i)}^*C_{k(i)}U_{k(i)}^*$, with $U_{k(i)}$ is defined there, so that when $R_{k(i)} = \overline{D}_{k(i)}U_{k(i)}^*$

(where, *D* here, $= r_{k(1)}D_{k(1)} + r_{k(2)}D_{k(2)} + \dots + r_{k(n)}D_{k(n)}$ as earlier), then $C_{k(i)} = H_{k(i)}U_{k(i)} = H_{k(i)}R_{k(i)}^*\underline{D}_{k(i)}$ with $H_{k(i)}R_{k(i)} = R_{k(i)}H_{k(i)}$.

Then, since $WD_{k(r)} = D_{k(r)}W$, $UAU^{T} = W^{*}DK_{(r)}WW^{*}D_{k(u)}W = D_{k(r)}(W^{*}D_{k(u)}W)$

and $A = (U^* D_{k(r)} U) (U^* W^* D_{k(u)} W \overline{U}) = LX$

 $A = (U^*W^*D_{k(u)}W\overline{U})(U^TD_{k(r)}\overline{U}) = XL^T$ With $L = U^*D$ *U* k-hermitian and $X = U^*W^*D$ *WU* k-unitary. Also, $\overline{UBU^*} = W^*(H_{k(1)}R_{k(1)}^*\overline{D}_{k(1)} + H_{k(2)}R_{k(2)}^*\overline{D}_{k(2)} + \dots + H_{k(n)}R_{k(n)}^*\overline{D}_{k(n)})W = N_{k(1)}Y$, where $N_{k(1)} = W^*(H_{k(1)}R_{k(1)}^* + H_{k(2)}R_{k(2)}^* + \dots + H_{k(n)}R_{k(n)}^*)W$ is k-normal and $Y = W^*(\overline{D}_{k(1)} + \overline{D}_{k(2)} + \dots + \overline{D}_{k(n)})W$ is k-unitary, then $B = U^TN_{k(1)}yU = (U^TN_{k(1)}\overline{U})(U^TyU) = NX^*$, where $N = U^TN_{k(1)}\overline{U}$ is k-normal and $X^* = U^TyU = U^TW^*\overline{D}_{k(u)}WU$. Also, $L^TN = NL^T$ since $D_{k(r)}N_{k(1)} = N_{k(1)}D_{k(v)}$, $\overline{D}_{k(v)}N_{k(1)} = N_{k(1)}D_{k(v)}$.

So $L^T N = NL^T$. The converse is immediate.

4. CON k-NORMAL PRODUCT OF MATRICES

It is possible if A is k-normal and B is can K-normal that AB us cab k-normal, for example, any can k-normal matrix $C = HU = UH^T$ and A = H, then $AC = H^2U = HUH^T = U(H^T)^2$ is con k-normal, the following theorem clarify this matter.

Theorem 4.1:

If A is k-normal and B is con-k-normal, then AB is con k-normal if and only if $ABB^* = BB^*A$ and $\overline{B}AA^* = A^T \overline{A}\overline{B}$ or $B\overline{A}A^* = A^*AB$.

Proof:

By the condition, then $(AB)(AB)^* = ABB^*A^* = BB^*AA^*$ and $(AB)^T (\overline{AB}) = B^T A^T \overline{AB} = B^T \overline{B}AA^*$ which are equal. Conversely, let AB be can knormal and let $UAU^* = D = d_{k(1)}I_{k(1)} + d_{k(2)}I_{k(2)} + \dots + d_{k(n)}I_{k(n)}$, where $d_{k(i)}\overline{d}_{k(i)} > d_{k(j)}\overline{d}_{k(j)}$, i > j.let $UB^T U^T = B_{k(1)} = (b_{k(i)k(j)})$.

