Characterizations of k-normal matrices

B.K.N.Muthugobal ${ }^{\# 1}$ and R.Subash ${ }^{* 2}$
\#Research Scholar, Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India 612001.

* Assistant Professor, Department of Mathematics, A.V.C College of Engineering, Mannampandal, Mayiladuthurai,Tamilnadu, India 609305.

Abstract

In this paper to extend and generalize lists of characterizations of k-normal and k-hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore-Penrose and group inverse.

Keywords: k-normal, k-hermitian, Moore-Penrose inverse, Group inverse and Conjugate transpose.

AMS Classification: 15A09, 15A57.

1. INTRODUCTION:

In this section concerns matrices belonging to the set $\mathrm{C}_{\mathrm{n} \times \mathrm{n}}$ composed of square matrices of order n with complex entries. Referring to singular value decomposition such matrices can be written in the form

$$
\mathrm{A}=\mathrm{U}\left(\begin{array}{ll}
\Sigma & 0 \tag{1}\\
0 & 0
\end{array}\right) \mathrm{V}^{*} \mathrm{~K}
$$

where $\mathrm{U}, \mathrm{V} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$ are k-unitary, $\Sigma=\operatorname{diag}\left(\sigma_{1} \mathrm{I}_{\mathrm{r} 1}, \ldots, \sigma_{\mathrm{t}} \mathrm{I}_{\mathrm{rt}}\right)$ is the diagonal matrix of singular values of $A, \sigma_{1}>\sigma_{2}>\ldots>\sigma_{t}>0, r_{1}+r_{2}+\ldots+r_{t}=r=\operatorname{rank}(A)$ and $I_{r i}$ in the identity matrix of order r_{i}, see[13, p.66], using this decomposition, Hartwig and Spindelbock [7,corollory6] derived the following representation.

Let $A \in C_{n \times n}$ be of rank r, then

$$
\mathrm{A}=\mathrm{U}\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \tag{2}\\
0 & 0
\end{array}\right) \mathrm{U}^{*} \mathrm{~K}
$$

where U and Σ are taken from the singular decomposition (1) of A , and the matrices N and M satisfy the condition $\mathrm{NN}^{*}+\mathrm{MM}^{*}=\mathrm{I}_{\mathrm{r}}$. Utilizing the representation (2), we see that $\mathrm{A}=\mathrm{KA}^{*} \mathrm{~K}$, that is A is k-hermitian if and only if $M=0$ and $\Sigma N=N^{*} \Sigma$, the matrix A satisfies $A A^{*} K=K A^{*} A$, that is A is k-normal if and only if $M=0$ and $\Sigma N=N \Sigma$. This is equivalent to the relation $A X K=K X A$, where X is the Moor-Penrose inverse of A, Uniquely defined by the four conditions $\mathrm{AXA}=\mathrm{A}, \mathrm{XAX}=\mathrm{X},(\mathrm{AX})^{*}=\mathrm{AX}$ and $(\mathrm{XA})^{*}=\mathrm{XA}$ and expresses the so called k -normal property of matrix A .

From (2) it follows that

$$
\mathrm{X}=\mathrm{KU}\left(\begin{array}{ll}
\mathrm{N}^{*} \Sigma^{-1} & 0 \tag{3}\\
\mathrm{M}^{*} \Sigma^{-1} & 0
\end{array}\right) \mathrm{U}^{*}
$$

We say that A has the group property if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$. This is equivalent to saying that the matrix N in (2) is nonsingular. In such a case, matrix A has a group inverse Y , which is characterized by the following three conditions $\mathrm{AYA}=\mathrm{A}, \mathrm{YAY}=\mathrm{Y}$, and $\mathrm{YA}=\mathrm{AY}$ ensuring that matrix Y is unique.

From (2) we obtain,

$$
\mathrm{Y}=\mathrm{KU}\left(\begin{array}{cc}
\mathrm{N}^{-1} \Sigma^{-1} & \mathrm{~N}^{-1} \Sigma^{-1} \mathrm{~N}^{-1} \mathrm{M} \tag{4}\\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

In what follows, whenever the group inverse occurs, it is assumed to exist.

