RW-CONTINUOUS MAPS AND RW-IRRESOLUTE MAPS IN TOPOLOGICAL SPACES

M.Karpagadevi¹, A.Pushpalatha² ¹Assistant Professor, Karpagam College of Engineering, Coimbatore, India ²Assistant Professor, Government Arts College, Udumalpet, India

Abstract

In this paper we introduce and study the concept of regular weakly continuity (briefly rw-continuity) and regular weakly irresolute (briefly rw-irresolute) in topological spaces and discuss some of their properties in topological spaces.

Mathematics Subject Classification: 54C05

KEYWORDS: rw-closed set, rw-continuous, rw-irresolute

1. Introduction

Topologist studied weaker and stronger forms of continuous functions in topology using the sets stronger and weaker than open and closed sets. Balachandran et.al [4], Levine [14], Mashhour et.al [16], Gnanmbal et.al [11] have introduced g- continuity, Semi - continuity, pre- continuity, gpr - continuity respectively.

In 1972, Crossley and Hiledebrand [6] introduced the notion of irresoluteness. In 1981, Munshi and Bassan [17] introduced the notion of generalized continuous (briefly g - continuous) functions which are called in [4] as g - irresolute functions. Furthermore, the notion of gs-irresolute [7] (resp.gp-irresolute [2], og-irresolute[8], gb - irresolute[3],gsp-irresolute[21]) functions is introduced.

S.S. Benchalli and R.S Wali [5] introduced new class of sets called regular weakly - closed (briefly rw - closed) sets in topological spaces which lies between the class of all w - closed sets and the class of all regular g - closed sets.

The aim of this paper is to introduce and study the concepts of new class of maps namely rw-continuous maps and rw-irresolute maps.

Throughout this paper (X, τ) and (Y,σ) (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, cl(A) and int(A) represents the closure of A and interior of A respectively.

2. Preliminaries

In this section we recollect the following basic definitions which are used in this paper.

Definition 2.2 [18]: A subset A of a topological space (X, τ) is called regular generalized closed (briefly rg-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

ISSN: 2231-5373 http://www.internationaljournalssrg.org

Definition 2.4 [18] : A map f: $(X, \tau) \rightarrow (Y,\sigma)$ from a topological space X into a topological space Y is called rg continuous if the inverse image of every closed set in Y is rg-closed in X.

Definition 2.5 [19] : A map f: $(X, \tau) \rightarrow (Y,\sigma)$ from a topological space X into a topological space Y is called w-continuous if the inverse image of every closed set in Y is w-closed in X.

Definition 2.6 [6] : A map f: $(X, \tau) \rightarrow (Y,\sigma)$ from a topological space X into a topological space Y is called irresolute if the inverse image of every semi-closed set in Y is semi-closed in X.

3. RW - continuous mappings

In this chapter we introduce and study rw-continuous mappings in topological spaces.

Definition 3.1: Let $f: X \to Y$ from a topological space X into a topological space Y is called rwcontinuous if the inverse image of every closed set in Y is rw closed in X.

Theorem 3.2: If a map f: $X \rightarrow Y$ from a topological space X into a topological space Y is continuous, then it is rw continuous but not conversely.

Proof: Let $f: X \to Y$ be continuous and F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is closed in X. Since every closed set is rw-closed, $f^{-1}(F)$ is rw-closed in X. Therefore f is rw-continuous.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example

Example 3.4: Let $X = Y = \{a,b,c\}$ with toplogies $\tau = \{X\phi, \{a\}, \{a,b\}, \{b\}\}, \sigma = \{Y,\phi, \{c\}\}$. Let f: $X \rightarrow Y$ be a map defined by f(a) = a, f(b) = b, f(c) = c. Here f is rw continuous but not continuous since for the closed set $F = \{a,b\}$ in Y f⁻¹(F) = $\{a,b\}$ is not closed in X.

Theorem 3.5: If a map f: $X \rightarrow Y$ from a topological space X into a topological space Y is rwcontinuous, then it is rg continuous but not conversely.

