The Local Well-posedness of The Higher-order Camassa-Holm Equation

DAN-PING DING

Department of Mathematics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
XIN LIU
Department of Mathematics, Jiangsu University, Zhenjiang 212013, Jiangsu, China,

Abstract

In this paper, the local well-posedness of the Cauchy problem for the higher-order Camassa-Holm equation is studied with the initial data in $H^{s}(R), s \geq k$ by using Bourgain technology.

Key word—higher-order Camassa-Holm equation, local well-posedness, Fourier transformation.

1. INTRODUCTION

The formulation of the higher-order C -H equation is

$$
\begin{equation*}
u_{t}=B_{k}(u, u), \tag{1.1}
\end{equation*}
$$

where $B_{k}(u, u)=A_{k}^{-1} C_{k}(u)-u u_{x}, A_{k}(u)=\sum_{j=0}^{k}(-1)^{j} \partial_{x}^{2 j} u, C_{k}(u)=-u A_{k}\left(\partial_{x} u\right)+A_{k}\left(u \partial_{x} u\right)-2 \partial_{x} u A_{k}(u)$.
The equation is first derived by Adrian Constantin and Boris Kolev as an Euler equation in [3], but first studied by G.M. Coclite, H. Holden and K.H. Karlsen as an independent equation in [4].

Rewrite the equation (1.1) as

$$
\begin{equation*}
u_{t}+u_{x x x}+A_{k}^{-1}\left(u A_{k}\left(u_{x}\right)\right)+2 A_{k}^{-1}\left(u_{x} A_{k}(u)\right)-u_{x x x}=0 . \tag{1.2}
\end{equation*}
$$

In this paper we consider the Cauchy problem of the case of $k \geq 2$ for the equation (1.2). By using Bourgain technology in [5,6], the local well-posedness of the equation (1.2) is established with the initial data in $H^{s}, s \geq k$.

In this paper, we consider the Cauchy problem of the higher-order Camassa-Holm equation

$$
\left\{\begin{array}{l}
u_{t}+u_{x x}+A_{k}^{-1}\left(u A_{k}\left(u_{x}\right)\right)+2 A_{k}^{-1}\left(u_{x} A_{k}(u)\right)-u_{x x x}=0 \tag{1.3}\\
u(x, 0)=\varphi(x)
\end{array} .\right.
$$

The equation (1.3) has the equivalent integral equation $u(\cdot, t)=W(t) \varphi-\int_{0}^{t} W(t-\tau) \omega(\tau) d \tau$, where $W(t)=e^{-t t_{x}^{3}}$ and $\omega=A_{k}^{-1}\left(u A_{k}\left(u_{x}\right)\right)+2 A_{k}^{-1}\left(u_{x} A_{k}(u)\right)-u_{x x x}$. Then we shall apply a fixed point argument to the following truncated version

$$
u(x, t)=\psi_{1}(t) \sum_{\xi \in \mathbb{Z}} \hat{\varphi}(\xi) e^{i\left((x, \xi)+\xi^{3} t\right)}+\psi_{1}(t) \sum_{\xi \in Z} e^{i\left(\langle x, \xi)+\xi^{3} t\right)} \int_{-\infty}^{\infty} \hat{\omega}(\xi, \lambda) \frac{e^{i\left(\lambda-\xi^{3}\right) t}-1}{\lambda-\xi^{3}} d \lambda,
$$

where ψ_{1} is a cutoff function, satisfying $0 \leq \psi_{1} \leq 1$, $\operatorname{supp}\left(\psi_{1}\right) \subset[-2 \delta, 2 \delta]$, and $\psi_{1}=1$ on $[-\delta, \delta]$. Here δ is a positive real number. Let ψ_{2} is another cutoff function, which satisfying $0 \leq \psi_{2} \leq 1, \psi_{2}=1$ on $[-T, T]$, and $\operatorname{supp} \psi \subset[-2 T, 2 T]$.

