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Abstract—This paper deals with two species competitive model with optimal harvesting of the second species under 
bionomic conditions. The model is characterized by a pair of first order non-linear ordinary differential equations. 
All the possible equilibrium points of the model are identified and the criteria for the local and global stabilities are 
discussed.  The possibility of existence of bio economic equilibrium is being discussed and an optimal harvesting 
policy is given using Pontryagin’s maximum principle.  
 

1. INTRODUCTION 

     There is an extensive study on several kinds of prey- predator interactions after it was initiated by Lotka [1] 
and Volterra [2]. Bionomics of natural resources has played a significant role in all these interactions. There is a 
strong impact of harvesting on the dynamic evolution of a population. In fishery, forestry, agriculture and wild 
life management, the exploitation of biological resources and harvesting of population species can be seen. The 
problems of predator-prey systems in the presence of harvesting were discussed by many authors and attention 
on economic policies from harvesting have also been analysed.  A detailed discussion on the issues and 
techniques associated with the bionomic exploitation of natural resources was given by Clark [3, 4]. A study on 
a class of predator-prey models under constant rate of harvesting of both species simultaneously was made by 
Brauer and Soudack [5, 6]. Multi-species harvesting models are also studied in detail by Chaudhuri [7, 8].  
Models on the combined harvesting of a two species prey predator fishery have been discussed by Ragozin and 
Brown [9], Chaudhuri and Saha Ray [10]. K. Shiva Reddy et.al [12] proposed the mathematical model for the 
three species ecosystem comprising of two predators competing for the prey. They also investigated the stability  
concepts using various mathematical techniques. 
     In this connection, a mathematical model based on the system of non-linear equations has been constructed.  
All the four equilibrium points are identified and their local stability is discussed. The conditions for global 
stability of the system are derived by using Liapunov function.  Biological and Bionomical equilibria of the 
system are derived.   

 
2. MATHEMATICAL MODEL 

 
The model equations for a two species competitive system are given by the following system of non-linear 
ordinary differential equations 

21
1 1 11 1 12 1 2

dN
a N N N N

dt
   

              
(2.1) 

22
2 2 22 2 21 1 2 2 2 2

dN
a N N N N q E N

dt
                                              (2.2)

  
 

where 1N  and 2N  are the populations of the first and second species with natural growth rates (bio potentials) 

1a and 2a  respectively, 11 is rate of decrease of the first species due to insufficient food, 12 is rate of 

decrease of the first species due to inhibition by the second species, 21 is rate of decrease of the second species 

due to inhibition by the first species, 22 is rate of decrease of the second species due to insufficient food other 

than the first species; 2q  is the catch ability co-efficient of the second species, 2E  is the harvesting effort and 

2 2 2q E N  is the catch-rate functions based on the catch-per-unit-effort hypothesis. Further both the variables 

1N  and 2N  are non-negative and the model parameters 12 21 22 2 2, , , , ,q E   1 2, ,a a 11, 2 2 2a q E are 
assumed to be non-negative constants. 
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3. EQUILIBRIUM STATES 
 

The system has only four equilibrium states defined by   1dN
dt

= 0, 2dN
dt

 = 0                   

E1:  The fully washed out state with the equilibrium point 21 0; 0N N                      
E2:  The state in which, only the predator survives and the prey is washed out.   

        The equilibrium point is 1 0N  ; 2 2
2

22

( )a q EN



                                              

E3:  The state in which only the prey survives and the predator is washed out                  

        The equilibrium point is 1
1

11

aN


 ; 2 0N                                                                                                            

E4: The co-existent state (normal steady state)  

       The equilibrium point is 

       1 22 2 2 12
1

11 22 12 21

( )a a q EN  
   

 
 ; 2 2 11 1 21

2
11 22 12 21

( )a q E aN  
   






                               

      This state would exit only when  1 22 2 2 12a a q E   , ,2 2 11 1 21( )a q E a  11 22 12 21      
     

4. STABILITY OF THE EQUILIBRIUMSTATES 
 
  4.1    Stability of the equilibrium state E1 

To discuss the stability of equilibrium point 1 0N  ; 2 0N  , we consider slight deviations 

1( )u t and 2 ( )u t from the steady state, i.e. we write 

          1 11 ( )N N u t  ,                                                          (4.1.1) 

          2 22 ( )N N u t  .                                                         (4.1.2) 
Substituting (4.1.1) and (4.1.2) in (2.1) and (2.2), we get 

21
1 1 11 1 12 1 2

du a u u u u
dt

                     

  22
2 2 2 22 2 21 1 2

du a q E u u u u
dt

         

On neglecting products and higher powers of 1u  and 2u , we get 

            1
1 1

du a u
dt

                                (4.1.3) 

and      

   2
2 2 2

du a q E u
dt

                                             (4.1.4) 

The characteristic equation is   
 [- 1a ][- 2 2( )a q E ] = 0,                 

whose roots 1a , 2 2( )a q E are both positive. Hence the equilibrium state is unstable. 

