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Abstract—We propose Sparse TSVM, a multi-class SVM classifier that determines k nonparallel planes by solving k 

related SVM-type problems. The Sparse TSVM promotes Twin SVM to one-versus-rest approach. And it capture 

classes' main feature better with the sparse algorithm. On several benchmark data sets, Sparse TSVM is not only fast, 

but shows good generalization. 
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1  INTRODUCTION 
Standard support vector machines (SVMs), which are powerful tools for data classification, 
classify 2-category points by assigning them to one of two disjoint halfspaces in either the original 
input space of the problem for linear classifiers, or in a higher dimensional feature space for 
nonlinear classifiers [1], [2], [3], [4]. However, real world problems often require the 
discrimination for more than two categories. Thus, the multi-class pattern recognition has a wide 
range of applications including Optical Character Recognition [5], Intrusion Detection [6], Speech 
Recognition [7], and Bioinformatics [8]. Actually, the problem of pattern recognition for the 
complex information systems comes down to categorization issues [9]. Qi Wu and Rob Law has 
used SVM in complex nonlinear fault system classifying problems [10]. To improve the 
classification accuracy, Li Zhang and Wei-Da Zhou proposed a density- induced margin support 
vector machines [12]. Also, for the large computational complexity of multi-class problem, a 
simplified multi-class support vector machine with reduced dual optimization [13] and Sparse 
Multi-class Least-Squares Support Vector Machine [14] are presented to speed-up multi-class 
training process. 
   In this paper, we propose a simple but effective nonparallel plane classifier, termed as the 
Sparse Twin Support Vector Machine (STSVM) for multi-class classification. It followed the 
TWSVM [11] idea and applied it to multi-class problem. Our algorithm is one-versus-rest 
approach, however, do not become unbalanced when there are many more samples of some 
classes than others. What's more, instead of training all the given samples, we proposed a 
algorithm which yields sparse data points together with its weight to describe the initial training 
set approximately. After Sparsification, training became very faster while maintaining a higher 
classification accuracy. 
   The paper is organized as follows: Section 2 briefly dwells on SVMs, and section 3 on twin 
support vector machine for binary data classification. Section 4 discusses our multi-classifier, and 
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give its higher dimensional form with kernel function. Section 5 deals with experimental results 
and Section 6 contains concluding remarks. 

 
2  SUPPORT VECTOR MACHINES 
Let the patterns to be classified be denoted by a set of m  row vectors 

i
A ),,2,1( mi   in the n

-dimensional real space nR , where ),,,(
21 iniii

AAAA  . Also, let }1,1{ 
i

y  denote the class to 
which the i th pattern belongs. We first consider the case when the patterns belonging to the two 
classes are strictly linearly separable. Then, we need to determine nRw  and Rb  such that 

1 bwA
i

 for 1
i

y , and 1 bwA
i

 for 1
i

y .            (1) 

The plane described by 
0 bxwT                               (2) 

lies midway between the bounding planes given by 

1 bxwT  and 1 bxw T .                    (3) 

and separates the two classes from each other with margin of 
2

1 w  on each side. In other words, 
the margin of separation between the two classes is given by 

2
2 w . Here, 

2
w  denotes the 

2
L  

norm of a vector w . Data samples which lie on the planes given by (3) are termed as support 
vectors. The maximum margin classifier, which is the standard SVM, is obtained by maximizing 
this margin and is equivalent to the following problem: 

                (SVM1)  
bw,

min  wwT

2
1  

..ts  bwA
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   When the two classes are not strictly linearly separable, there will be an error in satisfying the 
inequalities (1) for some patterns and we can modify (1) to 

bqwA
ii

 1  for 1
i

y , and bqwA
ii

 1  for 1
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where 
i

q  denotes the error variable associated with the ith data sample. In this case, the classifier 
is termed as a “soft margin” one, and it approximately classifies points into two classes with 
some error. The classification of a given test sample x  is obtained by determining the sign of 

bxwT  . The soft margin depends on the value of the nonnegative error variables 
i

q  . In this 
case, one needs to choose a trade-off between the margin and the error and the standard SVM 
formulation for classification of the data points with a linear kernel is given by 

                (SVM2)  
qbw ,,

min  wwqce TT
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                         ..ts  bqwA
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Here, c  denotes a scalar whose value determines the trade-off; a larger value of c  emphasizes 
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the classification error, while a smaller one places more importance on the classification margin. 
In practice, rather than solving (SVM1) and (SVM2), we solve their dual problems to get the 
appropriate hard or soft margin classifier. The case of nonlinear kernels is handled on lines similar 
to linear kernels [17]. 
 