Define the norm $\||u|\|=\left\{\sum_{n \in \mathbf{Z} \backslash(0)}|n|^{2 s} \int_{-\infty}^{\infty}\left(1+\left|\lambda-n^{3}\right|\right)|\hat{u}(n, \lambda)|^{2} d \lambda\right\}^{1 / 2}, s \geq 0$, where $u=u(x, t), x \in R, t \in[0, \infty)$.
Let $\chi^{s}=\left\{u \in L_{2}| || | u \| \mid<\infty\right\}$, then we obtain the main result.

Theorem 1.1. For $\varphi \in H^{s}(R), s \geq k, k \geq 2$, there exists a $T>0$ and a unique solution $u=u(x, t)$ satisfying the Cauchy problem (1.3) such that $u \in C\left([0, T] ; H^{s}(R)\right) \cap C^{1}\left([0, T] ; H^{s-1}(R)\right)$.

2. SOME LEMMAS

Lemma 2.1 ${ }^{[5,6]}$ Following estimate holds

$$
\|f\|_{L^{4}(R \times(0, \infty))} \leq c\left(\sum_{m, n \in \mathbf{Z}}\left(1+\left|n-m^{3}\right|\right)^{2 / 3}|\hat{f}(m, n)|^{2}\right)^{1 / 2}
$$

where $f=f(x, t), x \in R, t \in[0, \infty)$.
Corollary 2.2 ${ }^{[6]}\left(\sum_{m, n \in \mathbf{Z}}\left(\left|n-m^{3}\right|+1\right)^{-2 / 3}|\hat{f}(m, n)|^{2}\right)^{1 / 2} \leq c\|f\|_{L^{1 / 3}(R \times(0, \infty))}$

Corollary 2.3 ${ }^{[6]}$ Assume $\lambda=\left(\lambda_{m, n}\right)_{m, n \in \mathbf{Z}}$ is a multiplier satisfying $\mid \lambda_{m, n} \leq\left(1+\left|n-m^{3}\right|\right)^{-2 / 3}$ for all m, n. The λ acts boundedly from $L^{4 / 3}(R \times(0, \infty))$ to $L^{4}(R \times(0, \infty))$.

Rewrite ω as $\omega=-A_{k}^{-1}\left(u A_{k}\left(u_{x}\right)\right)+2 A_{k}^{-1}\left(\left(u A_{k}(u)_{x}\right)-u_{x x x}\right.$. From the properties of Fourier transformation, the estimate holds $|\hat{\omega}(n, \lambda)| \leq \omega_{1}+\omega_{2}+\omega_{3}$, where

$$
\begin{gathered}
\omega_{1}=\sum_{n_{1}} \frac{\left|n_{1}\right| \sum_{j} n_{1}^{2 j}}{\sum_{j}^{n^{2 j}}} \int d \lambda_{1}\left|u\left(n_{1}, \lambda_{1}\right) \| u\left(n-n_{1}, \lambda-\lambda_{1}\right)\right|, \\
\omega_{2}=\sum_{n_{1}} \frac{2|n| \sum_{j=0}^{k} n_{1}^{2 j}}{\sum_{j=0}^{k} n^{2 j}} \int d \lambda_{1}\left|u\left(n_{1}, \lambda_{1}\right) \| u\left(n-n_{1}, \lambda-\lambda_{1}\right)\right|, \\
\omega_{3}=\left|n^{3} \| \hat{u}(n, \lambda)\right| .
\end{gathered}
$$

