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Abstract 

In this paper we prove a tripled coincidence point theorem for compatible mapping in fuzzy metric space. Our aim of this paper 

is to improve the result of "A. Roldan, J. M. Moreno, C. Roldan," Tripled fixed point theorem in fuzzy metric spaces and 

applications", Fixed point theory and applications, doi:10.1186/1687-1812-2013-29." Our technique for the proof of the 

theorem is different. We also give an example in support of our theorem.  

Introduction 

 Fixed point theorems have been studied in many contexts, one of which is the fuzzy setting. the concept of fuzzy sets 

was initially introduced by Zadeh [1] in 1965. To use this concept in topology and analysis, many authors have extensively 

developed the theory of fuzzy sets and its applications. One of the most interesting research topics in fuzzy topology us to find an 

appropriate definition of fuzzy metric space for its possible applications in several areas. It is well known that a fuzzy metric 

space is anb important generalization of the metric space. Many authors have considered this problem  and have introduced it 

in different ways. For instance, George and Veeramani [2]  modified the concept of a fuzzy metric space introduced by Kramosil 

and Michalek [3]  and defined the Hausdorff topology of a fuzzy metric space. There exists considerable literature about fixed 

point properties for mappings defined on fuzzy metric psaces, which have been studied by many authors (see [4-13]). 

 Very recently, tripled fixed point problems belong to a category of problems in fixed point theory in which much 

interest has been generated recently after the publication of  a tripled contraction mapping theorem by Berinde and Borcut 

[14]. In their manuscript, some new tripled fixed point theorems are obtained using the mixed g-monotone mapping. By using 

same concept Roldan et al [15] introduced the notion of tripled fixed point theorem in fuzzy metric space.  
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 Our aim of this article to improve the result of Roldan et al [15] and use a new fuzzy contractive inequality and prove 

tripled coincidence point theorem in fuzzy metric space defined by George and Veeramani [2] by using natural technique for the 

proof of the theorem. We assume that the associated 푡 − 푛표푟푚 is a Hadzic type 푡 − 푛표푟푚. We give an example in support of our 

theorem also we give an application of our theorem top obtained tripled fixed point theorem in partially ordered metric space. 

The organization of the paper is as follows. In Section 2, we give mathematical preliminaries which include relevant definitions 

and some other results given as lemmas which will be used to deduce our results. In Section 3, tripled coincidence point and 

fixed point results in fuzzy  metric spaces are established. An illustrative example is also given. In Section 4, a result in metric 

spaces is deduced. This result is obtained by an application of the maing result of Section 3.  

Prilimaries 

Definition 1: A binary operation ⋆ :	 [0,1] × 	 [0,1] →	 [0,1] is continuous 푡	 − 	푛표푟푚 if ⋆ is satisfying the following conditions: 

i. ⋆ is commutative and associative; 

ii. ⋆ is continuous; 

iii. 푎	 ⋆ 	1	 = 	푎 for all  푎 ∈ [0,1]; 

iv. 푎	 ⋆ 	푏 ≤ 	푐	 ⋆ 	푑 whenever  푎 ≤ 	푐 and  푏	 ≤ 	푑 for all  푎, 푏, 푐,푑 ∈ [0,1]. 

 Some examples of continuous 푡 − 푛표푟푚 are 푎	 ⋆1 푏	 = 	푚푖푛	{푎, 푏	}, 푎	 ⋆2 푏	 =
	{ , , 	}

   	푓표푟		0	 < 휆		 < 	1, 

푎	 ⋆3 	푏	 = 	푎푏 and 푎	 ⋆4 		푏	 = 	푚푎푥	{푎	+ 	푏	 − 	1, 0	}. Several aspects of the theory of 푡 − 푛표푟푚푠 with examples are given 

comprehensively by Klement et al. in their book [12]. 

 George and Veeramani in their paper [2]  introduced the following definition of fuzzy metric space. We will be concerned 

only with this definition of fuzzy metric space. 

Definition 2: A 3 - tuple (푋,푀,⋆) is said to be a fuzzy metric space if X is an arbitrary nonempty set, ⋆ is a continuous t- norm, 

and 푀 is a fuzzy set on 푋2 × 	(0, +∞) satisfying the following conditions, for each 푥,푦, 푧	 ∈ 	푋 and 푡, 푠	 > 	0, 

 (퐹 − 1)	푀(푥,푦, 푡) 	> 	0,  

 (퐹 − 2)	푀(푥,푦, 푡) 	= 	1 if and only if 	푥	 = 	푦,  

 	(퐹 − 3)푀(푥,푦, 푡) 	= 	푀(푦, 푥, 푡),  

 	(퐹 − 4)	푀(푥,푦, 푡) 	⋆ 	푀(푦, 푧, 푠) 	≤ 	푀(푥, 푧, 푡 + 푠),  

 	(퐹 − 5)푀(푥,푦, . ):	(0,∞) → [0,1]  is continuous. 

 Let  (푋,푀,⋆) be a fuzzy metric space. For 푡	 > 	0, the open ball 퐵(푥, 푟, 푡) with a center  푥	 ∈ 	푋 and a radius  0	 < 	푟	 < 	1 

is defined by 

   퐵(푥, 푟, 푡) = {	푦	 ∈ 	푋:	푀(푥, 푦, 푡) > 	1	 − 	푟	}.  

 A subset 퐴 ⊂ 푋 is called open if, for each 	푥	 ∈ 	퐴, there exist 푡	 > 	0 and 0	 < 	푟	 < 	1 such that 퐵(푥, 푟, 푡) ⊂ 	퐴. Let 휏 

denote the family of all open subsets of 푋. Then 휏 is called the topology on 푋 induced by the fuzzy metric M. This topology is 

Hausdorff and first countable. 

Example 3: Let (푋,푑) be a metric space. Define	푡 − norm 	푎	 ⋆ 	푏	 = 	푎푏 and for all  푥,푦	 ∈ 	푋 and 푡	 > 	0,  푀(푥,푦, 푡) =
	 	 ( , )

. 

Then 	(푋,푀,⋆) is a fuzzy metric space. We call this fuzzy metric M induced by the  metric 푑 the standard fuzzy metric. 