Proof: Let $f: X \to Y$ be rw - continuous and F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is rw - closed in X. Since every rw-closed set is rg-closed, $f^{-1}(F)$ is rg-closed in X. Therefore f is rg - continuous.

Remark 3.6: The converse of the above theorem need not be true as seen from the following example

Example 3.7: Let $X = Y = \{a,b,c,d\}$ with topologies $\tau = \{X\phi,\{a\},\{a,b\},\{b\},\{a,b,c\}\}, \sigma = \{Y,\phi,\{b\},\{a,b,d\}\}$. Let f: $X \rightarrow Y$ be a map defined by f (a) = a, f (b) = b, f(c) = c. Here f is rg continuous but not rw-continuous since for the closed set $F = \{c\}$ in $Y f^{-1}(F) = \{c\}$ is not rw-closed in X.

Theorem 3.8: If a map f: $X \rightarrow Y$ from a topological space X into a topological space Y is w - continuous, then it is rw continuous but not conversely.

Proof: Let $f: X \to Y$ be w - continuous and F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is w - closed in X. Since every w-closed set is rw-closed, $f^{-1}(F)$ is rw-closed in X. Therefore f is rw - continuous. **Remark 3.9:** The converse of the above theorem need not be true as seen from the following example

Example 3.10: Let $X = Y = \{a,b,c\}$ with toplogies $\tau = \{X\phi, \{a\}, \{a,b\}, \{b\}\}, \sigma = \{Y,\phi, \{c\}\}$. Let f: X \rightarrow Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Here f is rw continuous but not w-continuous since for the closed set $F = \{a,b\}$ in Y f⁻¹(F) = $\{a,b\}$ is not w-closed in X.

Theorem 3.11: A function f: $(X, \tau) \rightarrow (Y \sigma)$ is rw-continuous if and only if $f^{-1}(U)$ is rw-open in (X, τ) for every open set U in $(Y \sigma)$.

ISSN: 2231-5373 http://www.internationaljournalssrg.org

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be rw-continuous and U an open set in (Y, σ) . Then $f^{-1}(U^c)$ is rw-closed in (X, τ) . But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is rw-open in (X, τ) .

Theorem 3.12: If $f: X \to Y$ and $g: Y \to Z$ be any two functions, then $g^{\circ} f: X \to Z$ is rwcontinuous if g is continuous and f is rw-continuous.

Proof: Let F be any closed set in Z. Since g is continuous, $g^{-1}(F)$ is closed in Y and since f is rw-continuous, $f^{-1}(g^{-1}(F))$ is rw-closed in X. Hence $(g^{\circ}f)^{-1}$ is rw-closed in X. Thus $g^{\circ}f$ is rw-continuous.

Remark 3.13: The Composition of two rw-continuous maps need not be rw-continuous. Let us prove the remark by the following example.

Example 3.14:Let $X = Y = Z = \{a,b,c\}$ with toplogies $\tau = \{X\phi, \{a\}, \{a,b\}, \{b\}\}\sigma = \{Y,\phi, \{b\}, \{a,b\}\}, \eta = \{Z,\phi, \{a\}, \{a,c\}, \{c\}\}$. Let g: $(X, \tau) \rightarrow (Y,\sigma)$ be a map defined by g(a) = a, g(b) = b, g(c) = c. Let f: $(Z, \eta) \rightarrow (X, \tau)$ be a map defined by f(a) = b, f(b) = a, f(c) = c. Both f and g are rw-continuous. Define $g^{\circ} f: (Z, \eta) \rightarrow (Y,\sigma)$. Here $\{c\}$ is closed set of (Y,σ) . Therefore $(g^{\circ} f)^{-1}(c) = \{c\}$ is not a rw-closed set of (Z, η) . Hence $g^{\circ} f$ is not rw-continuous.

Theorem 3.15: Let f: X \rightarrow Y be a rw-continuous map from a topological space X into a topological space Y and let H be a closed subset of X. Then the restriction f / H: H \rightarrow Y is rw – continuous where H is endowed with the relative topology.