3  TWIN SUPPORT VECTOR MACHINES 
In this section, we give a brief outline of TSVM [11]. Here, data points belonging to classes 1 and 
-1 are represented by matrices A and B, respectively. Let the number of patterns in classes 1 and -1 
be given by 

1
m  and 

2
m , respectively. Therefore, the sizes of matrices A  and B  are ( nm 

1
) 

and ( nm 
2

), respectively. The TWSVM classifier aims to determine two nonparallel planes 
0)1()1(  bwxT , and 0)2()2(  bwxT  ,                      (7) 

so as to minimize the Euclidean distance of the planes from the data points of classes 1  and 1 , 
respectively. This leads to the following optimization problems: 
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and 
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where 0
21
c,c  are parameters and 

1
e  and 

2
e  are vectors of ones of appropriate dimensions. 

   The Wolfe dual of TWSVM1 as follows: 
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Similarly, consider TWSVM2 and obtain its dual as 

(DTSVM2)    


Max   TTTT PQQPe 1

1
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2
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           .t.s  
2
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Here, ][
1

eAP  , ][
2

eBQ  , and the augmented vector Tbwu ],[ )1()1( , which is given by 
TT GHHu 1)(  , Tbwv ],[ )2()2(  is given by TT PQQv 1)(  .                           

   Once vectors u  and v  are known, the separating planes (7) are obtained. A new data 
sample nRx  is assigned to class h , depending on which of the two planes given by (7) it lies 
closest to, i.e., 

)()(

2,1

)()( llT

l

hhT bwxMinbwx 


                          (12) 

where   is the perpendicular distance of point x  from the plane 0 )l()l(T bwx , 21,l  . 
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4  SPARSE TWIN SUPPORT VECTOR MACHINES 
4.1  sparsify training samples 
Let )},(),...,,{(

11 mm
yxyxS   be a set of m  training samples. We assume that each sample i

x  is 
drawn from a domain nX   and that each label 

i
y  is an integer from the set },..,2,1{ kY  .  

   First we get some samples to represent S  through the following algorithm: 
 
1)All samples must be normalized such that the features locate in [0,1] before learning. 

2)Each sample is given a weight 
p

w . at the beginning, p  (that is to say for every sample) 

1
p

w . 

3) 8.0R . 
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pq
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q
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1
, 10  v , then, 

qp

qqpp

p ww

wxwx
x




 ,

qpp
www  , Delete 

q
x . 

(through the experiment we known that usually when 750.v   the classifier performance better.) 
6) 01.0 RR . 
7) Repeat step 4~6 until 01.0R . 
 
Now the new samples together with its weight can describe the training set approximately. 
   Here is an example, iris dataset from the UCI repository (just consider the second and forth 
attributes). Figure 1 show initial samples of 3 classes (green stars, blue rounds and red dots), and 
figure 2 show sparse samples we get through the algorithm above. Where 750.v  .  

   Figure 3 and figure 4 display the classifiers calculated from initial samples and sparse samples 
respectively. 

     

figure 1  initial samples of iris                           figure 2  sparsified samples of iris 
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figure 3  classifiers calculated from initial samples         figure 4  classifiers calculated from sparsified samples 

4.2  building sparse twin support vector mufti-class cassifier 
Here we aimed to get k  nonparallel hyperplanes. For each hyperplane, we use a one-versus- 
rest approach, the k th class and other classes. To typical SVM, this method may yield to data 
unbalance, but this classifier, a new data sample Xx  is assigned to which class depending on 
which of the hyperplanes we get it lies closest to, so it won't yield to unbalance. 
   The Sparse twin support vector multi-class classifier is obtained by solving the following k  
quadratic programming problems 
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Where 0c  are parameters and 
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e  are vectors of ones of appropriate dimensions. 
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is a matrix which each row is a data point belonging to class s . Assume that the number of 
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The Lagrangian corresponding to the problem (13) is given by 
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where 
s

  and 
s

  are the vectors of Lagrange multipliers. The Karush-Kuhn-Tucker (K.K.T) 
necessary and sufficient optimality conditions [18] for (13) are given by 
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Where }{\ rYs . 
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 , from (18) we have 
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Next, combining (16) and (17) leads to 
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We define 
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rrr

eAH                                    (24) 

and the augmented vector T
r

T
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bwu ][ . With these notations (23) may be rewritten as 
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   Although 
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T

r
HNH 3  is always positive semidefinite, it is possible that it may not be well 

conditioned in some situations. We use a regularization term I , 0  [11], to take care of 
problems due to possible ill-conditioning of 
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HNH 3 . Here, I  is an identity matrix of 

appropriate dimensions. Therefore, (25) gets modified to 
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However, in the following, we shall continue to use (25) with the understanding that, if need be, 
(26) is to be used for the determination of 

r
u . 