If
$$(AB)(AB)^* = ABB^*A^* = AB^T\overline{B}A^* = (AB)^T(\overline{AB}) = B^TA^T\overline{A}\overline{B} = B^T\overline{A}\overline{A}^T\overline{B}$$
, then

 $(UAU^*)(UB^TU^T\overline{U}B\overline{U})(UA^*U^*) = (UB^TU^T)(\overline{U}A\overline{U}^T\overline{U}A^TU^T)(\overline{U}B\overline{U})$ So that $DB_{k(1)}B_{k(1)}^* = B_{k(1)}\overline{D}DB_{k(1)}^*$.

Equating k-diagonal elements an each side of this relation,

$$\sum_{j=1}^{n} d_{k(i)} \overline{d}_{k(i)} b_{k(i)k(j)} \overline{b}_{k(i)k(j)} = \sum_{j=1}^{n} d_{k(j)} \overline{d}_{k(j)} b_{k(i)k(j)} \overline{b}_{k(i)k(j)} \cdot i = 1, 2, ..., n \text{ (or)}$$

$$\sum_{j=1}^{n} \left(d_{k(i)} \overline{d}_{k(i)} - d_{k(j)} \overline{d}_{k(j)} \right) b_{k(i)k(j)} \overline{b}_{k(i)k(j)} = 0 - Let \ d_{k(1)} \overline{d}_{k(1)} = d_{k(2)} \overline{d}_{k(2)} = ... d_{k(l)} d_{k(l)} > d_{k(l+1)} d_{k(l+1)} \text{ .Then } b_{k(i)(j)} = 0 \text{ for } i = 1, 2, ... l \text{ and}$$

$$j = l + 1, l + 2, ..., n.$$
Since $B_{k(1)}$ is con k-normal,

$$\sum_{j=1}^{n} b_{k(i)k(j)} \overline{b}_{k(i)k(j)} = \sum_{j=1}^{n} b_{k(j)k(i)} \overline{b}_{k(j)k(i)} \text{ for } i = 1, 2, ... n$$

On adding the first 'l' of these equations and cancelling, $b_{k(i)k(j)} = 0$ for i = l+1, l+2, ...n and i = l+1, l+2, ...n in this manner if $D = r_{k(1)}D_{k(i)} + + r_{k(t)}D_{k(t)}$ with $r_{k(i)} > r_{k(i+1)}$ and $D_{k(i)}$ is k-unitary, then $B_{k(1)} = C_{k(1)} + C_{k(2)} + + c_{k(t)}$ conformal to D. since $r_{k(i)}D_{k(i)}D_{k(i)}^*r_{k(i)}C_{k(i)}^T = r_{k(i)}^2C_{k(i)}^T = C_{k(i)}^Tr_{k(i)}^2 = C_{k(i)}^Tr_{k(i)}D_{k(i)}D_{k(i)}^*r_{k(i)}$ for all i, $DD^*B_{k(1)}^T = B_{k(1)}^TDD^*$ and so $U^*DD^*UU^*B_{k(i)}^T\overline{U} = U^*B_{k(1)}^TUU^TDD^*U \cdot A^*AB = BA^T\overline{A}$ or $AA^*B = BA^T\overline{A}$ or $A^T\overline{AB} = \overline{B}AA^*$

Also
$$D(B_{k(1)}B_{k(1)}^*D^*) = B_{k(1)}\overline{D}DB_{k(1)}^* = \overline{D}DB_{k(1)}^* = D(\overline{D}B_{k(1)}B_{k(1)}^*)$$
 so that
 $C_{k(i)}C_{k(i)}^*(r_{k(i)}\overline{D}_{k(i)}) = (r_{k(i)}\overline{D}_{k(i)})C_{k(i)}C_{K(i)}^*$ for $i = 1, 2, ...t$

(If $r_{k(t)} = 0$, this is stile true and $D_{k(t)}$ may be chosen to be the identify matrix.)