Theorem 1: Let $\mathrm{A} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$. Then the following conditions are equivalent.
a. A is k-normal
b. $\mathrm{AKAA}^{*}=\mathrm{AA}^{*} \mathrm{AK}$
c. $K A A^{*} A=A^{*} A K A$
d. $A^{*} K Y=Y K A^{*}$
e. $K A A^{*} K Y=A^{*} K Y A K$
f. $\quad \mathrm{AA}^{*} \mathrm{KY}=\mathrm{KYAA}^{*}$
g. $\mathrm{KAYKA}^{*}=\mathrm{YKA}^{*} \mathrm{AK}$
h. $A^{*} A Y K=Y K A * A$
i. $\quad A^{*} K A^{*} K Y=A^{*} K Y K A^{*}$
j. $\quad A^{*} K X K Y=Y K A^{*} K X$
k. $\mathrm{AA}^{*} \mathrm{KX}=\mathrm{KXAA}^{*}$

1. $\mathrm{A}^{*} \mathrm{KYKA}^{*}=\mathrm{YKA}^{*} \mathrm{KA}^{*}$
m. $A^{*} K Y K X=X K A * K Y$
n. $\quad A^{*} K Y K Y=Y K A^{*} K Y$
o. $\quad \mathrm{XKA}^{*} \mathrm{KY}=\mathrm{YKXKA}^{*}$
p. XKYKA* YKA*KX
q. $\quad Y_{K A}{ }^{*} K Y=Y K Y K A^{*}$

Proof: By hypothesis, matrix A of the representation (2) is k-normal if and only if $\mathrm{M}=0$ and $\sum \mathrm{N}=\mathrm{N} \sum$.
(a) $\Leftrightarrow(\mathrm{b})$: Assume that A is k-normal matrix.

To prove that $\mathrm{AKAA}^{*}=\mathrm{AA}^{*} \mathrm{AK}$.

Now, \quad AKAA $^{*}=\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right] \mathrm{K}\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]^{*}$

$$
\mathrm{AKAA}^{*}=\mathrm{U}\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

$$
\mathrm{AKAA}^{*}=\mathrm{U}\left(\begin{array}{cc}
\Sigma \mathrm{N} \Sigma \mathrm{~N} & \Sigma \mathrm{~N} \Sigma \mathrm{M} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

$$
\mathrm{AKAA}^{*}=\mathrm{U}\left(\begin{array}{cc}
\mathrm{N} \Sigma^{2} \mathrm{~N} & \mathrm{~N} \Sigma^{2} \mathrm{M} \\
0 & 0
\end{array}\right)\left(\begin{array}{cl}
\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

$$
\mathrm{AKAA}^{*}=\mathrm{U}\left(\begin{array}{cc}
\mathrm{N} \Sigma^{2} \mathrm{~N} \Sigma \mathrm{~N}^{*} & \mathrm{~N} \Sigma^{2} \mathrm{~N} \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

Also, $\quad \mathrm{AA}^{*} \mathrm{AK}=\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]^{*}\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right] \mathrm{K}$

$$
\begin{aligned}
& \mathrm{AA}^{*} \mathrm{AK}=\mathrm{U}\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \\
0 & 0
\end{array}\right) \mathrm{U}^{*} \\
& \mathrm{AA}^{*} \mathrm{AK}=\mathrm{U}\left(\begin{array}{cc}
\Sigma \mathrm{N} \Sigma \mathrm{~N}^{*} & \Sigma \mathrm{~N} \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \\
0 & 0
\end{array}\right) \mathrm{U}^{*} \\
& \mathrm{AA}^{*} \mathrm{AK}=\mathrm{U}\left(\begin{array}{cc}
\mathrm{N} \Sigma^{2} \mathrm{~N}^{*} & \mathrm{~N} \Sigma^{2} \mathrm{M}^{*} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N} & \Sigma \mathrm{M} \\
0 & 0
\end{array}\right) \mathrm{U}^{*} \\
& \mathrm{AA}^{*} \mathrm{AK}=\mathrm{U}\left(\begin{array}{cc}
\mathrm{N} \Sigma^{2} \mathrm{~N}^{*} \Sigma \mathrm{~N} & \mathrm{~N} \Sigma^{2} \mathrm{~N}^{*} \Sigma \mathrm{M} \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
\end{aligned}
$$

If $\mathrm{M}=0$ implies $\mathrm{M}^{*}=0$. Thus, we obtained equivalently $\mathrm{M}=0$ and $\mathrm{N} \Sigma^{2} \mathrm{~N}^{*}=\sum^{2}$. Taking square roots, we arrive at $\mathrm{M}=0$ and $\mathrm{N} \sum \mathrm{N}^{*}=\sum$, that is $\mathrm{M}=0$ and $\sum \mathrm{N}=\mathrm{N} \sum$.

