Fourier transform and Plancherel Theorem for Nilpotent Lie Group

Kahar El-Hussein
Department of Mathematics, Faculty of Science, Al-Furat University, Deir-El-Zore, Syria
Department of Mathematics, Faculty of Arts and Science, Al Quryyat , Kingdom of Saudi Arabia

Abstract

As will known the connected and simply connected nilpotent Lie group N has an important role in quantum mechanics. In this paper we show how the Fourier transform on the n-dimensional vector Lie group R^{n} can be generalized to N in order to obtain the Plancherel theorem. In addition we define the Fourier transform for the subgroup $N A=A \propto N$ of the real semi-simple Lie group $\operatorname{SL}(n, \mathrm{R})$ to get also the Plancherel formula for $N A$

Keywords: Nilpotent Lie Group, Semi-simple Lie Group, Fourier Transform and Plancherel Theorem
AMS 2000 Subject Classification: $43 A 30 \& 35 D 05$.

1 Notations and Results.

1.1. The fine structure of the nilpotent Lie groups will help us to do the Fourier transform on a nilpotent Lie groups N. As well known any group connected and simply connected N has the following form

As shown, the matrix (1) is formed by the subgroup $R, R^{2}, \ldots ., R^{n-1}$, and R^{n}

$$
\left(\mathrm{R}=\left[\begin{array}{c}
x_{1}^{1} \tag{2}\\
1 \\
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
0 \\
0 \\
0
\end{array}\right], \mathrm{R}^{2}=\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
1 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
0 \\
0 \\
0
\end{array}\right], \ldots, \mathrm{R}^{n-1}=\left[\begin{array}{c}
x_{1}^{n-1} \\
x_{2}^{n-1} \\
x_{3}^{n-1} \\
x_{4}^{n-1} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
. \\
x_{n-2}^{n-1} \\
x_{n-2}^{n-2} \\
1 \\
0
\end{array}\right], \mathrm{R}^{n}=\left[\begin{array}{c}
x_{1}^{n} \\
x_{2}^{n} \\
x_{3}^{n} \\
x_{4}^{n} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
x_{n-2}^{n} \\
x_{n=1}^{n} \\
x_{n}^{n} \\
1
\end{array}\right]\right)
$$

Each R^{i} is a subgroup of N of dimension $i, 1 \leq i \leq n$, put $d=n+(n-1)+\ldots .+2+1$, which is the dimension of N. According to [6,7], the group N is isomorphic onto the following group

$$
\begin{equation*}
\left(\left(\left(\left(\left(\mathrm{R}^{n} \propto_{\rho_{n}}\right) \mathrm{R}^{n-1}\right) \propto_{\rho_{n-1}}\right) \mathrm{R}^{n-2} \propto_{\rho_{n-2}} \ldots . .\right) \propto_{\rho_{2}} \mathrm{R}^{2}\right) \propto_{\rho_{1}} \mathrm{R} \tag{3}
\end{equation*}
$$

That means

$$
\begin{equation*}
N ;\left(\left(\left(\left(\left(\mathrm{R}^{n} \propto_{\rho_{n}}\right) \mathrm{R}^{n-1}\right) \propto_{\rho_{n-1}}\right) \mathrm{R}^{n-2} \propto_{\rho_{n-2}} \ldots . .\right) \propto_{\rho_{3}} \mathrm{R}^{3} \propto_{\rho_{2}} \mathrm{R}^{2}\right) \propto_{\rho_{1}} \mathrm{R} \tag{4}
\end{equation*}
$$