Example 4: Let (푋,푑) be a metric space and 휓 be an increasing and continuous function of (0,∞) into (0,1) such that 

푙푖푚 →	∞	휓(푡) 	= 	1. Three typical examples of these functions are 휓(푡) 	= 	
1
, 휓(푡) 	= 	푠푖푛	 	

2 1
	  and 휓(푡) 	= 	1	 − 	푒 . Let ⋆ 

be any continuous 푡 − 푛표푟푚. For each 푡	 > 	0,푥,푦 ∈ 	푋, let 

푀(푥, 푦, 푡) 	= 휓(푡) ( , ).  
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Then (푋,푀,⋆) is a fuzzy metric space. 

Definition 5: Let (푋,푀,⋆) be a fuzzy metric space. Then, 

i. A sequence {	푥 	}   in X is said to be convergent to 푥 if, 

    푙푖푚 →	∞푀(푥 ,푥, 푡) 	= 	1  for all 	푡	 > 	0. 

ii.  A sequence {	푥 }  in X is said to be Cauchy sequence  if for any 휖	 > 	0, there exists 푛0 	∈ 	푁, such that 

    푙푖푚 , →	∞푀(푥 ,푥 , 푡) 	> 	1	–휖  

 for all  푡	 > 	0	푎푛푑	푛,푚 ≥	푛0. 

iii.  A fuzzy metric space	(푋,푀,⋆) is said to be complete if and only if every Cauchy sequence in X is convergent. 

 The following lemma was proved by Grabiec [10] for fuzzy metric spaces defined by Kramosil et al [3] . The proof is 

also applicable to the fuzzy metric space given in Definition 2. 

Lemma 6:   Let (푋,푀,⋆) be a fuzzy metric space. Then 푀(푥, 푦,  . ) is non decreasing for all 푥,푦	 ∈ 	푋. 

 Lopez and Romaguera [13]  give the following result, 

Lemma 7 :  푀 is continuous function on 푋2 × 	(0,∞). 

 Our purpose in this paper is to prove tripled coincidence point theorem for two mappings in complete fuzzy metric 

space which has a partial order defined on it. 

 Let (푋,≼) be a partially ordered set and 퐹 be a mapping from 푋 to itself. The mapping 퐹 is said to be non-decreasing 

if for all 푥1,푥2 	 ∈ 	푋, 푥1 ≼	푥2 implies 퐹(푥1) ≼ 퐹(푥2) and is said to be non-increasing if for all 푥1,푥2 	 ∈ 	푋, 푥1 ≼	푥2 implies 

퐹(푥1) ≽ 	퐹(푥2). 

Definition 8:  Let (푋,≼) be a partially ordered set,   퐹:	푋3 → 	푋  mapping.  The mapping F is said to have the  mixed  monotone 

property if for any 푥,푦, 푧	 ∈ 	푋,   

i. 푥1	,푥2 	∈ 	푋,			푥1 ≼ 	푥2 ⇒ 	퐹(푥1,푦, 푧) ≼ 	퐹(푥2,푦, 푧) , 

ii. 	푦1,푦2 	∈ 	푋,			푦1 ≼	푦2 ⇒ 	퐹(푥,푦1, 푧) ≽ 	퐹(푥,푦2, 푧), 

iii. 	푧1	, 푧2 	 ∈ 	푋,			푧1 ≼ 	푧2 ⇒ 	퐹(푥,푦,푧1) ≼ 	퐹(푥, 푦, 푧2)	. 

Definition 9: An element (푥,푦,푧) 	 ∈ 	푋3 is called a tripled  fixed point of 퐹:	푋3 → 	푋  if 

   퐹(푥, 푦, 푧) 		= 		푥, 퐹(푦, 푥,푦) 	= 	푦, 푎푛푑			퐹(푧,푦, 푥) 	= 	푧.  

Definition 10:  Let (푋,≼) be a partially ordered set,   퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 be two  mappings.  The mapping F is said to 

have the  mixed 푔 − monotone property if for any 푥,푦,푧	 ∈ 	푋,   

i. 푥1,푥2 	∈ 	푋, 푔(푥1) ≼ 	푔(푥2) ⇒ 	퐹(푥1,푦, 푧) ≼ 	퐹(푥2,푦, 푧) , 

ii. 	푦1,푦2 ∈ 	푋,			푔(푦1) ≼ 	푔(푦2) ⇒ 	퐹(푥,푦1,푧) ≽ 	퐹(푥, 푦2,푧)		, 

iii. 푧1, 푧2 	 ∈ 	푋,			푔(푧1) ≼ 	푔(푧2) ⇒ 	퐹(푥, 푦, 푧1) ≼ 	퐹(푥,푦, 푧2)	. 

Definition 11: An element (푥, 푦, 푧) 	 ∈ 	 푋3 is called a tripled coincidence point of the mappings 퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 if 

  퐹(푥,푦, 푧) 	= 	푔푥, 퐹(푦, 푥,푦) 	= 	푔푦			푎푛푑		퐹(푧,푦, 푥) 	= 	푔푧.	  

Definition 12 : An element (푥,푦,푧) 	 ∈ 	푋3 is called a tripled common fixed point of the mappings 퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 if 

  퐹(푥,푦, 푧) 	= 	푔푥	 = 	푥,			퐹(푦, 푥,푦) 	= 	푔푦	 = 	푦			푎푛푑		퐹(푧,푦, 푥) 	= 	푔푧	 = 	푧.		  

Definition 13 : An element 푥	 ∈ 	푋  is called a  common fixed point of the mappings 퐹:	푋3 → 	푋 and	푔:	푋 → 	푋 if 

   퐹(푥, 푥, 푥) 	= 	푔푥	 = 	푥.		  

Definition  14: Let 푋 be a non empty set. The mappings 퐹:푋3 → 	푋 and 푔:푋 → 	푋 are commuting if for all 푥,푦, 푧	 ∈ 	푋, 

  푔 퐹(푥, 푦, 푧) 	= 	퐹 푔(푥),푔(푦),푔(푧) .	  



