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Abstract 
 
In this paper we introduce and study the concept of regular weakly continuity (briefly rw-continuity) and 
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1. Introduction 
 
 Topologist studied weaker and stronger forms of continuous functions in topology using the sets 
stronger and weaker than open and closed sets. Balachandran et.al [4], Levine [14], Mashhour et.al [16], 
Gnanmbal et.al [11] have introduced g- continuity, Semi - continuity, pre- continuity, gpr - continuity 
respectively. 
 In 1972, Crossley and Hiledebrand [6] introduced the notion of irresoluteness.In 1981, Munshi and 
Bassan [17] introduced the notion of generalized continuous (briefly g - continuous) functions which are called 
in [4] as g – irresolute functions. Furthermore, the notion of gs-irresolute [7] (resp.gp-irresolute [2] , g-
irresolute[8] , gb – irresolute[3],gsp-irresolute[21]) functions is introduced. 
S.S. Benchalli and R.S Wali [5] introduced new class of sets called regular weakly - closed (briefly rw - closed) 
sets in topological spaces which lies between the class of all  w - closed sets and the class of all regular g - closed 
sets. 
The aim of this paper is to introduce and study the concepts of new class of maps namely rw-continuous maps 
and rw-irresolute maps. 
 
Throughout this paper (X,  )  and (Y, ) (or simply X  and Y) represents the non-empty topological spaces on 
which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, cl(A) and int(A) 
represents the closure of A and interior of A respectively. 
 
 
 
2. Preliminaries 
 
 In this section we recollect the following basic definitions which are used in this paper. 
 
Definition 2.1 [5]: A subset A of a topological space (X,  )  is called  rw-closed (briefly rw-closed) if  
cl(A)   U, whenever A   U  and U is regular 
semiopen in X. 
 
Definition 2.2 [18]: A subset A of a topological space (X,  )  is called regular generalized closed (briefly 
rg-closed) if cl(A)   U whenever A   U and U 
is regular open in X. 
 
Definition 2.3 [19]: A subset A of a topological space (X,  )  is called weakly closed (briefly w-closed) if 
cl(A))   U whenever A   U and U is  semi open 
in X. 
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Definition 2.4 [18] :A map f: (X,  )    (Y, )  from  a topological space X  into a topological space Y 
is called  rg continuous if the inverse image of every  closed set inY is  rg-closed in X. 
 
Definition 2.5 [19] :A map f: (X,  )    (Y, )  from  a topological space X  into a topological space Y 
is called  w-continuous if the inverse image of every  closed set in Y is  w-closed in X. 
 
Definition 2.6 [6] :  A map f: (X,  )    (Y, )  from  a topological space X  into a topological space Y 
is called  irresolute if the inverse image of every  semi-closed set in Y is  semi-closed in X. 
 
3. RW - continuous mappings 

In this chapter we introduce and study rw-continuous mappings in topological spaces. 
 

Definition 3.1: Let f: X   Y from a topological space X into a topological space Y is called   rw-
continuous if the inverse image of every closed set inY is rw closed in X. 
 
Theorem 3.2: If a map f: X   Y from a topological space X into a topological space Y is continuous, 
then it is rw continuous but not conversely. 
 
Proof: Let f: X   Y be continuous and F be any closed set in Y. Then the inverse image f -1(F) is closed 
in X. Since every closed set is rw-closed, f -1(F) is rw-closed in X. Therefore f is rw-continuous. 
 
Remark 3.3: The converse of the above theorem need not be true as seen from the following example 
 
Example 3.4: Let X = Y = {a,b,c} with  toplogies     = {X,, {a},{a,b},{b}},  = {Y,  ,{c}}. Let f: X   
Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Here f is rw continuous but not continuous since for the 
closed set F = {a,b} in Y f -1(F) = {a,b} is not  closed in X. 
 
Theorem 3.5: If a map f: X   Y from a topological space X into a topological space Y is rw- 
continuous, then it is rg continuous but not conversely. 
 
Proof: Let f: X   Y be rw - continuous and F be any closed set in Y. Then the inverse image f -1(F) is 
rw - closed in X. Since every rw-closed set is rg-closed, f -1(F) is rg-closed in X. Therefore f is rg - 
continuous. 
 
Remark 3.6: The converse of the above theorem need not be true as seen from the following example 
 
Example 3.7: Let X = Y = {a,b,c,d} with  toplogies     = {X,, {a},{a,b},{b},{a,b,c}},  
 = {Y,  ,{b},{a,b,d}}. Let f: X   Y be a map defined by f (a) = a, f (b) = b, f(c) = c. Here f is rg 
continuous but not rw-continuous since for the closed set F = {c} in Y  f -1(F) = {c} is not rw-closed in X. 
 
Theorem 3.8: If a map f: X   Y from a topological space X into a topological space Y is w - 
continuous, then it is rw continuous but not conversely. 
 
