Equivalence Of Super Magic Labelings

Selvam Avadayappan, S. Kalaimathy, P. Mahalakshmi
Department of Mathematics, VHNSN College, Virudhunagar - 626001, India.

Abstract

Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. A bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow$ $\{1,2, \ldots, p+q\}$ is called a super magic labeling of a graph G, if $f(V)=\{1,2, \ldots, p\}$ and for any edge $x y \in E, f(x)+f(y)+f(x y)=c(f)$, a constant. The super magic strength of a graph $G, \operatorname{sm}(G)$ is defined as the minimum of all $c(f)$ where the minimum runs over all super magic labelings f of G. Recently a new version of super magic labeling has been introduced. For the graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$, a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ is called a super magic (special) labeling of G, if $f(E)=\{1,2, \ldots, q\}$ for any edge $x y \in E$ such that $f(x)+f(y)+f(x y)=c^{\prime}(f)$, a constant. The super magic (special) strength of a graph $G, \operatorname{sms}(G)$ is defined as the minimum of all $c^{\prime}(f)$ where the minimum is taken over all super magic special labelings f of G. In this paper, we prove that $\operatorname{sms}(G)=2 q-p+\operatorname{sm}(G)$.

Key Words: Graph labeling, Magic labeling, Magic strength, Super magic labeling, Super magic strength.

AMS Subject Classification Code: 05C (Primary)

INTRODUCTION

In this paper, we consider only finite simple undirected graphs. For notations and terminology, we follow [4]. Throughout this paper, we denote a path on n vertices by P_{n} and a cycle on n vertices by C_{n}. The n bistar $B_{n, n}$ is the graph obtained from two copies of the star $K_{1, n}$ by joining the centers of two copies of $K_{1, n}$ by means of an edge e. In $B_{n, n}$, if the edge e is subdivided once, then the resultant graph is denoted by $\left\langle K_{1, n}\right.$: 2\rangle. The graph nP_{2} is the disjoint union of n copies of P_{2}. The square graph of P_{n} is denoted by $\mathrm{P}_{\mathrm{n}}{ }^{2}$ and is obtained from P_{n} by adding the edges between two vertices in P_{n} if the distance between them is two in P_{n}. The wheel W_{n} on $n+1$ vertices is the join of C_{n} and K_{1}.

In 1970, Kotzig and Rosa [6] defined a new labeling called the magic labeling of a graph G (V, E). A bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ is called a magic labeling if for all edge $\mathrm{s} x \mathrm{y} \in \mathrm{E}, \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{xy})$ is a constant, c(f), say.

For example, a magic labeling f of $\mathrm{K}_{2,3}$ with $\mathrm{c}(\mathrm{f})=16$ is shown in Figure 1.

A graph is said to be magic if it has a magic labeling. Ringel and Llado [7] called this graph as edge magic. Many graphs like $\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 3), \mathrm{nP}_{2}(\mathrm{n}$ is odd) etc. have been proved to be magic in [6].

In [7], it was proved that if G is a graph in which both p and q are even such that $p+q \equiv 2(\bmod 4)$ and in which each vertex has odd degree, then G is not magic.

In 2000, Selvam Avadayappan et al. [2] introduced the concept of magic strength of a graph. We know that for any magic labeling f of G, there is a constant $c(f)$ such that $f(x)+f(y)+f(x y)=c(f)$ for all edges $x y \in E$. The magic strength of $G, m(G)$ is defined as the minimum of all $c(f)$ where the minimum is taken over all magic labelings f of G. That is,

$$
\mathrm{m}(\mathrm{G})=\min \{\mathrm{c}(\mathrm{f}): \mathrm{f} \text { is a magic labeling of } \mathrm{G}\}
$$

For example, the magic strength of some graphs are shown in Figure 2.

Figure 2
A magic labeling of a graph $G(V, E)$ is called a super magic labeling of G, if $\quad f(V)=\{1,2, \ldots ., p\}$ and so $f(E)=\{p+1, p+2, \ldots, p+q\}$.

For example, a super magic labeling of a graph with $\mathrm{c}(\mathrm{f})=29$ is shown in Figure 3.