The solutions for equations (4.1.3) and (4.1.4) are  

1
1 10 =  a tu u e                                    

2 2
2 20

( ) =  a q E tu u e 
                                                                                                                                                                                                                                                   

where 10u , 20u  are the initial values of 1u and 2u . 
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4.2    Stability of the equilibrium state E2 

Substituting (4.1.1) and (4.1.2) in (2.1) and (2.2), we get, 

 21 12
1 1 11 1 12 1 2 2 2 1

22

du
a u u u u a q E u

dt


 


      

   22 21
2 2 2 22 2 21 1 2 2 2 1

22

du a q E u u u u a q E u
dt

 


             

On neglecting products, and higher powers of u1 and u2, we get 

 1 12
1 2 2 1

22

du a a q E u
dt




 
 

  
 

                                              (4.2.1) 

and 

   2 21
2 2 1 2 2 2

22

du a q E u a q E u
dt




                                                                            (4.2.2) 

The characteristic equation is  

    12+ -2 2 1 2 2
22

a q E a a q E


 


  
            

 = 0                                           (4.2.3) 

Case (i): When
 2 2 12

1
22

- 
>

a q E
a




, one root of equation (4.2.3) is 1  =  2 2- a q E  and the other root, 

  12
2 1 2 2

22

a a q E 



 

 
  
 

 is positive.  Hence the equilibrium state is unstable. 

Case (ii): When
 2 2 12

1
22

- 
<

a q E
a




, one root of equation (4.2.3) is 1  =  2 2- a q E and other root, 

  12
2 1 2 2

22

a a q E 



 

 
  
 

 is negative. 

As the roots of the equation (4.2.3) are both negative, the equilibrium state is stable. 
The solutions for equations (4.2.1) and (4.2.2) are 

 2 1 10
 t = u u e                 

and        2  2 201 1

2 2- tt = ( )
a q Eu e u e 


                                    

where 
 

2 2 10 21
1

1 22 2 2 22 12

( )
( )
a q E u

a a q E



  








 
                                      

Case (iii): When
 2 2 12

1
22

- 
=

a q E
a




, one root of the equation (4.2.3) is 1 =  2 2- a q E  and the other root, 

2 0  .  Hence the equilibrium state is “neutrally” stable. 
The solutions for (4.2.1) and (4.2.2) are  

1 10 =u  u     
and         

1 21
2 10

2 2 12( )
au u

a q E



 +

 
1 21

20 10
2 2 12

au u
a q E




 
 

 

  2 2  t- - a q E
e                                                              
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4.3.    Stability of the equilibrium state E3     

Substituting (4.1.1) and (4.1.2) in (2.1) and (2.2), we get, 
21 1 12 2

1 1 11 1 12 1 2
11

du a ua u u u u
dt


 


                                       

22 1 21 2
2 2 2 22 2 21 1 2

11

( )du a ua q E u u u u
dt

 


                                                 

By neglecting products, and higher powers of u1 and u2, we get 

1 1 12 2
1 1

11

du a ua u
dt




                                     (4.3.1) 

and  

2 1 21
2 2 2

11

( )du aa q E u
dt




 
   
 

                              (4.3.2) 

and the characteristic equation is 

 1+a   1 21
2 2

11

( ) aa q E 


       
   

= 0                            (4.3.3) 

Case (i): When 1 21
2 2

11

( ) aa q E 


  , one root of equation (4.3.3) is 1 1a    while the other root, 

1 21
2 2 2

11

( ) aa q E 


 
   
 

 is positive.  Hence the equilibrium state is unstable. 

Case (ii): When 1 21
2 2

11

( ) aa q E 


  , one root of equation (4.3.3) is 1 1a   and other root, 

1 21
2 2 2

11

( ) aa q E 


 
   
 

 is negative. 