Proof: Let F be any closed subset in Y. Since f is rw-continuous, f⁻¹(F) is rw-closed in X. If f⁻¹(F) $H = H_1$ then H1 is a rw-closed set in X, since the intersection of two rw-closed set is rw-closed \cap set. Since $(f/H)^{-1}(F) = H_1$, it is sufficient to show that H1 is rw-closed set in H. Let G₁ be any open set of H such that G1 contains H₁. Let $G_1 = G \cap$ H where G is open in X. Now H_1 G G \cap H ⊂ s ince H₁ is rw- \subset G . Now cl_H (H₁) = $H_1 \cap$ closed in X. $H_1 \subset$ Η G $H = G_1$ where $cl_H(A)$ is the closure of a subset A of the $\overline{}$ \cap subspace H of X. Therefore f / H is rw-continuous.

Theorem 3.16: Let f: $X \rightarrow Y$ be a map from a topological space X into a topological space Y

	Tho	followin	a statamants	are equivalent
1) 1110	IOHOWIII	g statements	

- a) f is rw-continuous
- b) The inverse image of each open set in Y is rw-open in X.

ii) If f: X \rightarrow Y is rw-continuous then f(rw cl(A) \subset 1 (f(A)) for с every subset A of X. iii) The following statements are equivalent a) For each point x in X and each open set V in Y with $f(x) \in$ V t h ere is a rw-open set U in X such that x∈ U f(U) V $\overline{}$ b) For every subset A of X, $f(rw cl(A)) \subset$ 1 (f(A)) holds. с

c) For each subset B of Y, $\operatorname{rw} \operatorname{cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{cl}(B))$.

Proof: i) Assume that f: $X \rightarrow Y$ be rw-continuous. Let G be open in Y. Then G^c is closed in Y. Since f is rw-continuous, $f^{-1}(G^c)$ is rw-closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus X - $f^{-1}(G)$ is rw-closed in X and so $f^{-1}(G)$ is rw-open in X. Therefore (a) implies (b).

Conversely assume that the inverse image of each open set in Y is rw-open in X. Let F be any closed set in Y. Then F^{\circ} is open in Y. By assumption, f⁻¹(F^{\circ}) is rw-open in X. But

ISSN: 2231-5373 http://www.internationaljournalssrg.org

International Journal of Mathematics Trends and Technology- Volume4 Issue2- 2013

 $f^{-1}(F^{\circ}) = X - f^{-1}(F)$. Thus X - $f^{-1}(F)$ is rw-open in X and so $f^{-1}(F)$ is rw-closed in X. Therefore f is rwcontinuous. Hence (b) implies (a). Thus (a) and (b) are equivalent. ii) Since A \subset f⁻¹f (A), we have A $\overline{}$ $f^{-1}(cl(f(A)))$). Now cl (f (A)) is a closed set in Y and hence $f^{-1}(cl(f(A)))$ is a rw-closed set containing A. Consequently $\subset f$ f⁻¹(cl(f(A))) \subset $^{-1}$ (cl(f(A))). cl(A) Therefore f rw (rw cl(A) \subset c = 1 (a(A))iii) (a) \Leftrightarrow (b) Suppose that a) holds and let $y \in$ f (rw cl(A) and let V be any open neighbourhood of y. Then there exists a point $x \in$ X and rw-open set U such that f(x) = y, xU , $x \in$ r w cl(A) and f(U) \in V \subset . Since $x \in$ w cl(A), U \cap A $\neq \phi$ r holds and hence $f(A) \cap V \neq 0$ Therefore we have y = f(x)∈ c 1 (f(A)). Conversely if b) holds and let $x \in$ Х and let V be any open set containing f(x). AleSiAce ff (r(Wcl)(Athen x∉ c 1 (f(A)) V^c, it is \subset \subset shown that rwwct(A(A); the Tehenisin cerwe open set U containing x such that U \cap A = φ and hence f(U) V . f (A^c) \subset \subset (b) (c) \Leftrightarrow Suppose that (b) holds and let B be any subset of Y. Replacing A by f⁻¹(B) we get from $\begin{array}{ccc} \subset & c & l (f f^{-1}(B)) \\ \subset & f^{-1}(cl(B)). \end{array}$ (c) f (rw cl($f^{-1}(B)$)) (**B**). \subset Hence $rw cl(f^{-1}(B))$ Conversely suppose that(c) holds, let B = f(A) where A is a subset of X. Then rw cl(A) $r w cl(f^{-1}(B)) \subset$ f (cl(f(A))). Therefore \subset f (rw cl(A)) c 1(f(A)). This completes the proof. \subseteq