Denote $c_{s}(n, \lambda)=\left|n^{s}\right|\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}|\hat{u}(n, \lambda)|$. Thus $|||u|||$ is the L^{2}-norm of $\left\{c_{s}(n, \lambda)\right\}$.
Lemma 2.4 For ω defined as above, we have

$$
\left.\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{|\hat{\omega}(n, \lambda)|^{2}}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{1 / 2} \leq c \right\rvert\,\|u\|^{2}, s \geq k
$$

where c is a constant depending on s and k.
Proof: One can get $\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{|\hat{\omega}(n, \lambda)|^{2}}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{1 / 2} \leq c\left(I_{1}+I_{2}+I_{3}\right)$, where

$$
\begin{aligned}
& I_{1}=\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{\left|\omega_{1}\right|^{2}}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{1 / 2}, \\
& I_{2}=\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{\left|\omega_{2}\right|^{2}}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{1 / 2}, \\
& I_{3}=\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{\left|\omega_{3}\right|^{2}}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{1 / 2} .
\end{aligned}
$$

The estimation for I_{1}. From ω_{1},

$$
\begin{equation*}
Y_{1}=\frac{|n|^{s}\left|\omega_{1}\right|}{\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{\left|n_{1} \| n\right|^{s}\left(\sum_{j=0}^{k} n_{1}^{2 j}\right)\left|n_{1}\right|^{-s}\left|n-n_{1}\right|^{-s} c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(\sum_{j=0}^{k} n^{2 j}\right)\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}} \tag{2.1}
\end{equation*}
$$

By assumption on $u, c_{s}(0, \lambda)=0$, so that we may assume $n_{1} \neq 0, n-n_{1} \neq 0$ (and $n \neq 0$). Obviously, $|n|^{s} \leq 2^{s+1}\left|n_{1}\right|^{s}\left|n-n_{1}\right|^{s}$. Then we consider two cases: $A=\left\{|n| \geq\left|n_{1}\right|\right\}$ and $B=\left\{|n|<\left|n_{1}\right|\right\}$.

Case A. It yields that $Y_{1} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{2^{s+1}|n| c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}}$.
Also it holds that $\left|\left(\lambda-n^{3}\right)-\left[\left(\lambda_{1}-n_{1}^{3}\right)+\left(\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right)\right]\right|=\left|3 n_{1}\left(n-n_{1}\right) n\right|>2 n^{2}$. This results in that one of following cases happens

$$
\begin{gather*}
\left|\lambda-n^{3}\right|>1 / 2 n^{2}, \tag{2.2}\\
\left|\lambda_{1}-n_{1}^{3}\right|>1 / 2 n^{2}, \tag{2.3}\\
\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|>1 / 2 n^{2} . \tag{2.4}
\end{gather*}
$$

Case (2.2). It yields that $(2.1) \leq \sum_{n_{1} \neq 0, n} \int d \lambda_{1} \frac{C(s) c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}}$, where $C(s)$ is a constant depending on s.
Let $F(x, t)=\sum_{m} \int d \mu\left\{e^{i(m x+\mu t)} \frac{c_{s}(m, \mu)}{\left(1+\left|\mu-m^{3}\right|\right)^{1 / 2}}\right\}$. Then $Y_{1} \leq C(s) \hat{F}^{2}(n, \lambda)$. Thus we get

$$
I_{1} \sim\left[\sum_{n \neq 0} \int\left|\hat{F}^{2}(n, \lambda)\right|^{2} d \lambda\right]^{1 / 2} \sim\|F\|_{L^{4}(d x d t(l o c))}^{2}
$$

International Journal of Mathematics Trends and Technology- Volume4 Issue4- 2013

Since $\frac{2}{3}<1$, Lemma 2.1 implies that $\|F\|_{L^{4}} \leq c\left(\sum_{m} \int c_{s}(m, \mu)^{2} d \mu\right)^{1 / 2}=c\| \| u \|$.
Case (2.3). It yields that $Y_{1} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{C(s) c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}}$.
Let $G(x, t)=\sum_{m} \int d \mu\left\{e^{i(m x+\mu t)} c_{s}(m, \mu)\right\}$ which $L_{2}-\operatorname{norm}\|G\|_{2} \sim\left(\sum_{m} \int c_{s}(m, \mu)^{2} d \mu\right)^{1 / 2}=\|u\| \|$.
From the above calculation, Corollary 2.2 yields that