1.2. Denote by $L^{1}(N)$ the Banach algebra that consists of all complex valued functions on the group N, which are integrable with respect to the Haar measure of N and multiplication is defined by convolution on N as follows:

$$
\begin{equation*}
g * f(X)=\int_{N} f\left(Y^{-1} X\right) g(Y) d Y \tag{5}
\end{equation*}
$$

for any $f \in L^{1}(N)$ and $g \in L^{1}(N)$, where $X=\left(X^{1}, X^{2}, X^{3}, \ldots, X^{n-2}, X^{n-1}, X^{n}\right), X^{1}=x_{1}^{1}$, $X^{2}=\left(x_{1}^{2}, x_{2}^{2}\right), \quad X^{3}=\left(x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right) \quad, \ldots ., \quad X^{n-2}=\left(x_{1}^{n-2}, x_{2}^{n-2}, x_{3}^{n-2}, x_{4}^{n-2}, \ldots, x_{n-2}^{n-2}\right)$, $X^{n-1}=\left(x_{1}^{n-1}, x_{2}^{n-1}, x_{3}^{n-1}, x_{4}^{n-1}, \ldots, x_{n-2}^{n-1}, x_{n-1}^{n-1}\right), X^{n}=\left(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}, x_{4}^{n}, \ldots, x_{n-2}^{n}, x_{n-1}^{n}, x_{n}^{n}\right) \quad, Y=\left(Y^{1}, Y^{2}\right.$, $\left.Y^{3}, \ldots, Y^{n-2}, Y^{n-1}, Y^{n}\right), Y^{1}=y_{1}^{1}, Y^{2}=\left(y_{1}^{2}, y_{2}^{2}\right), \ldots$,
$Y^{n-2}=\left(y_{1}^{n-2}, y_{2}^{n-2}, y_{3}^{n-2}, y_{4}^{n-2}, \ldots, y_{n-2}^{n-2}\right), Y^{n-1}=\left(y_{1}^{n-2}, y_{2}^{n-2}, y_{3}^{n-2}, y_{4}^{n-2}, \ldots, y_{n-2}^{n-2}, y_{n-1}^{n-1}\right)$, $Y^{n}=\left(y_{1}^{n-2}, y_{2}^{n-2}, y_{3}^{n-2}, y_{4}^{n-2}, \ldots, y_{n-2}^{n-2}, y_{n-1}^{n-1}, y_{n}^{n}\right)$, and $d Y=d Y^{1} d Y^{2} d Y^{3} \ldots d Y^{n-2} d Y^{n-1} d Y^{n}$ is the Haar measure on N and $*$ denotes the convolution product on N. We denote by $L^{2}(N)$ its Hilbert space
Let $M=\mathrm{R}^{n} \times \mathrm{R}^{n-1} \times \mathrm{R}^{n-2} \times \ldots . . \times \mathrm{R}^{3} \times \mathrm{R}^{2} \times \mathrm{R}=\mathrm{R}^{d}$ be the Lie group, which is the direct product of $\mathrm{R}^{n}, \mathrm{R}^{n-1}, \mathrm{R}^{n-2}, \ldots \ldots, \mathrm{R}^{3}, \mathrm{R}^{2}$ and R . Denote by $L^{1}(M)$ the Banach algebra consists of all complex valued functions on the group M, which are integrable with respect to the Lebesgue measure on M and multiplication is defined by convolution on M as:

$$
\begin{equation*}
g *_{c} f(X)=\int_{M} f(X-Y) g(Y) d Y \tag{6}
\end{equation*}
$$

for any $f \in L^{1}(M), g \in L^{1}(M)$, where ${ }_{c}$ signifies the convolution product on the abelian group M. In this paper, we use the methods in $[3,4,6,7]$ to show the powerful of the Fourier transform on R^{d} which can be generalized on N in order to obtain the Plancherel theorem.

2 Fourier Transform and Plancherel Formula for N.

Definition 2.1. For $1 \leq i \leq n$, let \mathfrak{J}^{i} be the classical Fourier transform on R^{i}, we can define the Fourier transform on N as

$$
\begin{equation*}
\mathfrak{I} f(\lambda)=\int_{N} f(X) e^{-i(\langle\lambda, X\rangle)} d X \tag{7}
\end{equation*}
$$