4. RW - irresolute mappings

Definition 4.1: Let $f: X \rightarrow Y$ from a topological space X into a topological space Y is called rwirresolute if the inverse image of every rw-closed set in Y is rw-closed in X.

Theorem 4.2: A map f: $X \rightarrow Y$ is rw-irresolute if and only if the inverse image of every rw-open set in Y is rw-open in X.

Proof: Assume that f is rw-irresolute. Let A be any rw-open set in Y. Then A^c is rw-closed set in Y. Since f is rw-irresolute, $f^{-1}(A^c)$ is rw-closed in X. But $f^{-1}(A^c) = X - f^{-1}(A)$ and so $f^{-1}(A)$ is rw-open in X. Hence the inverse image of every rw-open set in Y is rw-open in X.

Conversely assume that the inverse image of every rw-open set in Y is rw-open in X. Let A be any rw-closed set in Y. Then A^c is rw-open in Y. By assumption, $f^{-1}(A^c)$ is rw-open in X.But $f^{-1}(A^c) = X - f^{-1}(A)$ and so $f^{-1}(A)$ is rw-closed in X. Therefore f is rw-irresolute.

Theorem 4.3: If a map $f: X \rightarrow Y$ is rw-irresolute, then it is rw-continuous but not conversely.

Proof: Assume that f is rw-irresolute. Let F be any closed set in Y. Since every closed set is rw-closed, F is rw-closed in Y.Since f is rw-irresolute, $f^{-1}(F)$ is rw-closed in X. Therefore f is rw-continuous.

Remark 4.4: The converse of the above theorem need not be true as seen from the following example.

Example 4.5: Let $X = Y = \{a,b,c\}$ with toplogies $\tau = \{X\phi, \{a\}, \{a,c\}, \{c\}\}\sigma = \{Y,\phi\{b\}, \{b,c\}, \{c\}\}$. Let f: X \rightarrow Y be a map defined by f (a) = a, f(b) = b, f(c) = c. Here f is rw continuous. However $\{a\}$ is rw-closed in Y but f⁻¹(a) = $\{a\}$ is not rw-closed in X. Therefore f is not rw-irresolute.

Theorem 4.6: Let X, Y and Z be any topological spaces. For any rw-irresolute map $f: X \to Y$ and any rw-continuous map $g: Y \to Z$, the composition $g^{\circ}f:(X, \tau) \to (Z, \eta)$ is rw-continuous.

Proof: Let F be any closed set in Z. Since g is rw-continuous, $g^{-1}(F)$ is rw-closed in Y. Since f is rw-irresolute, $f^{-1}(g^{-1}(F))$ is rw-closed in X. But $f^{-1}(g^{-1}(F)) = (g^{\circ} f)^{-1}$. Therefore $g^{\circ} f: X \rightarrow Z$ is rw-continuous.

Remark 4.7: The irresolute maps and rw-irresolute maps are independent of each other. Let us prove the remark by the following examples.

Example 4.8: Let $X = Y = \{a,b,c\}$ with toplogies $\tau = \{X\phi, \{a\}, \{a,c\}, \{c\}\}\sigma = \{Y,\phi\{b\}, \{b,c\}, \{c\}\}$. Let f: X \rightarrow Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is irresolute but it is not rw-irresolute since F = $\{a\}$ is rw -closed in $(Y\sigma)$ but $f^{-1}(F) = \{a\}$ is not rw -closed in (X, τ) .