$$
\left.I_{1} \leq\left\{\sum_{n} \int d \lambda\left[\frac{1}{\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}}(F \cdot G)^{\wedge}(n, \lambda)\right]^{2}\right\}^{1 / 2} \leq c \right\rvert\, F G\left\|_{L^{4 / 3}(d x d d d(l o c))} \leq c\right\| F\left\|_{4}\right\| G\left\|_{2} \leq c\right\|\|u\|^{2}
$$

Case (2.4). It yields that $(2.1) \leq \sum_{n_{1}} \int d \lambda_{1} \frac{C(s) c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}}$.
Replacing $\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}$ by $\left(1+\mid \lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right)^{y / 2}$, the following process is similar to the case of (2.3).
Case B. The estimating process is similar to the case A.
The estimation for I_{2}.

$$
\begin{equation*}
Y_{2}=\frac{|n|^{s}\left|\omega_{2}\right|}{\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{|n \| n|^{s}\left(\sum_{j=0}^{k} n_{1}^{2 j}\right)\left|n_{1}\right|^{-s}\left|n-n_{1}\right|^{-s} c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(\sum_{j=0}^{k} n^{2 j}\right)\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}} . \tag{2.5}
\end{equation*}
$$

The estimating process is similar to the estimation for I_{1} 。
The estimation for I_{3}.

$$
I_{3}=\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{n^{6}|\hat{u}(n, \lambda)|^{2}}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{1 / 2}=\left(\sum_{n \neq 0}|n|^{2 s} \int \frac{n^{6}}{\left(1+\left|\lambda-n^{3}\right|\right)^{2}}\left(1+\left|\lambda-n^{3}\right|\right)|\hat{u}(n, \lambda)|^{2} d \lambda\right)^{1 / 2} \sim c| ||u|| | .
$$

Lemma 2.4 is proved.
Lemma 2.5 For ω defined as above, we have

$$
\left\{\sum_{n \neq 0}|n|^{2 s}\left(\frac{|\hat{\omega}(n, \lambda)|}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{2}\right\}^{1 / 2} \leq c\|u\|^{2}, s \geq k,
$$

where c is a constant depending on s and k.
Proof: By the computation, $\quad\left\{\sum_{n \neq 0}|n|^{2 s}\left(\int \frac{|\hat{\omega}(n, \lambda)|}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{2}\right\}^{1 / 2} \leq c\left(I_{4}+I_{5}+I_{6}\right)$, where

$$
\begin{aligned}
& I_{4}=\left\{\sum_{n \neq 0}|n|^{2 s}\left(\int \frac{\left|\omega_{1}\right|}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{2}\right\}^{1 / 2}, \\
& I_{5}=\left\{\sum_{n \neq 0}|n|^{2 s}\left(\int \frac{\left|\omega_{2}\right|}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{2}\right\}^{1 / 2},
\end{aligned}
$$

International Journal of Mathematics Trends and Technology- Volume4 Issue4- 2013

$$
I_{6}=\left\{\sum_{n \neq 0}|n|^{2 s}\left(\int \frac{\left|\omega_{3}\right|}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{2}\right\}^{1 / 2} .
$$

The estimation for I_{4}.

$$
\begin{equation*}
Y_{4}=\frac{|n|^{s}\left|\omega_{1}\right|}{\left(1+\left|\lambda-n^{3}\right|\right)} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{\left|n_{1} \| n\right|^{s}\left(\sum_{j=0}^{k} n_{1}^{2 j}\right)\left|n_{1}\right|^{-s}\left|n-n_{1}\right|^{-s} c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(\sum_{j=0}^{k} n^{2 j}\right)\left(1+\left|\lambda-n^{3}\right|\right)\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}} . \tag{2.6}
\end{equation*}
$$