Therefore, $A K A A^{*}=A A^{*} A K=U\left(\begin{array}{cc}N \Sigma^{3} & 0 \\ 0 & 0\end{array}\right) \mathrm{U}^{*}$.

Converse part we have to prove directly.
(a) $\Leftrightarrow(\mathrm{d})$: Assume that A is k-normal matrix.

To prove that $\mathrm{A}^{*} \mathrm{KY}=\mathrm{YKA}^{*}$.

Now, $\quad A^{*} K Y=\left[U\left(\begin{array}{cc}\Sigma N & \Sigma M \\ 0 & 0\end{array}\right) U^{*} K\right]^{*} K\left[K U\left(\begin{array}{cc}N^{-1} \Sigma^{-1} & \mathrm{~N}^{-1} \Sigma^{-1} \mathrm{~N}^{-1} \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*}\right]$
$\mathrm{A}^{*} \mathrm{KY}=\mathrm{KU}\left(\begin{array}{cc}\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}\mathrm{N}^{-1} \Sigma^{-1} & \mathrm{~N}^{-1} \Sigma^{-1} \mathrm{~N}^{-1} \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*}$
$A^{*} K Y=\operatorname{KU}\left(\begin{array}{cc}\Sigma \mathrm{N}^{*} \mathrm{~N}^{-1} \Sigma^{-1} & \Sigma \mathrm{~N}^{*} \mathrm{~N}^{-1} \Sigma^{-1} \mathrm{~N}^{-1} \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*}$

Also, $\quad \mathrm{YKA}^{*}=\left[\mathrm{KU}\left(\begin{array}{cc}\mathrm{N}^{-1} \Sigma^{-1} & \mathrm{~N}^{-1} \Sigma^{-1} \mathrm{~N}^{-1} \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*}\right] \mathrm{K}\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]^{*}$

$$
\begin{aligned}
& \mathrm{YKA}^{*}=\mathrm{KU}\left(\begin{array}{cc}
\mathrm{N}^{-1} \Sigma^{-1} & \mathrm{~N}^{-1} \Sigma^{-1} \mathrm{~N}^{-1} \mathrm{M} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right) \mathrm{U}^{*} \\
& \mathrm{YKA}^{*}=\mathrm{KU}\left(\begin{array}{cc}
\mathrm{N}^{-1} \Sigma^{-1} \Sigma \mathrm{~N}^{*} & \mathrm{~N}^{-1} \Sigma^{-1} \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
\end{aligned}
$$

It is seen that A^{*} and Y commute if and only if $M=0$ implies $M^{*}=0$ and $\Sigma \mathrm{N}^{*} \mathrm{~N}^{-1} \Sigma^{-1}=\mathrm{N}^{-1} \Sigma^{-1} \Sigma \mathrm{~N}^{*}$.

Therefore, $\mathrm{A}^{*} \mathrm{KY}=\mathrm{YKA}^{*}$. Converse part is obvious.
We show the equivalence between (c) and (e) to (q) to prove the similar way.
Theorem 2: Let $\mathrm{A} \in \mathrm{C}_{\mathrm{n} \times \mathrm{n}}$. Then the following conditions are equivalent.
a. A is k-normal
b. $\mathrm{A}^{*} \mathrm{KX}=\mathrm{YKA}{ }^{*}$
c. $\mathrm{A}^{*} \mathrm{KY}=\mathrm{XKA}^{*}$

Proof: (a) \Leftrightarrow (b): Assume that A is k-normal matrix.