Proof: Let f: X   Y be w - continuous and F be any closed set in Y. Then the inverse image f -1(F) is w 
- closed in X. Since every w-closed set is rw-closed, f -1(F) is rw-closed in X.Therefore f is rw - continuous. 
Remark 3.9: The converse of the above theorem need not be true as seen from the following example 
 
Example 3.10: Let X = Y = {a,b,c} with  toplogies     = {X,, {a},{a,b},{b}},  = {Y,  ,{c}}. Let f: X 
  Y  be a map defined by f(a) = a,f(b) = b, f(c) = c. Here f is rw continuous but not w-continuous since 
for the closed set F = {a,b} in Y f -1(F) = {a,b} is not  w-closed in X. 
 
Theorem 3.11: A function f: (X,  )    (Y,) is rw-continuous if and only if f -1(U) is rw-open in (X,  )  
for every open set U in (Y,). 
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Proof: Let f: (X,  )    (Y, )  be  rw-continuous and U an open set in (Y, ). Then f -1(Uc) is rw-closed 
in (X,  ) . But f -1(Uc) = (f -1(U)) c and so f -1(U) is rw-open in  (X,  ) .  
 
Theorem 3.12: If  f: X   Y  and g: Y   Z be any two functions, then g º f : X   Z  is rw-
continuous if  g is continuous and f is rw-continuous.   
 
Proof: Let F be any closed set in Z. Since g is continuous, g -1(F) is closed in Y and since f is rw-
continuous, f -1(g -1(F)) is rw-closed in X. Hence  (g º f) -1  is rw-closed in X. Thus g º f is rw-continuous. 
 
Remark 3.13: The Composition of two rw-continuous maps need not be rw-continuous. Let us prove the 
remark by the following example.  
 
Example 3.14:Let X = Y = Z ={a,b,c} with  toplogies     = {X,, {a},{a,b},{b}}, = {Y,  ,{b},{a,b}},   = 
{Z, , {a},{a,c},{c}}. Let g: (X,  )    (Y, )  be  a map defined by g(a) = a, g(b) = b, g(c) = c. Let f: (Z, 
 )    (X,  )   be  a map defined by f(a) = b, f(b) = a, f(c) = c. Both f and g are rw-continuous. Define 
g º f: (Z,  )   (Y, ). Here {c} is closed set of (Y, ).Therefore  (g º f) -1(c) = {c} is not a rw-closed set of  
(Z,  ). Hence g º f is not rw-continuous. 
 
Theorem 3.15: Let f: X   Y be a rw-continuous map from a topological space X into a topological 
space Y and let H be a closed subset of X. Then the restriction f / H: H   Y is rw – continuous where H 
is endowed with the relative topology. 
 
 
Proof: Let F be any closed subset in Y. Since f is rw-continuous, f -1(F) is rw-closed in X.  If f -1(F) 
  H  =  H1 then H1 is a rw-closed set in X, since the intersection of two rw-closed set is rw-closed 
set. Since (f / H) – 1 (F) = H1, it is sufficient to show that H1 is rw-closed set in H. Let G1 be any open set of 
H such that G1 contains H1. Let G1 = G   H  where G is open in X. Now H1 
  G    H    G  s i nce H1 is rw-

closed in X. 


1H   G .  Now clH (H1) = 


1H   H  
  G    H  = G1 where clH (A) is the closure of a subset A of the 
subspace H of X. Therefore f / H is rw-continuous. 
 
Theorem 3.16: Let f: X   Y be a map from a topological space X into a topological space Y 

 i) The following statements are equivalent 
a) f is rw-continuous 
b) The inverse image of each open set in Y is rw-open in X. 
ii) If f: X   Y is rw-continuous then f(rw cl(A)   c l ( f (A)))  for 
every subset A of X. 
iii) The following statements are equivalent  
a) For each point x in X and each open set V in Y with f(x) V ,  t h ere is 

a rw-open set U in X such that  x U ,  f ( U ) 
  V .  

b) For every subset A of X, f (rw cl(A))   c l ( f (A)) holds. 
c)  For each subset B of Y, rw cl(f -1(B))   f  - 1  (cl(B)). 
 

Proof: i) Assume that f: X   Y be rw-continuous. Let G be open in Y. Then G c  
 is closed in Y. Since f is rw-continuous, f -1(G c) is rw-closed in X. But f -1(G c) =  
X - f -1(G ). Thus X - f -1(G) is rw-closed in X and so f -1(G) is rw-open in X. Therefore (a) implies (b). 
 Conversely assume that the inverse image of each open set in Y is rw-open in X. Let F be any 
closed set in Y. Then F c is open in Y. By assumption, f -1(F c) is rw-open in X. But  
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f -1(F c) = X - f -1(F). Thus X - f -1(F) is rw-open in X and so f -1(F) is rw-closed in X. Therefore f is rw-
continuous. Hence (b) implies (a). Thus (a) and (b) are equivalent. 
ii) Since A   f  - 1 f (A), we have A    
f -1(cl(f(A)) ). Now cl (f (A)) is a closed set in Y and hence f -1(cl(f(A))) is a rw-closed set containing A. 
Consequently  
rw cl(A)   f  - 1 (cl(f(A))). Therefore f (rw cl(A)) 
  f  f  - 1(cl(f(A)))   c l ( a (A)) 
 