Case A. It yields that $Y_{4} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{|n| c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}}$.
Case (2.2). To estimate I_{4}, replace $\frac{1}{1+\left|\lambda-n^{3}\right|}$ by $\frac{1}{n^{2}+\left|\lambda-n^{3}\right|}$ in I_{4}. Then consider a sequence $\left\{a_{n}\right\}$, satisfying $a_{n} \geq 0, \sum a_{n}^{2}=1$. Applying these conditions, we have $Y_{4}^{\prime}=\sum_{n} \int d \lambda\left\{\frac{a_{n}|n|}{n^{2}+\left|\lambda-n^{3}\right|} \hat{F}^{2}(n, \lambda)\right\}$.

Define the function $H(x, t)=\sum_{n} \int d \lambda e^{i(n x+\lambda t)} \frac{|n| a_{n}}{n^{2}+\left|\lambda-n^{3}\right|}$ which L^{2}-norm

$$
\|H\|_{2} \sim\left(\sum_{n} \int d \lambda \frac{|n|^{2} a_{n}^{2}}{\left(n^{2}+|\lambda|\right)^{2}}\right)^{1 / 2} \sim \sum a_{n}^{2}=1
$$

Then by the Hölder inequality, it yields that $Y_{4}^{\prime} \leq c\|H\|_{2}\|F\|_{4}^{2} \leq c\|u\|^{2}$.
Case (2.3). It obviously yields that $Y_{4} \leq c \sum_{n_{1}} \int d \lambda_{1} \frac{c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}}$.
Choose $\frac{1}{3}<\rho<\frac{1}{2}$ and write $\left(1+\left|\lambda-n^{3}\right|\right)^{-1}=\left(1+\left|\lambda-n^{3}\right|\right)^{-(1-\rho)}\left(1+\left|\lambda-n^{3}\right|\right)^{-\rho}$.By using the Cauchy- Schwartz inequality, it yields that $I_{4} \leq c\left(\sum_{n} \int d \lambda\left\{\sum_{n_{1}} \int d \lambda_{1} \frac{c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)^{\rho}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|^{1 / 2}\right.}\right\}^{2}\right\}^{1 / 2} \leq c\left\{\sum_{n} \int d \lambda\left[\frac{1}{\left(1+\left|\lambda-n^{3}\right|\right)^{\rho}}(F \cdot G)^{\wedge}(n, \lambda)\right]^{2}\right\}^{1 / 2}$.

Corollary 2.2 yield the estimate $I_{4} \leq c \mid F G\left\|_{t^{1 / 3 /(d x d x t(t o c))}} \leq c\right\| F\left\|_{4}\right\| G\left\|_{2} \leq c\right\| u\| \|^{2}$.
Case (2.4). It yields that $Y_{4} \leq c \sum_{n_{1}} \int d \lambda_{1} \frac{c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(1+\left|\lambda-n^{3}\right|\right)\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}}$.
Replacing $\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}$ by $\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}$, the following process is similar to the case of (2.3) in this lemma.
Case B The process is similar to the case of A.
The estimation for I_{5}. It yields that $\frac{|n|^{s}\left|\omega_{2}\right|}{\left(1+\left|\lambda-n^{3}\right|\right)} \leq \sum_{n_{1}} \int d \lambda_{1} \frac{|n \| n|^{s}\left(\sum_{j=0}^{k} n_{1}^{2 j}\right)\left|n_{1}\right|^{-s}\left|n-n_{1}\right|^{-s} c_{s}\left(n_{1}, \lambda_{1}\right) c_{s}\left(n-n_{1}, \lambda-\lambda_{1}\right)}{\left(\sum_{j=0}^{k} n^{2 j}\right)\left(1+\left|\lambda-n^{3}\right|\right)\left(1+\left|\lambda_{1}-n_{1}^{3}\right|\right)^{1 / 2}\left(1+\left|\lambda-\lambda_{1}-\left(n-n_{1}\right)^{3}\right|\right)^{1 / 2}}$.
The following process is similar to the estimate of I_{4}.
The estimation for I_{6}. From ω_{3},