International Journal of Mathematics Trends and Technology- Volume4 Issue4 - May 2013 

ISSN: 2231-5373    http://www.ijmttjournal.org   Page 68 
 

Definition 15: Let (푋,푑) be a metric space. The mappings 퐹 and 푔 where 퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 are said to be compatible if 

  푙푖푚 →	∞푑 푔 퐹(푥 ,푦 , 푧 ) ,퐹 푔(푥 ),푔(푦 ), 푔(푧 ) 	= 	0	  

  푙푖푚 →	∞푑 푔 퐹(푦 , 푥 ,푦 ) ,퐹 푔(푦 ),푔(푥 ),푔(푦 ) 	= 	0	  

 and 

  푙푖푚 →	∞푑 푔 퐹(푧 ,푦 , 푥 ) ,퐹 푔(푧 ),푔(푦 ),푔(푥 ) 	= 	0	  

whenever {푥 }, {푦 } and {푧 } are sequences in 푋 such that 푙푖푚 →∞퐹(푥 ,푦 , 푧 ) 	= 	푙푖푚 →∞푔(푥 ) 	= 	푥, 푙푖푚 →∞퐹(푦 , 푥 ,푦 ) 	=

	푙푖푚 →∞푔(푦 ) 	= 	푦 and  푙푖푚_(푛 → ∞)퐹(푧 ,푦 , 푥 ) 	= 	푙푖푚 →	∞푔(푧 ) 	= 	푧 for some 푥, 푦, 푧	 ∈ 	푋 . 

 Intuitively we can think that the function F and g commute in the limit in the situations where the functional values 

tend to the same point. 

Definition 16: The mappings 퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 are said to be compatible if 

  푙푖푚 →	∞푀(푔퐹(푥 ,푦 , 푧 ),퐹(푔푥 ,푔푦 ,푔푧 ), 푡		 = 	1  

  푙푖푚 →	∞푀(푔퐹(푦 , 푥 ,푦 ),퐹(푔푦 ,푔푥 ,푔푦 ), 푡) 	= 	1  

  푙푖푚 →	∞푀(푔퐹(푧 ,푦 ,푧 ),퐹(푔푧 ,푦푥 ,푔푥 ), 푡) 	= 	1  

for all 푡	 > 	0 whenever {	푥 }	, {	푦 }  and {	푧 }  are sequences in X, such that 

  푙푖푚 →	∞퐹(푥 ,푦 ,푧 ) 	= 	푙푖푚 →	∞푔푥 	= 	푥,  

  푙푖푚 →	∞퐹(푦 , 푥 ,푦 ) 	= 	푙푖푚 →	∞푔푦 	= 	푦,  

  푙푖푚 →	∞퐹(푧 ,푦 , 푥 ) 	= 	푙푖푚 →	∞푔푧 	= 	푧,  

 for some 푥,푦, 푧	 ∈ 	푋. 

 Given a metric space (푋,푑), consider the fuzzy metric space (푋,푀,⋆) constructed in Example 3. Then {푥 } converges 

to 푥 in the metric space (푋, 푑) if and only if {푥 } converges to 푥 in the fuzzy metric space (푋,푀,⋆). The equivalence between 

completeness of (푋,푑) and (푋,푀,⋆) was established by George and Veeramani in Result 2.9 of their paper [2].  

 In the following lemma we established that the compatibility in a metric space implies that the compatibility in the 

corresponding fuzzy metric space of Example \ref(exam2.3). We use it to obtain a result in metric spaces in Section 4. 

Lemma 17: Let (푋,푑) be a metric space. It the mappings 퐹 and 푔 where 퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 are compatible in (푋,푑) 

(according to Definition \ref(2.13)), then 퐹 and 푔 are also compatible (according to Definition 16)in the corresponding fuzzy 

metric space (푋,푀,⋆) as described above.   

Proof:  As noted above, in the corresponding fuzzy metric space, for all	푥,푦	 ∈ 	푋, 푡	 > 	0, 

     푀(푥,푦, 푡) =
	 	 ( , )

    (2.1) 

and  푎	 ⋆ 	푏	 = 		푚푖푛	{푎, 푏	}. 

Let {푥 }, {푦 }  and {푧 }  be sequences in (푋, 푑)  such that 푙푖푚 →∞퐹(푥 ,푦 , 푧 ) 	= 	푙푖푚 →	∞푔(푥 ) 	= 	푥, 푙푖푚 →∞퐹(푦 ,푥 ,푦 ) 	=

	푙푖푚 →∞푔(푦 ) 	= 	푦 and 	푙푖푚 →∞퐹(푧 ,푦 , 푥 ) 	= 	푙푖푚_(푛 → ∞)푔(푧 ) 	= 	푧. 

Then the same limit also hold in (푋,푀,⋆), we have 

  푙푖푚 →∞푑 푔 퐹(푥 ,푦 , 푧 ) ,퐹 푔(푥 ),푔(푦 ),푔(푧 ) 	= 	0	  

  푙푖푚 →∞푑 푔 퐹(푦 , 푥 ,푦 ) ,퐹 푔(푦 ),푔(푥 ),푔(푦 ) 	= 	0	  

and 

  푙푖푚 →∞푑 푔 퐹(푧 ,푦 , 푥 ) ,퐹 푔(푧 ),푔(푦 ), 푔(푥 ) = 	0	.  
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Now from 2.1, we have for all 푡	 > 	0 

  푀 푔 퐹(푥 ,푦 ,푧 ) , 퐹 푔(푥 ),푔(푦 ),푔(푧 ) , 푡 	=
	 	 ( , , ) , ( ), ( ), ( )

	  

  푀 푔 퐹(푦 , 푥 ,푦 ) ,퐹 푔(푦 ),푔(푥 ),푔(푦 ) , 푡 	= 	
	 	 ( , , ) , ( ), ( ), ( )

	  

and 

  푀 푔 퐹(푧 ,푦 , 푥 ) , 퐹 푔(푧 ),푔(푦 ),푔(푥 ) , 푡 	=
	 	 ( , , ) , ( ), ( ), ( )

.	  

Taking 푛 → 	∞ on the both sides of the above three equalities, for all 푡	 > 	0, we have 

  푙푖푚 →	∞푀(푔퐹(푥 ,푦 , 푧 ),퐹(푔푥 ,푔푦 ,푔푧 ), 푡) 	= 	1	  

  푙푖푚 →	∞푀(푔퐹(푦 , 푥 ,푦 ),퐹(푔푦 ,푔푥 ,푔푦 ), 푡) 	= 	1	  

and  

  푙푖푚 →∞푀(푔퐹(푧 ,푦 , 푧 ), 퐹(푔푧 ,푦푥 ,푔푥 ), 푡) 	= 	1	  

 Therefore 퐹 and 푔 are compatible in (푋,푀,⋆). 