   Using (15) and the above K.K.T conditions, we obtain the Wolfe dual [18] of (13) as follows: 
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In the above discussion, the matrix 
r

H  is matrix of size )1(  nm
r

, and matrix 
rr

T

r
HNH 3  is 

of size )1()1(  nn ,where, in general, n is much smaller in comparison to the number of 
patterns of each class. 
   Once vectors 

r
u  are known from (25), the separating planes 

 0
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are obtained. A new data sample Xx   is assigned to which class depending on which of the 
planes given by (29) it lies closest to, i.e. 
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where   is the perpendicular distance of point x  from the plane 0
ll

T bwx ， Yl  . 
   From the Karush-Kuhn-Tucker conditions (16), (17), (18), (19), (20), (21), and (22), we 
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lie on the hyperplane given by 
sssrr

T rNebwx  . Taking motivation from standard Twin SVM 
[11], we can define that such patterns of other classes as support vectors of class r  with respect 
to other classes as they play an important role in determining the required plane. 
 
4.3  The Nonliear Kernel Classifier 
Because our classifier is one-versus-rest approach, in many cases we have to face linearly 
nonseparable problems. So it's very necessary to extend our results to nonlinear classifiers. we 
consider the following kernel-generated surfaces instead of planes, 
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and K  is an appropriately chosen kernel. Note that the planes (29) can be obtained as a special 
case of (31), by using a linear kernel CxCxK TTT ),( , and by defining 
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r
vCw  . In line with 

the arguments in 4.2, we construct an optimization problem as follows: 
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Where 0c  are parameters. The corresponding Lagrangian is 
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We obtain the K.K.T. conditions for (33) as 
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Combining (35) and (36), we obtain 
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We define 
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The Wolfe dual of (33) is given by 
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Once (33) are solved to obtain the surfaces (31), a new pattern Xx   is assigned to which class 
in a manner similar to the linear case.   
 
5  EXPERIMENTAL RESULTS 
In this section, we validate the accuracy and efficiency of the proposed STSVM algorithm on 
several publicly available benchmark datasets including Iris, Wine, Indian Liver Patient, SPECTF 
Heart, Segmentation, and Wine Quality from the UCI repository. For all the datasets,we linearly 
scale each attribute to be in the range [0,1] before learning. Table 1 gives a detailed description 
about these datasets, which "training" indicates training sample size, and "test" indicates test 
sample size. Here we use RBF-kernel.  
Table 1  Dataset description 
Data Training Test Class Attribute 
iris 150 0 3 4 
wine 130 0 2 13 
indian liver patient 150 0 2 10 
wine quality 200 0 4 11 
SPECTF heart 80 187 2 44 
segmentation 210 2100 7 19 

 
5.1. Reliability of sparse algorithm 
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In the beginning, we display the reliability of STSVM on iris from the UCI repository. Fig.3 
shows the initial samples (stars, rounds and dots) and classifiers (solid lines) calculated from them, 
and fig.4 the sparse samples together with classifiers (dashed) calculated from them (In order to 
make the observation easier, here we consider the second and forth attributes of each sample 
only).  

   As we can see from figure 3 and 4, our algorithm is not only low computation, but also capture 
main features of training sample better. Here 750.v  , 50

1
.c  , 1

2
c . To make the observation 

easier, we plot initial samples and classifiers calculated from sparse samples in figure 5. 

 
figure 5 initial samples and classifiers calculated from sparsified samples 

   Next we display the STSVM's performance on iris in table 2. Which training error is the 
classifying error when use the initial training data as testing data. We first consider the second and 
forth attributes only, then all attributes are taken into consideration. Mostly, support vector number 
became less after Sparsification. It is noteworthy that，even if sometimes the SV number increase, 
training time is shorter, because sparse sample is much smaller. 
Table 2  iris 

 Attribute 2 and 4 All Attributes 
 STSVM 

(v=0) 
STSVM 
(v=0.5) 

STSVM 
(v=0.75) 

STSVM 
(v=0) 

STSVM 
(v=0.5) 

STSVM 
(v=0.75) 

STSVM 
(v=1) 

Training 
(initial) 

150 150 150 150 150 150 150 

Training 
(sparse) 

—— 25 21 —— 51 24 12 

SV of class 1 1 1 1 1 5 1 1 
SV of class 2 17 2 2 7 6 4 3 
SV of class 3 19 4 2 3 2 5 4 
Sum of SV 37 7 5 11 13 10 8 

Training 
Error(%) 

0.0467 0.0533 0.0533 0.0133 0.0200 0.0267 0.1000 

 
5.2 Accuracy comparing 
In this section, we compared training error and testing error, which is the error rate when classify 
initial training sample and testing sample respectively. Testing error indicates the accuracy when 
classify a new point. 