for any $f \in L^{1}(N)$, where $\quad X=\left(X^{1}, \quad X^{2}, \quad X^{3}, \ldots, X^{n-2}, X^{n-1}, X^{n}\right)$, $d X=d X^{1} d X^{2} d X^{3} \ldots d X^{n-2} d X^{n-1} d X^{n}$ and $\lambda=\left(\lambda^{1}, \lambda^{2}, \lambda^{3}, \ldots, \lambda^{n-2}, \lambda^{n-1}, \lambda^{n}\right)$, where F is the commutative Fourier transform on R^{d}
Plancherel formula (Theorem 2.1). For every function $f \in L^{1}(N)$, we have

$$
\begin{equation*}
\int_{\mathrm{R}^{d}}|\Im f(\lambda)|^{2} d \lambda=\int_{N}|f(X)|^{2} d X \tag{8}
\end{equation*}
$$

where $d \lambda$ is the lebesgue measure on R^{d}
Proof: For each $1 \leq j \leq n$, let \mathfrak{J}^{j} be the Fourier transform on \mathbf{R}^{j}. If we denote $T_{j}^{n}=\mathfrak{J}^{n} \mathfrak{J}^{n-1} \mathfrak{J}^{n-1} \mathfrak{J}^{n-2} \ldots \mathfrak{J}^{j}, \mathrm{R}_{j}^{n}=\mathrm{R}^{n} \times \mathrm{R}^{n=1} \times \mathrm{R}^{n=2} \times \ldots \mathrm{R}^{j}, \quad X_{j}^{n}=X^{n} X^{n-1} X^{n-2} \ldots X^{j}$, $d X_{j}^{n}=d X^{n} d X^{n-1} d X^{n-2} \ldots d X^{j}, \lambda_{j}^{n}=\lambda^{n} \lambda^{n-1} \lambda^{n-2} \ldots \lambda^{3} \lambda^{2} \lambda^{j}$, and $d \lambda_{j}^{n}=d \lambda^{n} d \lambda^{n-1} d \lambda^{n-2} \ldots d \lambda^{j}$, then we get $\mathfrak{I}=T_{1}^{n}, \mathrm{R}^{d}=\mathrm{R}_{1}^{n}, X=X_{1}^{n}, d X=d X_{1}^{n}, \lambda=\lambda_{1}^{n}, d \lambda=d \lambda_{1}^{n}$. Now if we refer to [6,3], then we get

$$
\begin{equation*}
\iint_{\mathrm{R}_{2}^{n} \mathrm{R}} \int\left|T_{2}^{n} \mathfrak{\Im}^{1} f\left(\lambda_{2}^{n}, \lambda^{1}\right)\right|^{2} d \lambda_{2}^{n} d \lambda^{1}=\iint_{\mathrm{R}_{2}^{n} \mathrm{R}} \int\left|f\left(X_{2}^{n}, X^{1}\right)\right|^{2} d X_{2}^{n} d X^{1} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\iint_{\mathrm{R}_{3}^{n} \mathrm{R}^{2} R} \int\left|T_{3}^{n} \Im^{2} \Im^{1} f\left(\lambda_{3}^{n}, \lambda^{2}, \lambda^{1}\right)\right|^{2} d \lambda_{2}^{n} d \lambda^{2} d \lambda^{1}=\iint_{\mathrm{R}_{3}^{n} \mathrm{R}^{2} \mathrm{R}} \iint\left|f\left(X_{3}^{n}, X^{2}, X^{1}\right)\right|^{2} d X_{3}^{n} d X^{2} d X^{1} \tag{10}
\end{equation*}
$$