Figure 3
A graph is said to be super magic if it admits a super magic labeling.
In [5], the following results have been proved:

1. A cycle C_{n} is super magic if and only if n is odd.
2. A complete bipartite graph $K_{m, n}$ is super magic if and only if $m=1$ or $n=1$.

In 2001, Selvam Avadayappan et al. [3] introduced the concept of super magic strength of a graph. The super magic strength $\operatorname{sm}(\mathrm{G})$ of a graph G , is defined as the minimum of all $\mathrm{c}(\mathrm{f})$ where the minimum is taken over all super magic labelings f of G. That is,

$$
\operatorname{sm}(G)=\min \{c(f): f \text { is a super magic labeling of } G\} .
$$

For example, consider the graphs G_{1} and G_{2} shown in Figure 4. Here $\operatorname{sm}\left(G_{1}\right)=21$ and $\operatorname{sm}\left(G_{2}\right)=28$ and the corresponding super magic labelings are shown.

In a similar way, Swaminathan et al. [8] introduced the maximum super magic strength. The maximum super magic strength of a graph $\mathrm{G}, \mathrm{SM}(\mathrm{G})$ is defined as the maximum of all $\mathrm{c}(\mathrm{f})$. That is,
$\operatorname{SM}(\mathrm{G})=\max \{\mathrm{c}(\mathrm{f}): \mathrm{f}$ is a super magic labeling of G$\}$.
Also, they established a relation between the minimum super magic strength $\operatorname{sm}(G)$ and the maximum super magic strength $\mathrm{SM}(\mathrm{G})$ of any super magic graph G. In fact, they have proved that
Theorem A [8] A (p, q) - graph G has a super magic labeling with minimum strength $s m(G)$ if and only if G has a super magic labeling with maximum strength $\operatorname{SM}(G)=4 p+q+3-\operatorname{sm}(G)$.

Recently, D.G.Akka and Nanda S.Warad [1] have introduced a slight variation in the concept of super magic labeling and the super magic strength.

Though they have used the same terminology, to avoid confusion we call them respectively as super magic (special) labeling and super magic (special) strength.

A magic labeling f of G is called a super magic (special) labeling if $f(E)=\{1,2, \ldots, q\}$ and thus $f(V)=$ $\{q+1, q+2, \ldots, p+q\}$.

For example, a super magic (special) labeling of a graph with $c(f)=53$ is shown in Figure 5.

The super magic (special) strength $\operatorname{sms}(\mathrm{G})$ of a graph G is defined as the minimum of all constants $\mathrm{c}^{\prime}(\mathrm{f})$ where the minimum is taken over all super magic (special) labelings f of G. That is,

$$
\operatorname{sms}(G)=\min \left\{c^{\prime}(f): f \text { is a super magic (special) labeling of } G\right\} .
$$

For example, a supen 23 nagic (special) strength of $\left\langle\mathrm{K}_{1,5}: 2\right\rangle$ with $\operatorname{sms}(\mathrm{G})=49$ is shown in Figure 6 .

Figure 6

In this paper, we introduce an equivalent parameter, the maximum super magic (special) strength of a graph G. It is denoted by $\operatorname{SMS}(\mathrm{G})$ and is defined as the maximum of all $\mathrm{c}^{\prime}(\mathrm{f})$ where the maximum is taken over all super magic (special) labelings f of G. That is,

$$
\operatorname{SMS}(\mathrm{G})=\max \left\{\mathrm{c}^{\prime}(\mathrm{f}) \text { is a super magic }(\text { special }) \text { labeling of } G\right\}
$$

For example, the maximum super magic (special) strength of $K_{1,5}$ and $P_{5}{ }^{2}$ are shown in Figure 7.

Figure 7
Here we prove that $\operatorname{SMS}(\mathrm{G})=2 \mathrm{p}+5 \mathrm{q}+3-\mathrm{sms}(\mathrm{G})$. Also, we prove that a graph G admits a super magic labeling if and only if G admits a super magic (special) labeling and hence we deduce that $\operatorname{sms}(G)=2 q-p+$ $\mathrm{sm}(\mathrm{G})$. This forces that studying about super magic (special) strength is equivalent to a study on super magic strength.

2. MAIN RESULTS

Theorem 1 A (1 , q) - graph G has a super magic (special) labeling with minimum strength sms(G) if and only if G has a super magic (special) labeling with maximum strength $\operatorname{SMS}(G)=2 p+5 q+3-\operatorname{sms}(G)$.