International Journal of Mathematics Trends and Technology- Volume4 Issue4- 2013

$$
I_{6}=\left\{\sum_{n \neq 0}|n|^{2 s}\left(\int \frac{n^{3}|\hat{u}|}{1+\left|\lambda-n^{3}\right|} d \lambda\right)^{2}\right\}^{1 / 2} \leq c\left(\sum_{n}|n|^{2 s} \int\left(1+\left|\lambda-n^{3}\right|\right)|\hat{u}(n, \lambda)|^{2} d \lambda\right)^{1 / 2}=c\| \| u\| \| .
$$

Lemma 2.5 is proved.
Lemma 2.6 For limited constant $T>0$, we have that $\mid\left\|\psi_{2} u\right\| \leq X(T)\|u\| \|$, where $X(T)$ is a monotonically increasing function at argument T.
Proof: Obviously, it holds that

$$
\begin{aligned}
\left\|\mid \psi_{2} u\right\| & =\left\{\sum_{n \in Z \backslash \mid 0\}}|n|^{2 s} \int_{-\infty}^{\infty}\left(1+\left|\lambda-n^{3}\right|\right) \mid \hat{\left.\left.\psi_{2} u(n, \lambda)\right|^{2} d \lambda\right\}^{1 / 2}}\right. \\
& =\left\|\int_{-\infty}^{\infty}\left(1+\left|\lambda-n^{3}\right|\right)^{1 / 2}|n|^{s} \hat{\psi_{2}}(\eta) \hat{u}(n, \lambda-\eta) d \eta\right\|_{L^{2}(n, \lambda)} \\
& \leq\||u|\| \int_{-\infty}^{\infty}(1+|\eta|)^{1 / 2}\left|\hat{\psi_{2}}(\eta)\right| d \eta .
\end{aligned}
$$

From the definition of Fourier transformation, it holds

$$
\left|\hat{\psi}_{2}(\eta)\right|=\left|\int_{-2 T}^{2 T} e^{-i \alpha \eta} \psi_{2}(x) d x\right| \leq\left|\frac{1}{i \eta}\left(e^{2 i T \eta}-e^{-2 i T \eta}\right)\right|=\left|\frac{\sin 2 T \eta}{\eta}\right|
$$

Denote $X(T)=\int_{-\infty}^{\infty}(1+|\eta|)^{1 / 2} \frac{\sin 2 T \eta}{\eta} d \eta$.Then $X(T)$ is bounded. In fact it's known that

$$
X(T)=2 \int_{0}^{\pi / 4 T}(1+|\eta|)^{1 / 2} \frac{\sin 2 T \eta}{\eta} d \eta+2 \int_{\pi / 4 T}^{\infty}(1+\mid \eta)^{1 / 2} \frac{\sin 2 T \eta}{\eta} d \eta
$$

Hence, $X(T)$ is convergent.
There exists a constant $M>0$, satisfying

$$
X(T)=X_{1}(T)+X_{2}(T),
$$

where $X_{1}(T)=2 \int_{0}^{M}(1+|\eta|)^{1 / 2} \frac{\sin 2 T \eta}{\eta} d \eta, X_{2}(T)=2 \int_{M}^{\infty}(1+|\eta|)^{1 / 2} \frac{\sin 2 T \eta}{\eta} d \eta$, and $\left|X_{2}(T)\right|<\varepsilon$. Here ε is an arbitrarily small number. The first derivative of $X_{1}(T)$ is $X_{1}^{\prime}(T)=4 \int_{0}^{M}(1+|\eta|)^{1 / 2} \cos (2 T \eta) d \eta$. So for $0<T<\frac{\pi}{4 M}, 0<\eta<M$, we have $X_{1}^{\prime}(T)>0$. That is, $X_{1}(T)$ is a monotonically increasing function at argument T. So $X(T)$ is a monotonically increasing function at argument T.