By indiction we get

$$
\begin{align*}
& \left.\int_{\mathrm{R}_{n}^{n} \mathrm{R}^{n-1} \mathrm{R}^{n-2}} \ldots \int_{\mathrm{R}^{3} \mathrm{R}^{2} \mathrm{R}} \iint_{\mathrm{R}} f\left(X^{n}, X^{n-1}, X^{n-2}, \ldots, X^{3}, X^{2}, X^{1}\right)\right|^{2} \\
& d X^{n} d X^{n-1} d X^{n-2} \ldots d X^{3} d X^{2} d X^{1} \\
& =\left.\int_{N} f\left(X^{n}, X^{n-1}, X^{n-2}, \ldots, X^{3}, X^{2}, X^{1}\right)\right|^{2} d X^{n} d X^{n-1} d X^{n-2} \ldots d X^{3} d X^{2} d X^{1} \\
& =\int_{\mathrm{R}^{n} \mathrm{R}^{n-1}} \int_{\mathrm{R}^{n-2}} \ldots \int_{\mathrm{R}^{3} \mathrm{R}^{2} \mathrm{R}} \iint\left|\mathfrak{J}^{n} \mathfrak{I}^{n-1} \mathfrak{J}^{n-2} \ldots \mathfrak{J}^{3} \mathfrak{J}^{2} \mathfrak{I}^{1} f\left(\lambda^{n}, \lambda^{n-1}, \lambda^{n-2}, \ldots \lambda^{3}, \lambda^{2}, \lambda^{1}\right)\right|^{2} \\
& d \lambda^{n} d \lambda^{n-1} d \lambda^{n-2} \ldots d \lambda^{3} d \lambda^{2} d \lambda^{1} \\
& =\int_{\mathrm{R}^{d}}\left|\mathfrak{I}^{n} \mathfrak{I}^{n-1} \mathfrak{J}^{n-2} \ldots \mathfrak{J}^{3} \mathfrak{J}^{2} \mathfrak{I}^{1} f\left(\lambda^{n}, \lambda^{n-1}, \lambda^{n-2}, \ldots \lambda^{3}, \lambda^{2}, \lambda^{1}\right)\right|^{2} \\
& d \lambda^{n} d \lambda^{n-1} d \lambda^{n-2} \ldots d \lambda^{3} d \lambda^{2} d \lambda^{1} \tag{11}
\end{align*}
$$

Hence the proof of our theorem.2.1.

3 Plancherel Formula for the Solvable Lie Group $A N$

3.1. Let $G=S L(n, \mathrm{R})$ be the real semi-simple Lie group and let $G=K A N$ be the Iwasawa decomposition of G, where $K=S O(n, \mathrm{R})$,

$$
N=\left(\begin{array}{ccccc}
1 & * & . & . & * \tag{12}\\
0 & 1 & * & . & * \\
. & . & . & . & * \\
. & . & . & . & . \\
0 & 0 & . & 0 & 1
\end{array}\right),
$$

and

$$
A=\left(\begin{array}{ccccc}
a_{1} & 0 & 0 & . & 0 \tag{13}\\
0 & a_{2} & 0 & . & 0 \\
. & \cdot & \cdot & . & \cdot \\
. & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & . & 0 & a_{n}
\end{array}\right)
$$

where $a_{1} \cdot a_{2} \ldots a_{n}=1$ and $a_{i} \in \mathrm{R}_{+}^{*}$
The product $A N$ is a closed subgroup of G and is isomorphic (algebraically and topologically) to the semi-direct product of A and N with N normal in $A N$. Then the group $A N$ is nothing but the group $S=N \not \propto_{\rho} A$, where $\rho: A \rightarrow \operatorname{Aut}(N)$ the group homomorphism from A into $\operatorname{Aut}(N)$ of all automorphisms of N, which is defined by

$$
\begin{equation*}
\rho(a)(m)=a m a^{-1} \tag{14}
\end{equation*}
$$

So the product of two elements X and Y by

$$
\begin{equation*}
(x, a)(m, b)=(x . \rho(a) m, a . b)=\left(a m a^{-1}, a . b\right) \tag{15}
\end{equation*}
$$

for any $X=(x, a) \in S$ and $Y=(m, b) \in S$. Let $d n d a$ be the right haar measure on S and let $L^{2}(S)$ be the Hilbert space of the group S. Let $L^{1}(S)$ be the Banach algebra that consists of all complex valued functions on the group S, which are integrable with respect to the Haar measure of S and multiplication is defined by convolution on S as

$$
\begin{equation*}
g * f=\int_{S} f\left((m, b)^{-1}(n, a)\right) g(m, b) d m d b \tag{16}
\end{equation*}
$$