International Journal of Mathematics Trends and Technology- Volume4 Issue3- 2013 
 
 

ISSN: 2231-5373   http://www.internationaljournalssrg.org  Page 50 
 

   Firstly, training accuracy of TSVM and STSVM is compared through Wine and Indian Liver 
Patient Dataset from the UCI repository in table 3. For the convenience of comparing, we delete 
the third class of Wine, and consider class 1 and 2 only. The Indian Liver Patient Dataset contains 
416 liver patient records and 167 non liver patient records. After deleting the samples which miss 
values, we have 579 samples in all. Here we use the first 150 samples. 
   We can see from table 3 that, training error correlates negatively with support vector number 
usually. But testing error is different. Table 4 shows testing error correlates positively with support 
vector number. Less SV indicates that it capture classes' main features better to some extent. 
Actually, STSVM have higher classification accuracy with appropriate parameter v . However, 
SV number did not always decrease when v  increase. Experiments show that mostly STSVM 
perform better with 750.v  , but how to find the best v  still needing future solutions.  
5.3 Performance of STSVM on unbalanced data sets 
Lastly we show STSVM's performance when training data is unbalanced. Wine quality Dataset 
from the UCI repository is used, and to reduce calculation we select the first 200 samples. 
   Table 5 shows that although the training data is very unbalanced, our algorithm did not be 
overwhelmed by the large-scale classes or ignore the small ones. Where training error of one class 
equal to the misclassification rate of that class. And "Total" means the misclassification rate of the 
whole initial sample. 
Table 3  training error comparing 

 Wine Indian Liver Patient 
 TSVM STSVM 

(v=0.5) 
STSVM 
(v=0.75) 

TSVM STSVM 
(v=0.5) 

STSVM 
(v=0.75) 

STSVM  
(v=1) 

Training 
(initial) 

130 130 130 150 150 150 150 

Training 
(sparse) 

—— 92 21 —— 122 89 47 

SV of class1 17 60 3 35 30 28 12 
SV of class2 10 4 1 56 84 33 12 
Sum of SV 27 64 4 91 114 61 24 

Training 
Error (%) 

0 0 0.0077 0.0467 0.0333 0.0733 0.1933 

 
Table 4  testing error comparing 

 SPECTF Heart Segmentation 

 TSVM STSVM 
(v=0.75) 

STSVM  
(v=1) 

STSVM 
(v=0.5) 

STSVM 
(v=0.75) 

STSVM  
(v=1) 

Training (initial) 80 80 80 210 210 210 

Training (sparse) —— 73 23 119 81 51 

SV of class 0 40 40 9 —— —— —— 
SV of class 1 40 33 2 10 10 5 
SV of class 2 —— —— —— 4 2 2 
SV of class 3 —— —— —— 16 12 9 
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SV of class 4 —— —— —— 13 11 7 
SV of class 5 —— —— —— 20 12 11 
SV of class 6 —— —— —— 11 11 43 
SV of class 7 —— —— —— 6 2 2 
Sum of SV 80 73 11 80 60 79 

Training error (%) 0 0 0.2750 0 0.0190 0.1000 

Test Error (%) 0.4171 0.4118 0.3850 0.2224 0.1881 0.2429 

 
Table 5  red wine quality 

 Initial Sample Size Training Error % 
STSVM (v=0.5) STSVM (v=0.75) STSVM (v=1) 

class 4 12 0 0 0 
class 5 131 0.0305 0.0916 0.1450 
class 6 50 0.0400 0.0200 0.1600 
class 7 7 0 0 0.1429 
Total 200 0.0300 0.0650 0.1400 

 
6 CONCLUDING REMARKS 
In this paper, we introduce a Sparse-TSVM classifier that solves a multi-class classification 
problem. We proposed a algorithm which sparsify the given training data points, So the new 
samples together with its weight can describe the initial training set approximately. By promoting 
TWSVM idea to multi-class problem, and the sparse algorithm, we got STSVM. The experimental 
evaluations on several real world datasets show that the proposed STSVM approach can greatly 
speed-up the training process and achieve a higher classification accuracy. Deficiency is how to 
find the best v  still needing future solutions. We just know when 750.v   it performance better 
from experiments. 
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