Proof Let $G(V, E)$ be a (p, q) - super magic graph with minimum strength $\operatorname{sms}(G)$.

Then there exists a super magic (special) labeling $f: V \cup E \rightarrow\{1,2, \ldots, p+q\}$ of G such that for all $x y \in E, f(x)$ $+f(y)+f(x y)=s m s(G)$.

Define a labeling $f_{1}: V \cup E \rightarrow\{1,2, \ldots, p+q\}$ by
$f_{1}(x)=p+2 q+1-f(x)$ and $f_{1}(x)=q+1-f(x y)$.
We can easily verify that f_{1} is bijective with $f_{1}(V)=\{q+1, q+2, \ldots, p+q\}$ and $f_{1}(E)=\{1,2, \ldots, q\}$.
Also for all $x y \in E$ we get,

$$
\begin{aligned}
f_{1}(x)+f_{1}(y)+f_{1}(x y)= & p+2 q+1-f(x)+p+2 q+1-f(y)+q+1-f(x y) \\
& =2 p+5 q+3-(f(x)+f(y)+f(x y)) \\
& =2 p+5 q+3-\operatorname{sms}(G) \\
& =a \text { constant. }
\end{aligned}
$$

Therefore, f_{1} is a super magic (special) labeling of G with constant $c^{\prime}\left(f_{1}\right)=2 p+5 q+3-\operatorname{sms}(G)$.
Hence $\operatorname{SMS}(\mathrm{G}) \geq 2 p+5 q+3-\operatorname{sms}(\mathrm{G})$.
Suppose $\operatorname{SMS}(\mathrm{G})>2 \mathrm{p}+5 \mathrm{q}+3-\mathrm{sms}(\mathrm{G})$, there exists a super magic (special) labeling $\mathrm{g}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1$, $2, \ldots ., p+q\}$ such that for all edges $x y \in E, \quad g(x)+g(y)+g(x y)>2 p+5 q+3-s m s(G)$.

Again, defining a bijection $\mathrm{g}_{1}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ by
$\mathrm{g}_{1}(\mathrm{x})=\mathrm{p}+2 \mathrm{q}+1-\mathrm{f}(\mathrm{x})$ and $\mathrm{g}_{1}(\mathrm{x})=\mathrm{q}+1-\mathrm{f}(\mathrm{xy})$.
For all $x y \in E$ we get,
$g_{1}(x)+g_{1}(y)+g_{1}(x y)=p+2 q+1-g(x)+p+2 q+1-g(y)+q+1-g(x y)$

$$
\begin{aligned}
& =2 p+5 q+3-(g(x)+g(y)+g(x y)) \\
& <2 p+5 q+3-\left(f_{1}(x)+f_{1}(y)+f_{1}(x y)\right) \\
& =2 p+5 q+3-(2 p+5 q+3)+\operatorname{sms}(G) \\
& =\operatorname{sms}(G) .
\end{aligned}
$$

Hence $c^{\prime}\left(\mathrm{g}_{1}\right)<\operatorname{sms}(\mathrm{G})$, which is a contradiction to the fact that $\operatorname{sms}(\mathrm{G})$ is the minimum super magic (special) strength of a graph G.
Therefore, $\operatorname{SMS}(\mathrm{G})=2 \mathrm{p}+5 \mathrm{q}+3-\operatorname{sms}(\mathrm{G})$.
Hence, G has a super magic (special) labeling with maximum super magic (special) strength $\operatorname{SMS}(\mathrm{G})$.
Similarly, we can prove the converse.
Theorem 2 Let G be a graph and $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$ be a bijection. Then f is a super magic labeling of G with constant c (f) if and only if there is a super magic (special) labeling g of G with constant $c^{\prime}(g)$ $=3(p+q+1)-c(f)$.
Proof Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$.
First, we assume that f is a super magic labeling of G with constant $\mathrm{c}(\mathrm{f})$.
Then $f(V)=\{1,2, \ldots, p\}$ and thus $f(E)=\{p+1, p+2, \ldots, p+q\}$.
Now we define, $g(x)=p+q+1-f(x)$.
Clearly, $\mathrm{g}(\mathrm{V})=\{\mathrm{q}+1, \mathrm{q}+2, \ldots, \mathrm{p}+\mathrm{q}\}$ and $\mathrm{g}(\mathrm{E})=\{1,2, \ldots, \mathrm{q}\}$.
Now for any edge $x y \in E$,

$$
\begin{aligned}
g(x)+g(y)+g(x y)= & p+q+1-f(x)+p+q+1-f(y)+p+q+1-f(x y) \\
& =3(p+q+1)-(f(x)+f(y)+f(x y)) \\
& =3(p+q+1)-c(f)
\end{aligned}
$$