Where

$$
\begin{equation*}
m=\left(m_{1}, m_{2}, \ldots, m_{r=1}, m_{r}\right), b=\left(b_{1}, b_{2}, \ldots, b_{n-1}, b_{n}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.d m d b=d m_{1} d m_{2} \ldots d m_{r=1} d m_{r} d b d b_{1} d b_{2} \ldots d b_{n=1}\right) \tag{18}
\end{equation*}
$$

In the following we prove the Plancherel theorem for $N A$. Therefore let $T=N \times A$ be the Lie group which is the direct product of the two Lie groups N and A, and let $H=N \times A \times A$ be the Lie group, with multiplication

$$
(n, t, r)(m, s, q)=(n \rho(r) m, t s, r q)
$$

for all $(n, t, r) \in H$ and $(m, s, q) \in H$. In this case the group S can be identified with the closed subgroup $N \times\{0\} \times{ }_{\rho} A$ of H and T with the subgroup $N \times A \times\{0\}$ of H
Definition 3.1. For every functon f defined on S, one can define a function on L as follows:

$$
\begin{equation*}
\tilde{f}(n, a, b)=\tilde{f}(\rho(a) n, a b) \tag{19}
\end{equation*}
$$

for all $(n, a, b) \in H$. So every function $\psi(n, a)$ on S extends uniquely as an invariant function $\tilde{\psi}(n, b, a)$ on L.
Remark 3.1. The function \tilde{f} is invariant in the following sense:

$$
\begin{equation*}
\tilde{f}\left(\rho(s) n, a s^{-1}, s b\right)=\tilde{f}(n, a, b) \tag{20}
\end{equation*}
$$

for any $(n, a, b) \in H$ and $s \in A$.
Lemma 3.1. For every function $f \in L^{1}(S)$ and for every $g \in L^{1}(S)$, we have

$$
\begin{equation*}
g * \tilde{f}(n, a, b)=g *_{c} \tilde{f}(n, a, b) \tag{21}
\end{equation*}
$$

for every $(n, a, b) \in H$, where $*$ signifies the convolution product on S with respect the variables (n, b) and $*_{c}$ signifies the commutative convolution product on B with respect the variables (n, a). Proof: In fact we have

$$
\begin{align*}
& g * \tilde{f}(n, a, b)=\int_{G} \tilde{f}\left((m, c)^{-1}(n, a, b)\right) g(m, s) d m d c \\
& =\int_{S} \tilde{f}\left[\left(\rho\left(c^{-1}\right)\left(m^{-1}\right), c^{-1}\right)(n, a, b)\right] g(m, s) d m d c \\
& =\int_{S} \tilde{f}\left[\rho\left(c^{-1}\right)\left(m^{-1} n\right), a, c^{-1} b\right] g(m, c) d m d c \\
& =\int_{S} \tilde{f}\left[m^{-1} n, c^{-1} a, b\right] g(m, c) d m d c=g *_{c} \tilde{f}(n, a, b) \tag{22}
\end{align*}
$$

Definition 3.2. If $f \in L^{1}(S)$, one can define its Fourier transform $\mathfrak{J f}$ by :

$$
\begin{equation*}
\mathfrak{I} f(\xi, \lambda)=\int_{S} f(n, a) e^{-i(\langle\xi, n\rangle)} a^{-i \lambda} d n d a \tag{23}
\end{equation*}
$$

for any $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{r}\right) \in \mathrm{R}^{r}, n=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \mathrm{R}^{r}, \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}\right) \in \mathrm{R}^{n-1} \quad$ and $a=\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right), a_{i} \in \mathrm{R}_{+}^{*}, 1 \leq i \leq n, a_{1} a_{2} \ldots a_{n-1} a_{n}=1$, where

$$
\langle\xi x\rangle=\xi_{1} x_{1}+\xi_{2} x_{2}+\ldots+\xi_{r} x_{r} \quad d n=d x_{1} d x_{2} \ldots d x_{r}, \quad d a=\frac{d a_{1}}{a_{1}} \cdot \frac{d a_{2}}{a_{2}} \ldots \frac{d a_{n-1}}{a_{n-1}}, \quad \text { and }
$$