  iii) (a)   ( b )   
Suppose that a) holds and let y   f  ( r w cl(A) and let V be any open 
neighbourhood of y. Then there exists a point x   X  a n d rw-open set U such 
that f(x) = y, x  U ,  x   r w  c l(A) and f(U) 
  V .  S ince x   r w  c l(A), U   A     
holds and hence f(A)   V   . Therefore we have y = f(x)   c l ( f(A)). 
 Conversely if b) holds and let x   X  a n d let V be any open set 
containing f(x).  
Let A = f -1(V c), then x  A. Since f (rw cl(A)   c l ( f(A))    V c ,  it is 
shown that rw cl(A) = A. Then since x  rw cl (A), there exists a rw-open set U containing x such that U   A  =   and hence f(U) 
  f ( A c )   V .  ( b ) 
  ( c )  
Suppose that (b) holds and let B be any subset of Y. Replacing A by f -1(B) we get from  
(c) f (rw cl(f -1(B)))   c l ( f f -1(B))    ( B ) .   
Hence rw cl(f -1(B))   f  - 1(cl(B)). 
 Conversely suppose that(c) holds, let B = f(A) where A is a subset of X. Then rw cl(A) 
  r w  c l(f -1(B))   f  - 1 (cl(f(A))). Therefore 
f (rw cl(A))   c l ( f(A)). This completes the proof. 
 
4. RW - irresolute mappings   
 
Definition 4.1:  Let f: X   Y from a topological space X into a topological space Y is called rw-
irresolute if the inverse image of every rw-closed set in Y is rw-closed in X. 
 
Theorem 4.2: A map f: X   Y is rw-irresolute if and only if the inverse image of every rw-open set in 
Y is rw-open in X. 
 
Proof: Assume that f is rw-irresolute. Let A be any rw-open set in Y. Then Ac is  rw-closed set in Y. Since 
f is rw-irresolute, f -1(Ac) is rw-closed in X. But f -1(Ac) = X - f -1(A) and so f -1(A) is rw-open in X. Hence 
the inverse image of every rw-open set in Y is rw-open in X. 
 Conversely assume that the inverse image of every rw-open set in Y is rw-open in X. Let A be any 
rw-closed set in Y. Then Ac  is rw-open in Y. By assumption, f -1(Ac) is rw-open in X.But f -1(Ac) = X - f -

1(A) and so f -1(A) is rw-closed in X. Therefore f is rw-irresolute. 
 
Theorem 4.3: If a map f: X   Y is rw-irresolute, then it is rw-continuous but not conversely. 
 
Proof: Assume that f is rw-irresolute. Let F be any closed set in Y. Since every closed set is rw-closed, F is 
rw-closed in Y.Since f is rw-irresolute, f -1(F) is rw-closed in X. Therefore f is rw-continuous. 
 
Remark 4.4: The converse of the above theorem need not be true as seen from the following example. 
 
Example 4.5: Let X = Y = {a,b,c} with  toplogies     = {X,, {a},{a,c},{c}}, = {Y,  {b}, {b,c},{c}}. Let 
f: X   Y be a map defined by f (a) = a, f(b) = b, f(c) = c. Here f is rw continuous. However {a} is rw-
closed in Y but f -1(a) = {a} is not rw-closed in X. Therefore f is not rw-irresolute. 
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Theorem 4.6: Let X, Y and Z be any topological spaces.For any rw-irresolute map f: X   Y and any 
rw-continuous map g: Y   Z, the composition  g º f : (X,  )    ( Z, ) is rw-continuous. 
 
Proof: Let F be any closed set in Z. Since g is rw-continuous, g -1(F) is rw-closed in Y. Since f is rw-
irresolute, f -1 (g -1(F)) is rw-closed in X. But f -1 (g -1(F)) = (g º f) – 1. Therefore g º f: X   Z is rw-
continuous. 
 
Remark 4.7: The irresolute maps and rw-irresolute maps are independent of each other. Let us prove the 
remark by the following examples. 
 
Example 4.8: Let X = Y = {a,b,c} with  toplogies     = {X,, {a},{a,c},{c}}, = {Y,  {b}, {b,c},{c}}. Let 
f: X   Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is irresolute but it is not rw-irresolute 
since F = {a} is rw -closed in (Y,) but f -1(F) = {a} is not rw -closed in (X,  ) .  
 
Example 4.9: Let X = Y = {a,b,c} with  toplogies     = {X,, {a},{a,c},{c}}, = {Y,  {b}, {b,c},{c}}. Let 
f: X   Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is rw- irresolute but it is not irresolute 
since F = {a,c} is semi -closed in (Y, ) where f -1(F) = {a,c} is not semi -closed in (X,  ) .  
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