We use continuous Hadzic type t-norm in our theorem. 

Definition 18: A 푡 − 푛표푟푚 is said to be Hadzic type 푡 − 푛표푟푚 if the family {⋆ 	} 	0 of its iterates defined for each 푠	 ∈ 	 [0,1] by 

   ⋆ (푠) = 	1, ⋆ (푠) =	⋆ ⋆ (푠) 		푓표푟		푎푙푙		푝 ≥ 	0,	  

is equi-continuous at 푠	 = 	1, that is, given 휆	 > 	0 there exists 휂(휆) 	 ∈ 	(0,1) such that 

  1 ≥ 	푠	 > 휂(휆) 	⇒	⋆ (푠) 	> 	1	–휆		푓표푟		푎푙푙		푝 ≥ 	0.	  

 For an example of a non-trivial Hadzic type 푡 − 푛표푟푚, we refer to [11]. 

 The reason why we use continuous Hadzic type 푡 − 푛표푟푚 is that with this choice we can ensure the existence of a 

function used in the statement of our main theorem. Also the proof depends on certain properties if this 푡 − 푛표푟푚. These points 

are elaborated in the following. 

 We will require the result of the following lemma to establish our main theorem. 

The speciality of its proof is that is utilizes equi-continuity of the iterates. 

Lemma 19: Let (푋,푀,⋆) be a fuzzy metric space with a Hadzic type 푡 − 푛표푟푚	 ⋆ such that 푀(푥,푦, 푡) → 	1 as 푡 → 	∞ for all 

푥,푦	 ∈ 	푋. If the sequences  {푥 }, {푦 }  and {푧 }  in 푋 are such that, for all 푛 ≥ 	1, 푡	 > 	0, 

 푀(푥 ,푥 1, 푡) ⋆ 푀(푦 ,푦 1, 푡) ⋆ 푀(푧 , 푧 1, 푡) ≥ 	푀	 푥 1, 푥 , 	⋆ 	푀	 	푦 1,푦 , 	 ⋆ 	푀 	푧 1, 푧 ,   (2.2) 

where 0	 < 	푘	 < 	1, then the sequences  {푥 }, {푦 }  and {푧 } are Cauchy sequences. 

Proof :  By successive applications of (2.2)  it follows that for all 푡	 > 	0, 푞 ≥ 	0 and each 푖 ≥ 	1, 

  푀 푥 ,푥 1, 푡 ⋆ 푀 푦 ,푦 1, 푡 ⋆ 푀 푧 , 푧 1 , 푡 ≥ 푀 	푥 , 푥 1, ⋆ 푀 	푦 ,푦 1, ⋆ 푀 	푧 , 푧 1,  

(2.3) 

Let 휖 > 	0 and 0	 < 휆	 < 	1 be given. Let 푝 be another integer such that 푝	 > 	푞. Then 

  휖 = 휖 (1 )
(1 )

	> 휖	(1 − 푘)(1	+ 	푘	 + 	푘2+	. . . . +	푘 1).	  

Then by Lemma \ref(lem2.6), for all 푝	 > 	푞, we have 

푀 푥 , 푥 , 휖 	⋆ 	푀 푦 ,푦 , 휖 		⋆ 	푀 푧 ,푧 , 휖 ≥ 	푀 푥 ,푥 1,휖	(1 − 푘) 	⋆ 	푀 푦 ,푦 1, 휖	(1− 푘) 	 ⋆ 	푀 푧 , 푧 1 ,휖	(1− 푘)   

    	⋆ 			푀 푥 1, 푥 2 , 휖	푘(1 − 푘) 		⋆ 	푀 푦 1, 푦 2 , 휖	푘	(1 −푘) 	⋆ 	푀 푧 1, 푧 2, 휖	푘(1 − 푘)   

          ⋆ 	… 	⋆ 	푀 푥 , 푥 ,휖푘( )( ) ⋆ 푀 푦 ,푦 , 휖푘 (1 − 푘) 	 ⋆ 푀 푧 , 푧 , 휖푘 (1− 푘) 	.  
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Putting 푡	 = 	(1− 푘)휖	푘  in (2.3), we get, for all 푞 ≥ 	0, 푖 ≥ 	1 

푀 푥 , 푥 1, (1 − 푘)휖	푘 	⋆ 	푀 푦 ,푦 1, (1− 푘)휖	푘 		⋆ 	푀 푧 , 푧 1, (1− 푘)휖	푘     

     	≥ 	푀 	푥 ,푥 1, (1 − 푘)휖 	⋆ 	푀 	푦 ,푦 1, (1− 푘)휖 	⋆ 	푀 	푧 , 푧 1, (1 − 푘)휖 .	  (2.4)

Then, from (2.4) and the above inequality, for all 푝	 > 	푞, we have 

푀 푥 , 푥 , 휖 	⋆ 	푀 푦 ,푦 , 휖 		⋆ 	푀 푧 ,푧 , 휖   ≥ 		푀 푥 ,푥 1, 휖	(1 − 푘) 	⋆ 푀 푦 ,푦 1, 휖	(1 − 푘)  ⋆ 푀 푧 , 푧 1,휖	(1 − 푘) 	 

     	⋆ 			푀 푥 1, 푥 2, 휖	(1− 푘) 	⋆ 	푀 푦 1,푦 2,휖	(1 − 푘) 	 ⋆ 	푀 푧 1, 푧 2,휖(1 −

푘)   

    	⋆			. . . . .⋆ 	푀 푥 1,푥 , 휖(1− 푘) 	 ⋆ 	푀 푦 1, 푦 , 휖(1 − 푘) 		⋆ 	푀 푧 1 , 푧 , 휖(1−

푘) .  

That is  

푀 푥 , 푥 , 휖 ⋆ 푀 푦 ,푦 , 휖 ⋆ 	푀 푧 ,푧 , 휖 ≥	⋆ 	푀 푥 ,푥 1, 휖	(1 − 푘) ⋆ 푀 푦 ,푦 1,휖	(1 − 푘) ⋆ 푀 푧 ,푧 1, 휖	(1 − 푘) .  