$a^{-i \lambda}=a_{1}^{-i \lambda_{1}} a_{2}^{-i \lambda_{2}} \ldots a_{n-1}^{-i \lambda_{n-1}}$. Denote by $\mathrm{S}(S)$ the Schwartz space of the group $S=N \propto_{\rho} A$, it is clear that if $f \in \mathrm{~S}(S)$, then $\mathfrak{J} f \in \mathrm{~S}(S)$ and the mapping $f \rightarrow \mathfrak{I} f$ is topological isomorphism of the topological vector space $\mathrm{S}(S)$ onto $\mathrm{S}\left(\mathrm{R}^{r+n-1}\right)$.
Definition 3.3. If $f \in L^{1}(S)$, we define the Fourier transform of its invariant \tilde{f} as follows

$$
\begin{equation*}
\mathfrak{J}(\tilde{f})(\xi, \lambda, 0)=\int_{H \times \mathrm{R}^{n-1}} \tilde{f}(n, a, b) e^{-i(\langle\xi, n\rangle)} a^{-i \lambda} b^{-i \lambda} d n d a d b d \mu \tag{24}
\end{equation*}
$$

where $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}\right) \in \mathrm{R}^{n-1}$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n-1}\right) \in \mathrm{R}^{n-1}$

Theorem 3.1. For every $g \in L^{1}(S)$, and $f \in L^{1}(S)$, we have

$$
\begin{equation*}
\int_{\mathrm{R}^{n-1}}(g * \tilde{f})(\xi, \lambda, \mu) d \mu=\int_{\mathrm{R}^{n-1}} \mathfrak{T}(\tilde{f})(\xi, \lambda, \mu) \mathrm{F}(g)(\xi, \lambda) d \mu=\mathfrak{J}(\tilde{f})(\xi, \lambda, 0) \mathrm{F}(g)(\xi, \lambda) \tag{25}
\end{equation*}
$$

Proof: By equation (21) we get immediately

$$
\begin{equation*}
\int_{\mathrm{R}^{n-1}} \mathfrak{J}(g * \tilde{f})(\xi, \lambda, \mu) d \mu=\int_{\mathrm{R}^{n-1}} \mathfrak{I}\left(g *_{c} \tilde{f}\right)(\xi, \lambda, \mu) d \mu=\mathfrak{I}(\tilde{f})(\xi, \lambda, 0) \mathfrak{J}(g)(\xi, \lambda) \tag{26}
\end{equation*}
$$

Plancherel's theorem 3.2. For any $f \in L^{1}(S) \cap L^{2}(S)$, we have

$$
\int_{S}|f(n, a)|^{2} d n d a=\int_{\mathrm{R}^{r} \times \mathrm{R}^{n-1}}|\Im f(\xi, \lambda)|^{2} d \xi d \lambda(27)
$$

Proof: First, let $\tilde{\tilde{f}}$ be the function defined by

$$
\begin{equation*}
\tilde{\tilde{f}}(n, a, b)=\overline{f\left((\rho(a) n, a b)^{-1}\right)} \tag{28}
\end{equation*}
$$

then first we have

$$
\begin{align*}
& f * \tilde{\tilde{f}}\left(I_{N}, I_{A}, I_{A}\right)=\int_{S}^{\tilde{f}}\left[(n, a)^{-1}\left(I_{N}, I_{A}, I_{A}\right)\right] f(n, a) d n d a \\
& =\int_{S}^{\tilde{f}}\left[\left(\rho\left(a^{-1}\right)\left(n^{-1}, a^{-1}\right)\right)\left(I_{N}, I_{A}, I_{A}\right] f(n, a) d n d a\right. \\
& \left.\int_{S}^{\tilde{f}}\left[\left(\rho\left(a^{-1}\right)\left(n^{-1}\right)\right)\left(I_{N}\right)\right), I_{A}, I_{A} a^{-1}\right] f(n, a) d n d a \\
& =\int_{S}^{\tilde{f}}\left[\rho\left(a^{-1}\right)\left(n^{-1}\right), I_{A}, a^{-1}\right] f(n, a) d n d a \\
& =\int_{S}^{\vee} f\left[\rho\left(a^{-1}\right)\left(n^{-1}\right), a^{-1}\right] f(n, a) d x d t=\int_{S} \overline{f(n, a)} f(n, a) d n d a \\
& =\int_{S} f\left(n,\left.a\right|^{2} d n d a\right. \tag{29}
\end{align*}
$$