3. LOCAL WELL-POSEDNESS

Now we give the proof of theorem 1.1.
Lemma (2.4) and Lemma(2.5)yield that $\left\|\|u\|\right.$ is bounded, i.e. $u \in \chi^{s}$. Denote Γ the transformation $(\Gamma u)(x, t)=\psi_{1}(t) W(t) \varphi-\psi_{1}(t) \int_{0}^{t} W(t-\tau) \omega(\tau) d \tau$, where $\omega=A_{k}^{-1}\left(u A_{k}\left(u_{x}\right)\right)+2 A_{k}^{-1}\left(u_{x} A_{k}(u)\right)-u_{x x x}$. From the preceding it's proved that $\mid\|\Gamma u\| \leq c\left(\|\varphi\|_{H^{s}}+\| \| u \|^{2}\right)$. So Γ is a map from χ^{s} to χ^{s}. Then if consider $\Gamma u-\Gamma v, \omega$ is replaced by

International Journal of Mathematics Trends and Technology- Volume4 Issue4- 2013

$$
A_{k}^{-1}\left(u A_{k}\left(u_{x}\right)\right)+2 A_{k}^{-1}\left(u_{x} A_{k}(u)\right)-u_{x x x}-A_{k}^{-1}\left(v A_{k}\left(v_{x}\right)\right)-2 A_{k}^{-1}\left(v_{x} A_{k}(v)\right)+v_{x x x} .
$$

The preceding calculation yields that
$\|\Gamma u-\Gamma v\| \leq c_{1}\left(\left\|\psi_{2} u\right\|+\left\|\psi_{2} v\right\|\right)\|u-v\|+c_{2}\left\|\psi_{2}(u-v)\right\| \leq\left[c_{1} X(T)(\| \| u\|\mid+\| v v \|)+c_{2} X(T)\right]\|u-v\|$.
Hence, for small enough T, it holds that $|\|\Gamma u-\Gamma v|\|\leq \kappa(T)\|| u-v\| \|$ where $\kappa(T)$ satisfies $0<\kappa(T)<1$.
So that Γ is a contraction and therefore Picard's theorem yields a function u satisfying $\Gamma u=u$. Moreover the solution is unique and persistent. By the Sobolev embedding theory, we prove the theorem 1.1.

REFERENCES

[1] R.Camassa, D.Holm, "An integrable shallow water equation with peaked solitions", Phys. Rev. Lett. 71 (1993) 1661-1664.
[2] A.Constantin, "On the scattering problem for the Camassa-Holm equation", Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457 (2001) 953-970.
[3] A. Constantin, B. Kolev, "Geodesic flow on the diffeomorphism group of the circle", Comment. Math. Helv. 78 (4) (2003) 787-804.
[4] G.M. Coclite, H. Holden, and K.H. Karlsen, "Well-posedness of higher-order Camassa-Holm equations", J. Differential Equations. 246 (2009) 929-963.
[5] J.Bourgain, "Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations". Geometric and Functional Analysis. 3 (1993) 107-156.
[6] J.Bourgain, "Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. The KdV equation". Geometric and Functional Analysis. 3 (1993) 209-262.
[7] A.Constantin, J.Escher, "Wave breaking for nonlinear nonlocal shallow water equations", Acta Math. 181 (1998) 229-243.
[8] E. Wahlén, "On the blow-up of solutions to the periodic Camassa-Holm equation", Nonlinear differ. equ. appl. 13 (2007) 643-653.
[9] Danping Ding, Peng Lv, "Conservative solutions for higher-order Camassa-Holm equations", J. Mathematical Physics. 51 (2010) 072701.

