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1. INTRODUCTION: 

In this section concerns matrices belonging to the set n nC  composed of square matrices 

of order n with complex entries. Referring to singular value decomposition such matrices can be 

written in the form 

0
A U V K

0 0
 

  
 

      (1) 

where n nU,V C are k-unitary, 1 r1 t r tdiag( I ,..., I )    is the diagonal matrix of singular values 

of A, 1 2 t... 0       , 1 2 tr r ... r r rank(A)     and riI in the identity matrix of order ir , 

see[13, p.66], using this decomposition, Hartwig and Spindelbock [7,corollory6] derived the 

following representation. 

Let n nA C be of rank r, then  
N M

A U U K
0 0

  
  

 
   (2) 
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where U and  are taken from the singular decomposition (1) of A, and the matrices N and M 
satisfy the condition rNN MM I   . Utilizing the representation (2), we see that A KA K , 

that is A is k-hermitian if and only if M=0 and N N   , the matrix A satisfies AA K KA A  , 
that is A is k-normal if and only if M=0 and N N   . This is equivalent to the relation
AXK KXA , where X is the Moor-Penrose inverse of A, Uniquely defined by the four 
conditions AXA A, XAX X, (AX) AX   and (XA) XA  and expresses the so called             
k-normal property of matrix A. 

 From (2) it follows that  

1

1

N 0
X KU U

M 0

 


 

 
    

      (3) 

We say that A has the group property if 2rank(A) rank(A ) . This is equivalent to saying that the 

matrix N in (2) is nonsingular. In such a case, matrix A has a group inverse Y, which is 

characterized by the following three conditions AYA A, YAY Y, and YA AY  ensuring 

that matrix Y is unique. 

From (2) we obtain,   

  
1 1 1 1 1N N N M

Y KU U
0 0

    
  

  
       

(4)
 

In what follows, whenever the group inverse occurs, it is assumed to exist. 

Theorem 1: Let n nA C . Then the following conditions are equivalent.  

a. A is k-normal 

b. AKAA AA AK   

c. KAA A A AKA   

d. A KY YKA   

e. KAA KY A KYAK   

f. AA KY KYAA   

g. KAYKA YKA AK   

h. A AYK YKA A   
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i. A KA KY A KYKA     

j. A KXKY YKA KX   

k. AA KX KXAA   

l. A KYKA YKA KA     

m. A KYKX XKA KY   

n. A KYKY YKA KY   

o. XKA KY YKXKA   

p. XKYKA YKA KX   

q. YKA KY YKYKA   

Proof: By hypothesis, matrix A of the representation (2) is k-normal if and only if M=0 and

N N   . 

(a)  (b):  Assume that A is k-normal matrix. 

To prove that AKAA AA AK  .  

Now, 
N M N M N M

AKAA U U K K U U K U U K
0 0 0 0 0 0



                   
           

            

N M N M N M
AKAA U U

0 0 0 0 0 0

 
         
    

   
 

N N N M N M
AKAA U U

0 0 0 0

 
        
   

  
 

2 2N N N M N M
AKAA U U

0 0 0 0

 
      
   

  
 

2 2N N N N N M
AKAA U U

0 0

 
     
  

 
 

Also,  
N M N M N M

AA AK U U K U U K U U K K
0 0 0 0 0 0
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N M N MN M
AA AK U U

0 0 0 00 0

 
         

     
    

 

N MN N N M
AA AK U U

0 00 0

 
        

   
  

 

2 2 N MN N N M
AA AK U U

0 00 0

 
      

   
  

 

2 2N N N N N M
AA AK U U

0 0

 
     

  
 

 

If M 0 implies M 0  . Thus, we obtained equivalently M 0 and 2 2N N   . Taking 

square roots, we arrive at M 0 and N N   , that is M 0 and N N   . 

Therefore, 
3N 0

AKAA AA AK U U
0 0

   
   

 
. 

Converse part we have to prove directly. 

(a)  (d):  Assume that A is k-normal matrix. 

To prove that A KY YKA  .  