As the roots of the equation (4.3.3) are both negative, the equilibrium state is stable. 
The solutions for equations (4.3.1) and (4.3.2) are 

   
 1 20 10 22

1 = ( ) a tdtu u e u e              

  2 20= dtu u e                       

 where 1 21
2 2

11

( ) ad a q E 


 
   
 

     ;    
   

1 12
2

2 2 11 1 11 21

a
a q E a


  


    

                                                          

 
4.4.    Stability of the equilibrium state E4                             
 
Substituting (4.1.1) and (4.1.2) in (2.1) and (2.2), we get, 

21
111 1 12 1 2 11 1 12 21

du u u u N u N u
dt

        22
222 2 21 1 2 22 2 21 12

du u u u N u N u
dt

       By 

neglecting products, and higher powers of 1u  and 2u , we get 

1
111 1 12 21

du N u N u
dt

                                 (4.4.1) 

 and      

2
221 1 22 22

du N u N u
dt

                                 (4.4.2) 

The characteristic equation is 
2 + 1 211 22( )N N     11 22 12 21[ ]     1 2N N  0                                                      (4.4.3) 
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Since the sum of the roots of (4.4.3) is negative and product of the roots is positive, the roots of which can be 
noted to be negative.  Hence the co-existent equilibrium state is stable. 
The solutions for (4.4.1) & (4.4.2) are given by 

1u = 2 110 1 22 20 12

1 2

( )u N u N  
 

  
  

 1 te   2 110 2 22 20 12

2 1

( )u N u N  
 

  
  

 2 te  

2 =u 1 220 1 11 10 21

1 2

( )-u N u N  
 

 
  

1 te    1 220 2 11 10 21

2 1

( )-u N u N  
 

 
  

 
 2 te       

where 1 2,  are the roots of the equation (4.4.3) 
                   

5. GLOBAL STABILITY 

Theorem: The Equilibrium point 1 2( , )N N  is globally asymptotically stable. 

Proof: Let us consider the following Liapunov function 

1 2
1 1 2 21 2 1 2

1 2
( , ) ln lnN NV N N N N N l N N N

N N
                 

                                         

where ‘l‘ is a positive constant    

Differentiating  V   w.r.to  ‘t’ we get 

1 21 1 2 2

1 2

N N dN N N dNdV l
dt N dt N dt

    
    
   

                                                                     

     1 21 2
1 1 11 1 12 2 2 2 2 22 2 21 1

1 2

dV N N N NN a N N l N a q E N N
dt N N

   
    

            
   

 

       1 21 1 11 1 12 2 2 2 2 22 2 21 1
dV N N a N N l N N a q E N N
dt

             

              1 1 2 2 2 11 11 12 11 1 12 2 2 22 21 22 2 21 1N N N N N N l N N N N N N                  

                     1 1 2 2 1 21 11 1 12 2 2 21 1 22 2N N N N N N l N N N N N N                

                   2 2
1 1 2 1 2 211 1 12 1 2 21 1 2 22 2N N N N N N l N N N N N N                

                 2 2
1 1 2 1 2 211 1 12 1 2 21 1 2 22 2N N N N N N l N N N N l N N               

        
         
 

2 2 2 2 2
12 21

1 1 2 1 211 1 1 2 1 2

2
222 2

2 2
lN N N N N N N N N N

l N N

 



                   

 
 

   2 2
12 21 12 21

1 211 1 22 22 2
dV l lN N l N N
dt

                 
   

  

 <  0  
Therefore , the equilibrium point 1 2( , )N N  is globally asymptotically stable. 
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6. BIONOMIC EQUILIBRIUM 
 
     The term bionomic equilibrium is an amalgamation of the concepts of biological equilibrium as well as 
economic equilibrium. The economic equilibrium is said to be achieved when the total revenue obtained by 
selling the harvested biomass equals the total cost for the effort devoted to harvesting. 
Let 2c   fishing cost per unit effort of the predator, 2p    price per unit biomass of the predator. The net 

economic revenue of the predator at any time t is given by   2 2 2 2 2R p q N c E                                 (6.1) 

The biological equilibrium is        1 2, ,N N E
  

 ,  

where      , ,1 2N N E   are the positive solutions of  
2

1 1 11 1 12 1 2 0a N N N N                                           (6.2)                   

  2
2 2 2 22 2 21 1 2 0a q E N N N N                                                                                                         (6.3) 

and             

 2 2 2 2 0p q N c E                                           (6.4) 

From (6.4), we have 

   2 2 2 2 0p q N c E
 
   

   2 2 2 2 0p q N c


    

   2
2

2 2

cN
p q

                                               (6.5) 

From (6.2), we have  

      1 1 11 1 12 2 0N a N N 
  

                         

    1 11 1 12 2 0a N N 
 

                            

  2
1 11 1 12

2 2

0ca N
p q

 


 
    

 
                   

 2
1 12 11 1

2 2

0ca N
p q

 


        
   

  2
1 1 12

11 2 2

1 cN a
p q




 
   

 
                          (6.6) 

From (6.3), (6.5) & (6.6), we get                  

   
2

2 2 2 2
2 22 21 1 22 2

2 2 2 2 2 22 2
0

c c c c
a N q E

p q p q p qp q
    

 
  
 

 