Secondly by (27), we obtain

$$
\begin{aligned}
& f * \tilde{\tilde{f}}\left(I_{N}, I_{A}, I_{A}\right) \\
& =\int_{\mathrm{R}^{r+2(n-1)}} \mathfrak{J}(f * \tilde{f})(\xi, \lambda, \mu) d \xi d \lambda d \mu=\int_{\mathrm{R}^{r+2 n-2}} \mathfrak{J}\left(f *_{c} \tilde{\tilde{f}}\right)(\xi, \lambda, \mu) d \xi d \lambda d \mu \\
& =\int_{\mathrm{R}^{r+n-1}} \mathfrak{J}\left(f *_{c} \tilde{\bar{f}}\right)(\xi, \lambda, 0) d \xi d \lambda=\int_{\mathrm{R}^{r+n-1}} \mathfrak{J}(\tilde{f})(\xi, \lambda, 0) \mathfrak{J}(f)(\xi, \lambda) d \xi d \lambda \\
& =\int_{\mathrm{R}^{r+n-1}} \overline{\mathfrak{J}}(f)(\xi, \lambda) \mathfrak{J}(f)(\xi, \lambda) d \xi d \lambda=\int_{\mathrm{R}^{r+n-1}}|\mathfrak{I}(f)(\xi, \lambda)|^{2} d \xi d \lambda=\int_{S}|f(x, t)|^{2} d x d t
\end{aligned}
$$

which is the Plancherel's formula on S. So the Fourier transform can be extended to an isometry of $L^{2}(S)$ onto $L^{2}\left(\mathrm{R}^{r+n-1}\right)$.

Corollary 2.2. In equation (29), replace the first f by g, we obtain

$$
\begin{equation*}
\int_{S} \overline{f(x, t)} g(x, t) d x d t=\int_{\mathrm{R}^{r+n-1}} \overline{\mathfrak{I}(f)(\xi, \lambda \Im} g(\xi, \lambda) d \xi d \lambda \tag{30}
\end{equation*}
$$

which is the Parseval formula on S.

4 References

[1] K. El- Hussein, A Fundamental Solution of an Invariant Differential Operator on the Heisenberg Group, Mathematical Forum, 4, no. 12, 601-612. 2009
[2] K. El- Hussein, Eigendistributions for the Invariant Differential operators on the Affine Group. Int. Journal of Math. Analysis, Vol. 3, no. 9, 419-429. 2009
[3] K. El- Hussein, Fourier transform and invariant differential operators on the solvable Lie group G4, in Int. J. Contemp. Maths Sci. 5. No. 5-8, 403-417. 2010
[4] K. El- Hussein, On the left ideals of group algebra on the affine group, in Int. Math Forum, Int, Math. Forum 6, No. 1-4, 193-202. 2011
[5] K. El- Hussein, Note on the Solvability of the Mizohata Operator, International Mathematical Forum, 5, no. 37, 1833-1838. 2010
[6] K. El- Hussein, Non Commutative Fourier Transform on Some Lie Groups and Its Application to Harmonic Analysis, International Journal of Engineering Research \& Technology (IJERT) Vol. 2 Issue 10, 2429-2442. 2013.
[7] K. El- Hussein, Abstract Harmonic Analysis and Ideals of Banach Algebra on 3-Step Nilpotent Lie Groups, International Journal of Engineering Research \& Technology (IJERT), Vol. 2 Issue 11, November - 2013
[8] S. Helgason, The Abel, Fourier and Radon Transforms on Symmetric Spaces. Indagationes Mathematicae. 16, 531-551. 2005
[9] W.Rudin, Fourier Analysis on Groups, Interscience Publishers, New York, NY. 1962.

