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                                                Abstract 

As will known the connected and simply connected nilpotent Lie group N  has an important 
role in quantum mechanics. In this paper we show how the Fourier transform on the 
n dimensional vector Lie group nR  can be generalized to N  in order to obtain the 

Plancherel theorem. In addition we define the Fourier transform for the subgroup 
NANA =  of the real semi-simple Lie group ),( RnSL  to get also the Plancherel formula 

for NA   
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                                           1  Notations and Results. 
 

1.1. The fine structure of the nilpotent Lie groups will help us to do the Fourier transform on a 
nilpotent Lie groups .N  As well known any group connected and simply connected N  has the 
following form 
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As shown, the matrix (1)  is formed by the subgroup R , 2R ,...., 1nR , and nR   
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Each iR  is a subgroup of N  of dimension i  , ,1 ni   put 1,2....1)(=  nnd  which is 
the dimension of N  . According to [6,7],  the group N  is isomorphic onto the following group 
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That means 
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1.2 .  Denote by )(1 NL  the Banach algebra that consists of all complex valued functions on the 
group N , which are integrable with respect to the Haar measure of N  and multiplication is defined 
by convolution on N  as follows: 
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  , and nnn dYdYdYdYdYdYdY 12321 ....=   is the 

Haar measure on N  and   denotes the convolution product on .N  We denote by )(2 NL  its Hilbert 
space 
Let dnnnM R=RRRRRR   2321 .....=  be the Lie group, which is the direct product 
of 2321 ,,.....,,, RRRRR  nnn  and R . Denote by )(1 ML  the Banach algebra consists of all complex 
valued functions on the group M , which are integrable with respect to the Lebesgue measure on M  
and multiplication is defined by convolution on M  as:  

 dYYgYXfXfg
M

c )()(=)(    (6) 
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for any ),(1 MLf   ),(1 MLg   where c  signifies the convolution product on the abelian group 
.M  In this paper, we use the methods in [3,4,6,7] to show the powerful of the Fourier transform on 

dR  which can be generalized on N  in order to obtain the Plancherel theorem. 
 
2  Fourier Transform and Plancherel Formula for .N  
 

Definition 2.1. For ,1 ni   let i  be the classical Fourier transform on ,iR  we can define the 
Fourier transform on N  as 

 dXeXff Xi
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for any ),(1 NLf   where ,(= 1XX  ,2X  ),,,,...., 123 nnn XXXX    
nnn dXdXdXdXdXdXdX 12321 ...=   and ,(= 1  ,2  ),,,,...., 123 nnn    where F  is the 

commutative Fourier transform on dR  
Plancherel formula (Theorem 2.1). For every function ),(1 NLf  we have 
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where d  is the lebesgue measure on dR  
Proof: For each ,1 nj   let j  be the Fourier transform on .jR  If we denote 
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By indiction we get  
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Hence the proof of our theorem.2.1. 
 
3   Plancherel Formula for the Solvable Lie Group AN  
 

3.1. Let ),(= RnSLG  be the real semi-simple Lie group and let KANG =   be the Iwasawa 
decomposition of G , where ),,(= RnSOK  
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where 1=..... 21 naaa  and 
Ria  

The product AN  is a closed subgroup of G  and is isomorphic (algebraically and topologically) to 
the semi-direct product of A  and N  with N  normal in .AN  Then the group AN  is nothing but 
the group =S N ,A  where )(: NAutA  the group homomorphism from A  into )(NAut  
of all automorphisms of N  , which is defined by 

 1=))(( amama  (14) 
 
So the product of two elements X  andY  by 

 ).,(=).,)(.(=),)(,( 1 baamabamaxbmax   (15) 
for any X  ,(= x  Sa )  and Y  ,(= m  .) Sb   Let dnda  be the right haar measure on S  and let 

)(2 SL  be the Hilbert space of the group .S  Let )(1 SL  be the Banach algebra that consists of all 
complex valued functions on the group S , which are integrable with respect to the Haar measure of 
S  and multiplication is defined by convolution on S  as 
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Where 
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and 
 )........= 1=211=21 nrr dbdbdbdbdmdmdmdmdmdb  (18) 

 
 In the following we prove the Plancherel theorem for NA. Therefore let ANT =  be the 

Lie group which is the direct product of the two Lie groups N  and ,A  and let AANH =  be 
the Lie group, with multiplication 
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 ),,)((=),,)(,,( rqtsmrnqsmrtn   
for all Hrtn ),,(  and .),,( Hqsm   In this case the group S  can be identified with the closed 
subgroup   AN  0  of H  and T  with the subgroup  0 AN of H  

Definition 3.1. For every functon f  defined on S , one can define a function  on L  as follows:  

 ),)((~=),,(~ abnafbanf   (19) 
for all .),,( Hban   So every function ),( an  on S  extends uniquely as an invariant function 
~ ,(n  ,b  )a  on .L  

Remark 3.1. The function f~  is invariant in the following sense:  
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Lemma 3.1. For every function )(1 SLf   and for every g  )(1 SL , we have  
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for every ),,( ban  H , where   signifies the convolution product on S  with respect the variables 

),( bn  and c signifies the commutative convolution product on B  with respect the variables ).,( an  
Proof:  In fact we have   
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Definition 3.2. If ),(1 SLf   one can define its Fourier transform f   by : 
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clear that if f     ),(SS  then f     )(SS  and the mapping f      f   is topological 
isomorphism of the topological vector space  )(SS  onto ).( 1nrRS  

Definition 3.3. If )(1 SLf  , we define the Fourier transform of its invariant f~  as follows 
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Theorem 3.1. For every )(1 SLg  , and ),(1 SLf   we have 
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Proof: By equation (21)  we get immediately 
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Plancherel's theorem 3.2. For any f  )(1 SL  ),(2 SL  we have 
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which is the Plancherel's formula on .S  So the Fourier transform can be extended to an isometry of 
)(2 SL  onto ).( 12 nrL R  
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Corollary 2.2. In equation (29),  replace the first f  by ,g  we obtain 

  ddgfdxdttxgtxf
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which is the Parseval formula on .S  
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