(2.5) 

Since, the 푡 − 푛표푟푚	 ⋆ is of Hadzic type, the family of iterates {⋆ } is equi-continuous at the point 푠	 = 	1, that is, there exists 

휂(휆) 	 ∈ 	 (0,1) such that for all 푚	 > 	푛, 

     ⋆( ) (푠) 	> 	1	 − 휆,      (2.6) 

whenever 1 ≥ 	푠	 > 휂(휆), where 0	 < 휆	 < 	1, as mentioned above, is given.  

Since 푀(푥0, 푥1, 푡) → 1 as 푡 → 	∞ and 0	 < 	푘	 < 	1, there is a positive integer 푁(휖, 휆)	 such that 

    푀 	푥0, 푥1, (1 ) 	 ⋆ 	푀 	푦0,푦1, (1 ) 	⋆ 	푀 	푧0,푧1, (1 ) 	> 휂(휆)		푓표푟푎푙푙	푛 ≥ 	푁(휖, 휆).   (2.7) 

From (2.3) and (2.7) with 푞	 = 	0, 푖	 = 	푛	 > 	푁(휖, 휆) and 푡	 = 	 (1 − 푘)휖, we get 

   푀(푥 ,푥 1, (1− 푘)휖) 	 ⋆ 	푀(푦 , 푦 1, (1 − 푘)휖) 	⋆ 	푀(푧 ,푧 1, (1 − 푘)휖) ≥ 휂(휆)	.	  

Then, from (2.6), with 푠	 = 	푀(푥 , 푥 1, (1− 푘)휖) 	⋆ 	푀(푦 ,푦 1, (1 − 푘)휖) 	 ⋆ 	푀(푧 ,푧 1, (1− 푘)휖)	푎푛푑	푚	 > 	푛 ≥ 		푁(휖, 휆), we 

have  

   ⋆( ) 푀(푥 ,푥 , (1− 푘)휖) 	⋆ 	푀(푦 , 푦 , (1 − 푘)휖) 	⋆ 	푀(푧 ,푧 , (1 − 푘)휖) 	> 	1	 − 휆,	  

Then, by (2.5), for all 	푚	 > 	푛 ≥ 	푁(휖, 휆), we have 

   푀(푥 ,푥 , (1 − 푘)휖) 	⋆ 	푀(푦 ,푦 , (1 − 푘)휖) 	 ⋆ 	푀(푧 , 푧 , (1− 푘)휖) 	> 	1	 − 휆.	  

The above inequality implies that 

  푀(푥 ,푥 , (1− 푘)휖) 	> 	1	 − 휆, 푀(푦 ,푦 , (1 − 푘)휖) 	> 	1	–휆	푎푛푑	푀(푧 , 푧 , (1 − 푘)휖) 	> 	1	–휆  

for all 	푚	 > 	푛 ≥ 	푁(휖, 휆). 

But 휖	 > 	0 and 0	 < 휆	 < 	1 were chosen arbitrarily. 

This shows that  the sequences  {푥 }, {푦 }  and {푧 } are Cauchy sequences. 

We will require the following lemma to ensure the existence of the function \gamma which we use in our theorem in the next 

section. 

Lemma 20:  Let ⋆ be a 푡 − 푛표푟푚 such that the function 푐(푥) 	= 	푥	 ⋆ 	푥	 ⋆ 	푥	 ∈ 	 [0,1] in right continuous on an intervel [푏, 1) for 

푏	 < 	1. Then ⋆ is a 푡 − 푛표푟푚 of Hadzic type if and only if there exists a sequence {푏 } 	∈	  from the interval (0,1) of idempotents 

of ⋆ such that 푙푖푚 →∞ 	푏 	= 	1. 

Main result 
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Theorem 21: Let (푋,푀,⋆) be a complete fuzzy metric space with a Hadzic type 푡 − 푛표푟푚 such that 푀(푥,푦, 푡) → 	1 as 푡 → 	∞, 

for all 푥,푦	 ∈ 	푋. Let ≼  be a  partial order defined on 푋. Let 퐹:	푋3 → 	푋  and 푔:	푋 → 	푋 be two mappings such that 퐹 has mixed 

푔 −monotone property and satisfies the following conditions; 

i. 퐹(푋3) ⊆ 	푔(푋), 

ii. 	푔 is continuous and monotonic increasing, 

iii. (푔, 퐹) is a compatible pair, 

and 

  푀(퐹(푥, 푦, 푧),퐹(푢, 푣,푤),푘푡) ≥ 훾 푀(푔푥, 푔푢, 푡) ⋆ 	푀(푔푦, 푔푣, 푡) ⋆ 	푀(푔푧,푔푤, 푡)     (3.1) 

for all	푥,푦,푧,푢,푣,푤	 ∈ 	푋, 푡	 > 	0. with 푔(푥) ≼ 	푔(푢), 푔(푦) ≽ 	푔(푣) and 	푔(푧) ≼ 	푔(푤), where  0	 < 	푘	 < 	1, 훾 ∶ 	 [0,1] →	 [0,1] is 

continuous function such that 훾	(푎) ⋆ 훾	(푎) 	⋆ 훾	(푎) ≥ 	푎 for each 0	 ≤ 	푎	 ≤ 	1. Also suppose that 푋 has the following properties; 

a. if a non-decreasing sequence {푥 } → 	푥, then 푥 ≼ 	푥 for all 푛 ≥ 	0, 

b.  if a non-decreasing sequence {푦 } → 	푦, then 푦 ≽ 	푦 for all 푛 ≥ 	0, 

c. if a non-decreasing sequence {푧 } → 	푧, then 푧 ≼ 	푧 for all 푛 ≥ 	0. 

If there are 푥0,푦0,푧0 	 ∈ 	푋 such that 푔(푥0) ≼ 	퐹(푥0,푦0, 푧0), 푔(푦0) ≽ 	퐹(푦0,푥0,푦0) and  푔(푧0) ≼ 	퐹(푧0,푦0, 푥0), then there exist 

푥,푦,푧	 ∈ 	푋 such that 푔(푥) 	= 	퐹(푥,푦, 푧), 푔(푦) 	= 	퐹(푦, 푥,푦) and 푔(푧) 	= 	퐹(푧, 푦, 푥),  that is, 푔 and 퐹 have a tripled coincidence 

point in 푋. 