Therefore, $B_{k(1)}B_{k(1)}^* = D^*B_{k(1)}B_{k(1)}^*$ and $UB^T U^T \overline{U} \ \overline{B}U^* UA^* U^* = UA^* U^* UB^T U^T \overline{U} \ \overline{B}_{k(1)}U^*$ so $B^T \ \overline{B}A^* = A^* B^T B$ or $AB^T \ \overline{B} = B^T \ \overline{B}A$.

ISSN: 2231-5373

Corollary 4.2:

Let A be k-normal, B can k-normal, if AB is con-k-normal, then $B\overline{A}$ is con k-normal and conversely.

Proof:

By theorem7, $UAU^*UBU^T = DB_{k(1)}^T$ is con k-normal, and if $D = D_{k(r)}D_{k(u)}$, $D_{k(r)}$ real and $D_{k(u)}$ is k-unitary, then since $\overline{D}_{k(u)} = D_{k(u)}^*$, $D_{k(u)}^*(DB_{k(1)}^T)\overline{D}_{k(u)} = D_{k(r)}B_{k(1)}^T\overline{D}_{k(u)} = B_{k(1)}^TD_{k(r)}\underline{D}_{k(u)} = B_{k(1)}^T\underline{D}$ is con k-normal as are $UBU^T\overline{U} \overline{A}U^T$ and $B\overline{A}$. Conversely

If A is k-normal and B is con k-normal, $B\overline{A}$ is con k-normal if and only if AB is con k-normal if and only if $(B^T \overline{B})A = A(BB^*)$ and $(A^T \overline{A})\overline{B} = \overline{B}(AA^*)$.

Therefore, if A is k-normal and B is con k-normal, BA is con k-normal if and only if $(B^T \overline{B})\overline{A} = \overline{A}(BB^*)$ and $(A^*A)\overline{B} = \overline{B}(\overline{A}A^T)$ is replace A by \overline{A} in the preceding, or $(B^*B)A = A(\overline{B}B^T)$ and $(A^*A)\overline{B} = \overline{B}(\overline{A}A^T)$, thus exhibiting the fact that when AB is con k-normal, BA is not necessary so.

Theorem 4.3:

If A = PW = WP is k-normal and $B = LV = VL^{T}$ is con k-normal (where P & L and k-hermitian and W and V are k-unitary) then AB is con k-normal if and only if PL = LP, $PV = VP^{T}$ and WL = LW.

Proof:

If three relations hold, then AB = PWLV = PLWV on one hand, and $AB = WPLV = WLPV = WLVP^{T} = WVL^{T}P^{T} = WV(PL)^{T}$ con k-normal since PL is k-hermitian and WV is k-unitary.

Conversely, let $A = U^* DU = (U^* D_{k(r)}U)(U^* D_{k(r)}U) = PW$

and $B = U^* B_{k(1)}^T \overline{U} = (U^* L_{k(1)} U) (U^* V_{k(1)} \overline{U}) = LV = VL^T$ where $L_{k(i)}$ and $V_{k(i)}$ are k-hermit ion and k-unitary and direct sums conformable to $B_{k(1)}^T$ and D. A direct check shows that PL = LP and $PV = VP^{T}$, also $WL = U^{*}D_{k(u)}L_{k(1)}U = U^{*}L_{k(1)}D_{k(u)}U = LW$ since $D_{k(u)}B_{k(1)}B_{k(1)}^{*} = B_{k(1)}B_{k(1)}^{*}D_{k(u)}$ implies $D_{k(u)}L_{k(1)} = L_{k(1)}D_{k(u)}$

Note:

A sufficient condition for the simultaneously reduction of A and B is given by the following.

Theorem 4.4:

If A is k-normal, B is con k-normal and $AB = BA^{T}$ then $WAW^{*} = D$ and $WB^{T}W = F$, the k-normal form of theorem 1, where W is a k-unitary matrix, also AB is con k-normal.