Thus g is a super magic (special) labeling of G with constant $c^{\prime}(g)=3(p+q+1)-c(f)$.
Similarly, we can prove the converse part.
Corollary $\quad \operatorname{sms}(G)=2 q-p+s m(G)$.
Proof Let f be any super magic labeling of G. Then by Theorem 2, we have $c^{\prime}(g)=3(p+q+1)-c(f)$ where g is a super magic (special) labeling of G.
Thus $\operatorname{sms}(G) \leq 3(p+q+1)-c(f)$ for any super magic labeling f of G.
$\operatorname{sms}(\mathrm{G}) \leq 3(\mathrm{p}+\mathrm{q}+1)-\mathrm{SM}(\mathrm{G})$ and hence by Theorem A,
$\operatorname{sms}(\mathrm{G}) \leq 3(\mathrm{p}+\mathrm{q}+1)-(4 \mathrm{p}+\mathrm{q}+3-\mathrm{sm}(\mathrm{G}))=2 \mathrm{q}-\mathrm{p}+\operatorname{sm}(\mathrm{G})$
Therefore, $\operatorname{sms}(G) \leq 2 q-p+\operatorname{sm}(G)$. On the other hand,
Let g be any super magic (special) labeling of G. Then by Theorem 2,
We have $\mathrm{c}(\mathrm{f})=3(\mathrm{p}+\mathrm{q}+1)-\mathrm{c}^{\prime}(\mathrm{g})$ where f is a super magic labeling of G .
Thus $\operatorname{sm}(\mathrm{G}) \leq 3(\mathrm{p}+\mathrm{q}+1)-\mathrm{c}^{\prime}(\mathrm{g})$ for any super magic (special) labeling g of G .
$\operatorname{sm}(\mathrm{G}) \leq 3(\mathrm{p}+\mathrm{q}+1)-\operatorname{SMS}(\mathrm{G})$ and hence by Theorem 1 ,
$\mathrm{sm}(\mathrm{G}) \leq 3(\mathrm{p}+\mathrm{q}+1)-(2 \mathrm{p}+5 \mathrm{q}+3-\mathrm{sms}(\mathrm{G}))=\mathrm{p}-2 \mathrm{q}+\mathrm{sms}(\mathrm{G})$
That is, $\quad \operatorname{sms}(G) \geq 2 q-p+\operatorname{sm}(G)$ and hence
$\operatorname{sms}(\mathrm{G})=2 \mathrm{q}-\mathrm{p}+\mathrm{sm}(\mathrm{G})$.
The above theorem means that, super magic strength and super magic (special) strength are interrelated.

REFERENCES

1. D .G. Akka and Nanda S. Warad, Super magic strength of a graph, Indian J. Pure Appl. Math., 41 (4) (2010), 557-568.
2. Selvam Avadayappan, R. Vasuki and P. Jeyanthi, Magic strength of a graph, J. Pure Appl. Math., 31(7) (2000), 873-883.
3. Selvam Avadayappan, P. Jeyanthi and R. Vasuki, Super magic strength of a graph, J. Pure Appl. Math., 32 (11) (2001), 1621-1630.
4. R. Balakrishnan and K. Ranganathan, A text book of graph theory, Springer, NewYork (2000).
5. H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge - magic graphs, SUT J.Math., 34 (2) (1998), 105-109.
6. A .Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull, 13 (4) (1970) 451-461.
7. G. Ringel and A. S. Llado, Another tree conjecture, Bull. ICA, 18 (1996) 83-85.
8. V.Swaminathan and P.Jeyanthi, "Strong Super Edge-magic Graphs", The Mathematics Education, Vol.XLII.No.3, (2008),156-160.