Proof : Let 푥0,푦0,푧0 	 ∈ 	푋 be three arbitrary points in 푋. Since  퐹(푋3) ⊆ 	푔(푋), we can choose  푥1,푦1,푧1 	 ∈ 	푋 such that 

푔(푥1) 	= 	퐹(푥0,푦0, 푧0),푔(푦1) 	= 	퐹(푦0,푧0,푥0) and 푔(푧1) 	= 	퐹(푧0,푦0,푥0) continuing this way we can construct three sequences 

{	푥 }, {	푦 }, {	푧 } in 푋 such that 

  푔(푥 1) 	= 	퐹(푥 ,푦 , 푧 ), 푔(푦 1) 	= 	퐹(푦 , 푥 ,푦 , ), 푔(푧 1) 	= 	퐹(푧 ,푦 , 푥 ).     (3.2) 

Next, we prove that for all 푛 ≥ 	0, 

    푔(푥 ) ≼ 	푔(푥 1)       (3.3) 

    푔(푦 ) ≽ 	푔(푦 1)       (3.4) 

and  

    푔(푧 ) ≼ 	푔(푧 1).       (3.5) 

From the condition on 푥0,푦0,푧0, we have 

 푔(푥0) ≼ 	퐹(푥0,푦0,푧0) 	= 	푔(푥1),푔(푦0) ≽ 	퐹(푦0,푧0, 푥0) 	= 	푔(푦1) and 푔(푧0) ≼ 	퐹(푧0,푦0,푥0) 	= 	푔(푧1).  

Therefore (3.3), (3.4) and (3.5) hold for 푛	 = 	0. 

Let (3.3), (3.4) and (3.5) hold for some n = m. As F has the mixed monotone property and 푔(푥 ) ≼ 	푔(푥 1), 푔(푦 ) ≽ 	푔(푦 1) 

and 푔(푧 ) ≼ 	푔(푧 1), it follows that 

    푔(푥 1) = 	퐹(푥 ,푦 , 푧 ) ≼ 	퐹(푥 1,푦 , 푧 )       (3.6) 

   푔(푦 1) = 	퐹(푦 , 푥 ,푦 ) ≽ 	퐹(푦 1 , 푥 ,푦 )       (3.7) 

and 

   푔(푧 1) = 	퐹(푧 ,푦 , 푥 ) ≼ 	퐹(푧 1, 푦 ,푥 )       (3.8) 

Also for the same reason, we have 

    퐹(푥 1,푦 ,푧 ) 	 ≼ 	퐹(푥 1, 푦 1, 푧 1) 	= 	푔(푥 2)       (3.9)

    퐹(푦 1, 푥 ,푦 ) 	 ≽ 	퐹(푦 1, 푥 1,푦 1) 	= 	푔(푦 2)	     (3.10)

and 

   퐹(푧 1,푦 ,푥 ) 	≼ 		퐹(푧 1,푦 1, 푥 1) 	= 	푔(푧 2)	.     (3.11)
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Then, from (3.6)—(3.11), 

   푔(푥 1) ≼ 	푔(푥 2),			푔(푦 1) ≽ 	푔(푦 2)			푎푛푑		푔(푧 1) ≼ 	푔(푧 2).   (3.12) 

Then, by induction, (3.3) ---(3.5) hold for all 푛 ≥ 	0. 

Let for all 푡	 > 	0,푛 ≥ 0, 

   훿 (푡) 	= 	푀(푔(푥 ),푔(푥 1), 푡) 		⋆ 	푀(푔(푦 ), 푔(푦 1), 푡) 	⋆ 	푀(푔(푧 ),푔(푧 1), 푡).   (3.13)

Due to (3.1)---(3.5), for all 푡	 > 	0,푛 ≥ 1, we have 

푀(푔(푥 ),푔(푥 1),푘푡) = 푀(퐹(푥 1,푦 1, 푧 1), 퐹(푥 ,푦 ,푧 ),푘푡) 

    

 ≥ 훾 푀(푔(푥 1), 푔(푥 ), 푡) 	⋆ 	푀(푔(푦 1),푔(푦 ), 푡) 	 ⋆ 	푀(푔(푧 1),푔(푧 ), 푡)   

     = 훾	 훿 1(푡) 	.      (3.14) 

For similar reasons, for all 푡	 > 	0,푛 ≥ 1, we have 

  푀(푔(푦 ), 푔(푦 1), 푘푡) 	= 	푀(퐹(푦 1, 푥 1,푦 1),퐹(푦 , 푥 ,푦 ),푘푡)	  

    ≥ 훾 푀(푔(푦 1),푔(푦 ), 푡) ⋆ 	푀(푔(푥 1),푔(푥 ), 푡) 	 ⋆ 	푀(푔(푦 1),푔(푦 ), 푡)  

    	= 		훾	 훿 1(푡) 	.       (3.15) 

and  

  푀(푔(푧 ),푔(푧 1),푘푡) 	= 	푀(퐹(푧 1,푦 1, 푥 1), 퐹(푧 ,푦 ,푥 ),푘푡) 

    	≥ 		훾 푀(푔(푧 1),푔(푧 ), 푡) 	⋆ 	푀(푔(푦 1),푔(푦 ), 푡) 	⋆ 	푀(푔(푥 1),푔(푥 ), 푡)   

    	= 	훾	 훿 1(푡) .      (3.16) 

From  (3.14)—(3.16), for all 푡	 > 	0,푛 ≥ 	0, it follows that 

푀(푔(푥 ),푔(푥 1),푘푡) 	⋆ 	푀(푔(푦 ),푔(푦 1),푘푡) 	 ⋆ 	푀(푔(푧 ),푔(푧 1),푘푡) ≥ 훾	 훿 1(푡) 	⋆ 훾	 훿 1(푡) 	⋆ 훾	 훿 1(푡) 	 

       ≥ 		훾	 훿 1(푡) 	 

that is, 

  푀(푔(푥 ),푔(푥 1), 푘푡) 	 ⋆ 	푀(푔(푦 ), 푔(푦 1), 푘푡) 	 ⋆ 	푀(푔(푧 ),푔(푧 1), 푘푡)  

    ≥ 		푀	 	푔(푥 1),푔(푥 ), 	⋆ 		푀 	푔(푦 1),푔(푦 ), 	⋆ 		푀 	푔(푧 1),푔(푧 ), 	.    (3.17)