To prove that $\mathrm{A}^{*} \mathrm{KX}=\mathrm{YKA}^{*}$.
Now, $\quad A^{*} K X=\left[U\left(\begin{array}{cc}\Sigma N & \Sigma M \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]^{*} \mathrm{~K}\left[\mathrm{KU}\left(\begin{array}{l}\mathrm{N}^{*} \Sigma^{-1} \\ \mathrm{M}^{*} \Sigma^{-1}\end{array} 00\right) \mathrm{U}^{*}\right]$

$$
\mathrm{A}^{*} \mathrm{KX}=\mathrm{KU}\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\
0 & 0
\end{array}\right)^{*}\left(\begin{array}{ll}
\mathrm{N}^{*} \Sigma^{-1} & 0 \\
\mathrm{M}^{*} \Sigma^{-1} & 0
\end{array}\right) \mathrm{U}^{*}
$$

$$
\mathrm{A}^{*} \mathrm{KX}=\mathrm{KU}\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} \mathrm{~N}^{*} \Sigma^{-1}+\Sigma \mathrm{M}^{*} \mathrm{M}^{*} \Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

$$
A^{*} K X=K U\left(\begin{array}{cc}
\Sigma \mathrm{N}^{*} \mathrm{~N}^{*} \Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

Also, $\quad \mathrm{YKA}^{*}=\mathrm{KU}\left(\begin{array}{cc}\mathrm{N}^{-1} \Sigma^{-1} \Sigma \mathrm{~N}^{*} & 0 \\ 0 & 0\end{array}\right) \mathrm{U}^{*}$

It follows that $A^{*} K X=Y K A^{*}$ implies $M^{*}=0$. Moreover, by $N^{*}=N^{-1}$, in addition to $M^{*}=0$ we get $\Sigma \mathrm{N}^{*} \mathrm{~N}^{*} \Sigma^{-1}=\mathrm{N}^{-1} \Sigma^{-1} \Sigma \mathrm{~N}^{*}$. Hence we further obtain $\mathrm{M}=0$ and $\Sigma \mathrm{N}=\mathrm{N} \Sigma$, that is, the pair of conditions corresponding to the k-normality of A . The other direction is obvious.

Next, equivalent conditions we have to prove the similar way.

Theorem 3: Let $A \in C_{n \times n}$. Then the following conditions are equivalent.
a. A is k-normal
b. $\mathrm{KAA}^{*} \mathrm{KX}=\mathrm{A}^{*}$
c. $\mathrm{KAA}^{*} \mathrm{KY}=\mathrm{A}^{*}$
d. $X X K A^{*} \mathrm{AK}=\mathrm{A}^{*}$
e. $\mathrm{YKA}^{*} \mathrm{AK}=\mathrm{A}^{*}$

Proof: We again show the equivalence $(a) \Leftrightarrow(b)$ only.

Assume that A is k-normal matrix.

To prove that $\mathrm{KAA}^{*} \mathrm{KX}=\mathrm{A}^{*}$.

Now, $\quad K_{A A}{ }^{*} K X=K\left[U\left(\begin{array}{cc}\Sigma N & \Sigma M \\ 0 & 0\end{array}\right) U^{*} K\right]\left[\mathrm{U}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right) \mathrm{U}^{*} \mathrm{~K}\right]^{*} \mathrm{~K}\left[\mathrm{KU}\left(\begin{array}{c}\mathrm{N}^{*} \Sigma^{-1} \\ \mathrm{M}^{*} \Sigma^{-1}\end{array} 000 \mathrm{U}^{*}\right]\right.$
$\mathrm{KAA}^{*} \mathrm{KX}=\mathrm{KU}\left(\begin{array}{cc}\Sigma \mathrm{N} & \Sigma \mathrm{M} \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\ 0 & 0\end{array}\right)\left(\begin{array}{l}\mathrm{N}^{*} \Sigma^{-1} \\ \mathrm{M}^{*} \Sigma^{-1}\end{array} 000 \mathrm{U}^{*}\right.$
$\mathrm{KAA}^{*} \mathrm{KX}=\mathrm{KU}\left(\begin{array}{cc}\Sigma \mathrm{N} \Sigma \mathrm{N}^{*} & \Sigma \mathrm{~N} \Sigma \mathrm{M}^{*} \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}\mathrm{N}^{*} \Sigma^{-1} & 0 \\ \mathrm{M}^{*} \Sigma^{-1} & 0\end{array}\right) \mathrm{U}^{*}$
$K_{A A}{ }^{*} K X=\operatorname{KU}\left(\begin{array}{cc}\mathrm{N} \Sigma^{2} \mathrm{~N}^{*} \mathrm{~N}^{*} \Sigma^{-1}+\Sigma \mathrm{N} \Sigma \mathrm{M}^{*} \mathrm{M}^{*} \Sigma^{-1} & 0 \\ 0 & 0\end{array}\right) \mathrm{U}^{*}$