   
2

2 2 2 2
2 2 22 21 12 2

2 2 2 2 2 2 2 2

c c c cq E a N
p q p q p q p q

 
 

 
    

 
                   

   2
2 22 21 1

2 2 2

1 cE a N
q p q

 
 

  
     

  
                                                               (6.7)    

It is clear that   0E

   if   2

2 22 21 1
2 2

ca N
p q

 


 
  

 
      (6.8) 

Thus the bionomic equilibrium       1 2, ,N N E
  

 exists, if inequality (6.8) holds. 
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7. OPTIMAL HARVESTING POLICY 
 
The present value J of a continuous time-stream of revenues is given by 

 2 2 2 20

tJ e p q N c Edt                           (7.1)                          

where δ denotes the instantaneous annual rate of discount. Our problem is to maximize J subject to the state 
equations (2.1) & (2.2) and to the control constraints  max0 E E   by invoking Pontryagin’s maximum 
principle [11].      
The Hamiltonian for the problem is given by                      

   
 

2
2 2 2 2 1 1 1 11 1 12 1 2

2
2 2 2 22 2 21 1 2 2 2

tH e p q N c E a N N N N

a N N N N q EN

   

  

    

   
                          

                                                                                (7.2) 
where λ1, λ2 are the adjoint variables. 
Let us assume that the control constraints are not binding i.e. the optimal solution does not occur at  maxE . At 

 maxE we have a singular control  
By Pontryagin’s maximal principle, 

0H
E





  ; 1

1

d H
dt N
 

 


  ;  2

2

d H
dt N
 

 


              

 2 2 2 2 2 2 20 0tH e p q N c q N
E

 
    


                                

2
2 2

2 2

t ce p
q N

   
   

 
                 (7.3)            

    1
1 1 11 1 12 2 2 21 2

1

2d H a N N N
dt N
     

       


            

  1
1 11 1 2 21 2

d N N E
dt
               (7.4)           
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2 2 1 12 1 2 2 2 21 1 22 2

2

2td H e p q E N a q E N N
dt N

     
           

 

 2
2 22 2 1 12 1 2 2

td N N e p q E
dt

                                                                                            (7.5) 

From (7.3) & (7.4), we get    

1
1 11 1 1

td N B e
dt

       

where      

2
1 21 2 2

2 2

cB N p
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
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  
 

 

whose solution is given by 
 

1
1

11 1

tB e
N


 




                                    (7.6) 

From (7.5) & (7.6), we get    

2
2 22 2 2

td N B e
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where  
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 
1 12 1

2 2 2
11 1

B NB p q E
N


 
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  
  

 

whose solution is given by 
 

2
2

22 2

tB e
N


 




                                   (7.7) 

From (7.3) & (7.7), we get a singular path                                   

 
2 2

2
2 2 22 2

c Bp
q N N 

 
  

 
                         (7.8) 

Thus (7.8) can be written as  

F ( 2N ) = 
 

2 2
2

2 2 22 2

c Bp
q N N 

 
  

 
 

There exists a unique positive root  

2N  =  2N


of F ( 2N ) = 0 in the interval 0 < 2N < k2, if the following hold F (0) < 0,  

F (k2) > 0, 2( )F N ) > 0 for 2N  > 0. 

For 2N  =  2N


, we get 
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Hence once the optimal equilibrium     1 2,N N
 

is determined, the optimal harvesting effort  E


can be 

determined. 
From (7.3), (7.6) and (7.7), we found that λ1, λ2 do not vary with time in optimal equilibrium. Hence they remain 
bounded as t  .  
From (7.8), we also note that  

 
2 2

2
2 2 22 2

0c Bp
q N N 

 
  

 
  as   

Thus, the net economic revenue of the predator 2R = 0. 
This implies that if the discount rate increases, then the net economic revenue decreases and even may tend to 
zero if the discount rate tend to infinity. Thus it has been concluded that high interest rate will cause high 
inflation rate.  

 
8. CONCLUSIONS 

 
     In this paper, the consequences of two species competitive model with optimal harvesting of the second 
species under bionomic conditions have been studied. The existence of the possible steady states along with 
their local stability is discussed and also conditions for global stability of the system are derived by using 
Liapunov function. The conditions for the existence of Biological and Bionomical equilibria of the system are 
derived.  Further, the optimal harvesting policy has been discussed by using Pontryagin’s Maximum Principle 
[11]. It has been found that the total user cost of harvest per unit of effort equals the discounted value of the 
future profit at the steady-state effort level. It has also been noted that if the discount rate increases, then the 
economic rent decreases and even may tend to zero if the discount rate tend to infinity. Thus it has been 
concluded that high interest rate will cause high inflation rate.  
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