From (3.17),  by an application of Lemma 19 we conclude that 	{푔(푥 )}, {푔(푦 )}  and {푔(푧 )} are Cauchy sequences. Since 푋 is 

complete, there exist 푥, 푦	 ∈ 	푋 such that 

   푙푖푚 →	∞푔(푥 ) 	= 	푥,			푙푖푚 →	∞푔(푦 ) 	= 	푦			푎푛푑		푙푖푚 →	∞푔(푧 ) 	= 	푧.   (3.18) 

Therefore, 푙푖푚 →	∞푔(푥 1) 	= 	푙푖푚 →	∞	퐹(푥 ,푦 , 푧 ) 	= 	푥, 푙푖푚 →	∞푔(푦 1) 	= 	푙푖푚 →	∞	퐹(푦 , 푥 ,푦 ) = 	푦 and 

	푙푖푚 →	∞푔(푧 1) 	= 	푙푖푚 →	∞	퐹(푧 ,푦 , 푥 ) 	= 	푧. Since (푔,퐹)  is a compatible pair, using continuity of 푔 and Definition 

\ref(2.14), we have 

  푔(푥) 	= 	푙푖푚 →	∞	푔 푔(푥 1) 	= 	푙푖푚 →	∞푔 퐹(푥 ,푦 , 푧 ) 	= 	푙푖푚 →∞	퐹 푔(푥 ),푔(푦 ),푔(푧 )   (3.19) 

  푔(푦) 	= 	푙푖푚 →	∞	푔 푔(푦 1) 	= 	푙푖푚 →	∞푔 퐹(푦 , 푥 ,푦 ) 	= 	푙푖푚 →	∞	퐹 푔(푦 ),푔(푥 ),푔(푦 )   (3.20) 

and  

  푔(푧) 	= 	푙푖푚 →	∞ 	푔 푔(푧 1) 	= 	푙푖푚 →	∞푔 퐹(푧 ,푦 , 푥 ) 	= 	푙푖푚 →	∞	퐹 푔(푧 ),푔(푦 ),푔(푥 ) .  (3.21) 

By (3.5)—(3.8) and (3.18) , we have that	{푔(푥 )}	푎푛푑	{푔(푧 )} are non-decreasing sequences with 푔(푥 ) → 	푥	푎푛푑		푔(푦 ) → 	푦 

respectively also {푔(푧 )} is  non-increasing sequence with 푔(푦 ) → 	푦	푎푠	푛 → 	∞. Then, by condition (a), (b) and (c) of the 

theorems, it follows that, for all 푛 ≥ 	0, 
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  푔(푥 ) ≼ 	푥, 푔(푦 ) ≽ 	푦		푎푛푑			푔(푧 ) ≼ 	푧.       (3.22) 

Since 푔 is monotone increasing, 

  푔 푔(푥 ) ≼ 	푔(푥), 푔 푔(푦 ) ≽ 	푔(푦)		푎푛푑		푔 푔(푧 ) ≼ 	푔(푧).     (3.23) 

Now, for all 푡	 > 	0,푛 ≥ 	0, we have 

  푀(퐹(푥, 푦, 푧),푔(푥), 푡) ≥ 	푀(퐹(푥,푦,푧),푔(푔(푥 1),푘푡) 	⋆ 	푀(푔 푔(푥 1),푔(푥), (푡 − 푘푡) .	    

Taking 푛 → 	∞ on the both sides of the above inequality and using Lemma 7,  for all 푡	 > 	0, 

 푀(퐹(푥, 푦, 푧),푔(푥), 푡) ≥ 	푙푖푚 →	∞ 	 	푀 퐹(푥, 푦,푧),푔 푔(푥 1) ,푘푡 	⋆ 	푀 푔 푔(푥 1) ,푔(푥), (푡 − 푘푡)   

    = 		푙푖푚 →	∞ 	 	푀 퐹(푥,푦, 푧),푔 퐹(푥 ,푦 , 푧 ) ,푘푡 ⋆ 	푀 푔 푔(푥 1) ,푔(푥), (푡 − 푘푡) 	 

    = 		푀 퐹(푥,푦, 푧), 푙푖푚 →	∞ 	푔 퐹(푥 ,푦 , 푧 ) ,푘푡	 		 ⋆ 	푀	 푙푖푚 →	∞푔 푔(푥 1) ,푔(푥), (푡 − 푘푡) 		  

   = 			푀	 퐹(푥,푦, 푧), 푙푖푚 →	∞퐹 푔(푥 ),푔(푦 ),푔(푧 ) ,푘푡		 	⋆ 	푀 	푔(푥),푔(푥), (푡 − 푘푡)   

    = 		푀 퐹 푔(푥 ),푔(푦 ),푔(푧 ) ,퐹(푥, 푦, 푧),푘푡 	⋆ 	1	 

   	= 		푀 퐹 푔(푥 ),푔(푦 ),푔(푧 ) ,퐹(푥, 푦, 푧),푘푡 .	    

From the above inequality, using (3.1)  and (3.23)  for all 푡	 > 	0, we have 

푀(퐹(푥,푦, 푧),푔(푥), 푡) ≥ 		푙푖푚 →	∞ 	 	훾	 	푀 푔(푥),푔 푔(푥 ) , 푡 ⋆ 	푀 푔 푔(푦 ) ,푔(푦), 푡 ⋆ 	푀 푔 푔(푧 ) ,푔(푧), 푡 	  

 =

			훾 	푀	 	푙푖푚 →	∞푔 푔(푥 ) ,푔(푥), 푡	 		⋆ 		푀	 	푙푖푚 →	∞푔 푔(푦 ) ,푔(푦), 푡 	⋆ 	푀 	푙푖푚 →	∞푔 푔(푧 ) , 푔(푧), 푡 	     

         = 	훾	 푀(푔(푥),푔(푥), 푡) 	 ⋆ 	푀(푔(푦),푔(푦), 푡) 		⋆ 	푀(푔(푥), 푔(푥), 푡)  

  	= 		훾	(1	 ⋆ 	1	 ⋆ 	1)  

   = 		훾(1)  

   = 		1,         (3.24) 

which implies that 푔(푥) 	= 	퐹(푥,푦, 푧). 