$$
\mathrm{KAA}^{*} \mathrm{KX}=\mathrm{KU}\left(\begin{array}{cc}
\Sigma^{2} \mathrm{~N}^{*} \Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) \mathrm{U}^{*}
$$

and $\quad \mathrm{A}^{*}=\mathrm{KU}\left(\begin{array}{cc}\Sigma \mathrm{N}^{*} & \Sigma \mathrm{M}^{*} \\ 0 & 0\end{array}\right) \mathrm{U}^{*}$

Consequently, the condition $\mathrm{KAA}^{*} \mathrm{KX}=\mathrm{A}^{*}$ is equivalent to $\mathrm{M}=0$ and $\Sigma^{2} \mathrm{~N}^{*} \Sigma^{-1}=\Sigma \mathrm{N}^{*}$, that is $\mathrm{M}=0$ and $\Sigma^{2} \mathrm{~N}=\mathrm{N} \Sigma^{2}$, which according to the derivations from the above is equivalent to the k -normality of A . the converse part is obvious.

Similarly, we have to prove the other equivalent conditions.

Remark: In this section is concluded with some observations concerning k-hermitian matrices, for, by exploiting representation (2), one can obtain also several characterizations of such matrices. For, instance, the following list of conditions is equivalent to $\mathrm{A}=\mathrm{KA}^{*} \mathrm{~K}$.
a. $\quad \mathrm{AKA}=\mathrm{KA}^{*} \mathrm{~A}$
b. $\mathrm{KAX}=\mathrm{A}^{*} \mathrm{KX}$
c. $K A Y=A^{*} K X$
d. $K A Y=A^{*} K Y$
e. $K A Y=X K A *$
f. $X A K=Y K A *$

Similarly, the following list provides selected conditions of the form $\mathrm{A}=\mathrm{A}^{*} \mathrm{XY}$, which are satisfied if and only if A is k-hermitian.
a. $\mathrm{KAKAX}=\mathrm{A}^{*}$
b. $\mathrm{AA}^{*} \mathrm{KXK}=\mathrm{A}$
c. $\mathrm{KA}^{*} \mathrm{AYK}=\mathrm{A}$
d. $A^{*} K A^{*} K Y=A^{*}$
e. $\quad A^{*} K X K X=Y$
f. $\quad A^{*} K X K Y=X$
g. $\quad A^{*} K X K Y=Y$
h. $\quad \mathrm{A}^{*} \mathrm{KYKY}=\mathrm{Y}$
i. $\quad \mathrm{YKA}^{*} \mathrm{KY}=\mathrm{X}$

The final observation is that analogous results to the ones referring to k-hermitian matrices can be obtained for skew k-hermitian matrices. This observation follows directly from the fact that a matrix A is skew k-hermitian whenever iA is k-hermitian.

Bibliography:
[1]. S.Krishnamoorthy and R.Subash, "On k-normal matrices", International J. of Math.
Sci. \& Engg. Appls. 5(II) (2011), 119-130.
[2]. R.Penrose, "A Generalized inverse for matrices" Proc.Cambridge Philos.Soc., 51(1955), 406-413.
[3]. G.Wang , Y.Wei and S.Qiao, "Generalized Inverses" Theory and Computations, Science Press (Beijing) 2004.
[4]. R.D.Hill and R.S.Water, "On k-real and k-hermitian matrices," Linear Alg. Appl. Vol.169(1992), pp.17-29.
[5]. L.Elsner and Kh.D.Ikramov, Normal matrices: an update, Linear Algebra Appl. 285(1998), 291-303.
[6]. Oskar Maria Baksalary and Gotz Trenkler, "Characterizations of EP, Norma and Hermitian matrices" Linear and Multilinear Alg. Vol.56, No. 3 (2008), 299-304.