Example 4.9: Let $X = Y = \{a,b,c\}$ with toplogies $\tau = \{X\phi, \{a\}, \{a,c\}, \{c\}\}\sigma = \{Y,\phi\{b\}, \{b,c\}, \{c\}\}$. Let f: X \rightarrow Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is rw- irresolute but it is not irresolute since F = $\{a,c\}$ is semi -closed in (Y, σ) where f⁻¹(F) = $\{a,c\}$ is not semi -closed in (X, τ).

REFERENCES

[1] Arockiarani. I, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D., Thesis, Bharathiar Univ., Coimbatore, 1997.

[2] Arockiarani. I, Balachandran.K and Dontchev J, Some Characterization of gp-irresolute and gp-continuous maps between topological spaces, Mem.Fac.Sci.Kochi Univ.Ser.A Math., 20(1999), 93-104.

[3] Al-Omari A and M.S.M.Naorami, On generalized b-closed sets, Bull. Malays. Math. Sci.Soc(2), 32(2009), 19-30.
[4] Balachandran.K, Sundaram.P and Maki.H, On generalized Continuous maps in topological spaces, Mem Fac.Sci.Kochi Univ.Ser.A.Math., 12(1991),5-13

[5] Benchalli.S.S and Wali.R.S., On R ω -closed sets in topological spaces, Bull.Malays.math.Sci.Soc(2) 30(2) (2007), 99-110.

[6] Crossley S. G and Hildebrand S.K, Semi Topological properties, Fund.Math.,74(1972),233-254

[7] Devi R, Balachandran.K and Maki H, Semi generalized homeomorphisms and generalized Semihomeomorphisms on topological spaces, Indian J. Pure Appl. Math., 26(1995), 271-284

[8] Devi R, Balachandran.K and Maki H, On generalized α - continuous maps and α - generalized continuous maps , Far East J. Math. Sci., Special volume (1997), Part I, 1-15

[9] El-Tantawy.O.A and Abu-Donia.H.M, Generalized Separation Axioms in Bitopological Spaces, The Arabian Π for Science and Engg.Vol.30,N0.1A, 117-129(2005).

[10] Futake, T., Sundaram, P., and Nagaveni, N., On weakly generalized closed sets, weakly generalized continuous maps and Twg spaces in bitopological spaces, Bull.Fukuoka Univ.Ed.Part III, 48(1999), 33-40.

[16] Gnanambal.Y, Balachandran.K, On gpr-continuous functions in topological spaces, Indian J.Pure Appl.Math 1999,30(6):581-93

[17] Jelic.M., A decomposition of pairwise continuity, J. Inst. Math. Comp. Sci., 3, 25-29(1990).

[18] Jelic.M., Feebly p-continuous mappings.V International Meeting on Topology in Italy (Itaian) (Lecce,1990/Otranto,1990).Rend.Circ.Mat.Palermo(2) Suppl.No.24(1990),387-395.

[19] Levine.N, Semi - open sets, Semi-continuity in topological spaces, Amer Math, Monthly, 70(1963), 36-41

[20] Maki, H., Devi, R., and Balachandran, K., Associated topologies of generalized aclosed sets, mem. Fac. Sci. Kochiuniv.Ser.A.math., 15(1994), 51-63.

[21] Mashhour.A.S., Ab

d El-Monsef .M.E. and El-Deeb.S.N.On pre continuous mappings and week pre-continuous mappings,Proc Math, Phys.Soc.Egypt 53(1982),47-53.

[11] Munshi B.M and Bassan D S, g - continuous mappings, Vidya J. Gujarat Univ. B Sci., 24(1981), 63-68

[12] Palaniappan N and Rao K C, Regular generalized closed sets, Kyungpook Math. J. 33(1993), 211-219

[13] Sundaram P and Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4(2000), 389-392

[14] Veerakumar M.K.R.S., Between closed setsandg-closed sets, Mem.Fac.Sci.Kochiuniv.(Math).21(2000),1-19.

[15] Veerakumar M.K.R.S., Semi-pregeneralized closed sets, Mem.Fac.Sci.Kochi Univ. Ser. A Math.., 19(1999), 33-46