Proof:

Let $UAU^* = D$, k-diagonal and $UBU^T = B_{k(2)}$ which is con k-normal. Then $AB = BA^T$ implies $DB_{k(2)} = UAU^*UBU^T = UBU^T\overline{U}A^TU^T = B_{k(2)}D^T = B_{k(2)}D$. Let $D = C_{k(1)}I_{k(1)} + C_{k(2)}I_{k(2)} + \dots + C_{k(n)}I_{k(n)}$, where the $C_{k(i)}$ are complex and $C_{k(i)} \neq C_{k(j)}$ for $i \neq j$ and $B_{k(2)} = C_{k(1)} + \dots + C_{k(n)}$. Let $V_{k(i)}$ be k-unitary such that $V_{k(i)}C_{k(i)}V_{k(i)}^T = F_{k(i)}$ = the real k-normal form of theorem1, and let $V = V_{k(1)} + V_{k(2)} + \dots + V_{k(n)}$. Then $VUAU^*V^* = D$, $VUBU^TV^T = F = a$ direct sum of the $F_{k(i)}$. Also, $AB = BA^T$ implies $B^TA^T = AB^T$ and so $ABB^*A^* = AB^T \overline{B}A^* = B^T A^T \overline{A}\overline{B} = (AB)^T (\overline{AB})$.

It is also possible for the product of two k-normal matrices A and B to the con knormal, if $U = HU = UH^T$ is con-k-normal and if A = U and B = H this is so or if $LV = VL^T$ is con-k-normal and if A = UL = LU is k-normal with L k-hermit ion and V and U is k-unitary, for B = V, $AB = (UL)V = L(UV) = (UV)L^T$ con-k-normal.

But if in the first example, U^2H is not k-normal then HU is not con k-normal so that *BA* is not necessarily con k-normal through of theorem2 can be obtained which states the following if A is k-normal, then AB and AB^T one con k-normal if $ABB^* = B^T \overline{B}A$, $BB^*A = AB^T \overline{B}$ and $\overline{B}AA^* = A^T \overline{A}\overline{B}$. (The proof is not included here

because of is similarity to that above). When B is con-k-normal, two of these conditions merge into due in theorem7.

It is possible for the product of two con-k-normal matrices to be con-k-normal, but no such single analogous necessary and sufficient conditions of exhibited above are available.

These may be seen of follows. Two non-real complex commutative matrices $M = M^T \& N = N^T$ can form a con k-normal (and non real symmetric) matrix MN (such that NM is also con k-normal) which need not be k-normal be k-normal. Then two symmetric matrices.

$\prod_{i=1}^{n}$	i+i		1 + 2i	3-4i
$x = \lfloor 1 + l \rfloor$	$-i \rfloor$	y =	3 - 4i	$3-4i \\ -(1+2i) \end{bmatrix}$

Are such that Z is real, k-normal and con k-normal (and not symmetric). Finally, if U and V are two complex k-unitary matrices of the same order, they can to chosen so UV is non-real complex, k-normal and con k-normal. If A = M + X + U and B = N + Y + V, AB = MN + XY + UV where A and B are con k-normal as in AB(but not symmetric). A single impaction of these matrices shows that relations on the order of $(B^T \overline{B})A = A(BB^*) = (BB^*)$ and $(A^T \overline{A})\overline{B} = (AA^*)\overline{B} = \overline{B}(AA^*)$ do not necessarily hold, these are sufficient, however, to guarantee that AB is con k-normal (as direct verification from the definition will show).

Reference:

- Hill, R.D., Water, S.R., "On k-real and k-hermitian matrices," Linear Alg. Appl. Vol.169(1992), pp.17-29.
- [2]. Krishnamoorthy, K., and Subash, R., "On k-normal matrices" International J. of Math.Sci. & Engg. Appls. Vol. 5 No. II (2011), pp. 119-130.
- [3]. Krishnamoorthy, S., Gunasekaran, K., and Arumugam, K., "On Con k-normal Matrices" International Journal of Current ResearchVol. 4, Issue, 01, pp.167-169, January, 2012
- [4]. Wiegmann, N., "Normal Products of Matrices" Duke Math.Journal 15(1948), 633-638.