Now,  
1 1 1 1 1N M N N N M

A KY U U K K KU U
0 0 0 0

     
          

     
       

 

1 1 1 1 1N M N N N M
A KY KU U

0 0 0 0

      
      

   
  

 

1 1 1 1 1N N N N N M
A KY KU U

0 0

      
     

  
 

 

Also,   
1 1 1 1 1 N MN N N M

YKA KU U K U U K
0 00 0
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1 1 1 1 1N N N M N M
YKA KU U

0 0 0 0

      
      
   

  
 

1 1 1 1N N N M
YKA KU U

0 0

     
     
  

 
 

It is seen that A  and Y commute if and only if M 0 implies M 0  and 
1 1 1 1N N N N          . 

Therefore, A KY YKA  . Converse part is obvious. 

We show the equivalence between (c) and (e) to (q) to prove the similar way. 

Theorem 2: Let n nA C . Then the following conditions are equivalent. 

a. A is k-normal 

b. A KX YKA   

c. A KY XKA   

Proof:  (a)  (b):  Assume that A is k-normal matrix. 

To prove that A KX YKA  . 

Now, 
1

1

N M N 0
A KX U U K K KU U

0 0 M 0

  
  

 

       
              

 

1

1

N 0N M
A KX KU U

0 0 M 0

   
 

 

   
        

 

 
1 1N N M M 0

A KX KU U
0 0

     
     

  
 

 

1N N 0
A KX KU U

0 0
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Also,  
1 1N N 0

YKA KU U
0 0

  
   
  

 
 

It follows that A KX YKA  implies M 0  . Moreover, by 1N N  , in addition to M 0  we 

get 1 1 1N N N N          . Hence we further obtain M 0 and N N   , that is, the pair of 

conditions corresponding to the k-normality of A. The other direction is obvious. 

Next, equivalent conditions we have to prove the similar way. 

Theorem 3: Let n nA C . Then the following conditions are equivalent. 

a. A is k-normal 

b. KAA KX A   

c. KAA KY A   

d. XKA AK A   

e. YKA AK A   

Proof:  We again show the equivalence (a)  (b) only.   

Assume that A is k-normal matrix. 

To prove that KAA KX A  . 

Now,  
1

1

N M N M N 0
KAA KX K U U K U U K K KU U

0 0 0 0 M 0

  
   

 

             
                      

 

  
1

1

N M N 0N M
KAA KX KU U

0 0 0 0 M 0

  
 

 

      
         

 

  
1

1

N 0N N N M
KAA KX KU U

0 0 M 0

  
 

 

     
      

 

2 1 1N N N N M M 0
KAA KX KU U

0 0
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2 1N 0
KAA KX KU U

0 0

 
   

  
 

 

and  
N M

A KU U
0 0

 
   
  

 
 

Consequently, the condition KAA KX A  is equivalent to M 0 and 2 1N N      , that is 

M 0 and 2 2N N   , which according to the derivations from the above is equivalent to the 

k-normality of A. the converse part is obvious. 

Similarly, we have to prove the other equivalent conditions. 

Remark: In this section is concluded with some observations concerning k-hermitian matrices, 

for, by exploiting representation (2), one can obtain also several characterizations of such 

matrices. For, instance, the following list of conditions is equivalent to A KA K . 

a. AKA KA A  

b. KAX A KX  

c. KAY A KX  

d. KAY A KY  

e. KAY XKA  

f. XAK YKA  

Similarly, the following list provides selected conditions of the form A A XY , which are 

satisfied if and only if A is k-hermitian. 

a. KAKAX A  

b. AA KXK A   

c. KA AYK A   

d. A KA KY A    

e. A KXKX Y   

f. A KXKY X   

g. A KXKY Y   
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h. A KYKY Y   

i. YKA KY X   

The final observation is that analogous results to the ones referring to k-hermitian matrices can 

be obtained for skew k-hermitian matrices. This observation follows directly from the fact that a 

matrix A is skew k-hermitian whenever iA is k-hermitian.  
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