Similarly, using (3.20)  and  (3.21), we can prove that 푔(푦) 	= 	퐹(푦, 푥,푦) and 푔(푧) 	= 	퐹(푧, 푦, 푥) respectively. 

This completes the proof of the theorem. 

Note: In the above Theorem 21,  we defined a new fuzzy tripled contraction with the help of the function 훾. the mapping 훾 in the 

statement of the Theorem 21  exists for the following reason. Since the 푡 − 푛표푟푚	 ⋆ is continuous Hadzic type, by Lemma 20,  

there exists an increasing sequence {푏 } of distinct idempotents of ⋆ in (0,1) with	푙푖푚 →∞ 	푏 	= 	1. Then, 훾 ∶ 	 [0,1] →	 [0,1] 

defined as 훾(푠) 	= 	 푏 1 whenever 푏 	< 	푠	 < 	 푏 1, for all 푛, 훾(푠) 	= 	1, if 푠	 = 	1, is a function having the desired properties of 

훾 in Theorem 21. Thus the statement of the Theorem 21 is meaningful for arbitrary continuous Hadzic type 푡 − 푛표푟푚푠. The 

proof of the theorem is different from the proof given by Roldan et al [15]. 

Corollary 22 : Let (푋,푀,⋆) be a complete fuzzy metric space with a Hadzic type 푡 − 푛표푟푚 such that 푀(푥, 푦, 푡) → 	1 as 푡 → 	∞, 

for all 푥,푦	 ∈ 	푋. Let ≼		be a  partial order defined on 푋. Let 퐹:	푋3 → 	푋  and 푔:	푋 → 	푋 be two mappings such that 퐹 has mixed 

푔 −monotone property and satisfies the following conditions; 

i.  퐹(푋3) ⊆ 	푔(푋), 

ii. 	푔 is continuous and monotonic increasing, 

iii. 	(푔,퐹) is a commuting pair, 

and 

  푀(퐹(푥, 푦, 푧),퐹(푢, 푣,푤),푘푡) ≥ 훾 푀(푔푥, 푔푢, 푡) ⋆ 	푀(푔푦, 푔푣, 푡) ⋆ 	푀(푔푧,푔푤, 푡)    (3.25) 
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for all	푥,푦,푧,푢,푣,푤	 ∈ 	푋, 푡	 > 	0. with 푔(푥) ≼ 	푔(푢), 푔(푦) ≽ 	푔(푣) and  푔(푧) ≼ 	푔(푤), where  0	 < 	푘	 < 	1,훾 ∶ 	 [0,1] →	 [0,1] is 

continuous function such that 훾	(푎) ⋆ 훾	(푎) 	⋆ 훾	(푎) ≥ 	푎 for each 0	 ≤ 	푎	 ≤ 	1. Also suppose that 푋 has the following properties; 

a. if a non-decreasing sequence {푥 } → 	푥, then 푥 ≼ 	푥 for all 푛 ≥ 	0, 

b. if a non-decreasing sequence {푦 } → 	푦, then 푦 ≽ 	푦 for all 푛 ≥ 	0, 

c. if a non-decreasing sequence {푧 } → 	푧, then 푧 ≼ 	푧 for all 푛 ≥ 	0. 

If there are 푥0,푦0,푧0 	 ∈ 	푋 such that 푔(푥0) ≼ 	퐹(푥0,푦0, 푧0), 푔(푦0) ≽ 	퐹(푦0,푥0,푦0) and 	푔(푧0) ≼ 	퐹(푧0,푦0, 푥0), then there 

exist	푥,푦, 푧	 ∈ 	푋 such that	푔(푥) 	= 	퐹(푥, 푦, 푧),푔(푦) 	= 	퐹(푦, 푥,푦) and	푔(푧) 	= 	퐹(푧,푦, 푥),  that is, 푔 and 퐹 have a tripled 

coincidence point in 푋. 

Proof : Since a commuting pair is also a compatible pair, the result of the Corollary 22 follows from Theorem 21. 

The following corollary is a fixed point result. 

Corollary 23:  Let (푋,푀, ,⋆) be a complete fuzzy metric space with a Hadzic type 푡 − 푛표푟푚 such that 푀(푥,푦, 푡) → 	1 as 푡 → 	∞, 

for all 푥,푦	 ∈ 	푋. Let ≼ be a  partial order defined on 푋. Let 퐹:	푋3 → 	푋  be a mapping such that 퐹 has mixed monotone property 

and satisfies the following condition; 

  푀(퐹(푥, 푦, 푧),퐹(푢, 푣,푤),푘푡) ≥ 훾 푀(푥,푢, 푡) ⋆ 	푀(푦,푣, 푡) ⋆ 	푀(푧,푤, 푡)      (3.26) 

for all 푥,푦,푧,푢,푣,푤	 ∈ 	푋, 푡	 > 	0. with 푥 ≼ 	푢, 푦 ≽ 	푣 and  푧 ≼ 	푤, where  0	 < 	푘	 < 	1,훾 ∶ 	 [0,1] →	 [0,1] is continuous function 

such that 훾	(푎) 	 ⋆ 훾	(푎) 	⋆ 훾	(푎) ≥ 	푎 for each	0	 ≤ 	푎	 ≤ 	1. Also suppose that 푋 has the following properties; 

a. if a non-decreasing sequence {푥 } → 	푥, then 푥 ≼ 	푥 for all 푛 ≥ 	0, 

b.  if a non-decreasing sequence {푦 } → 	푦, then	푦 ≽ 	푦 for all 푛 ≥ 	0, 

c.  if a non-decreasing sequence {푧 } → 	푧, then 푧 ≼ 	푧 for all 푛 ≥ 	0. 

If there are 푥0,푦0,푧0 	 ∈ 	푋	such that 푥0 ≼ 	퐹(푥0,푦0,푧0), 푦0 ≽ 	퐹(푦0, 푥0,푦0) and 	푧0 ≼ 	퐹(푧0,푦0,푥0), then there exist 푥, 푦, 푧	 ∈

	푋	such that 푥	 = 	퐹(푥,푦, 푧),푦	 = 	퐹(푦, 푥, 푦) and 푧	 = 	퐹(푧, 푦, 푥),  that is, 퐹 has a tripled fixed point in 푋. 

Proof : The proof follows by putting g = I, the identity function, in Theorem 21. 

Example 24: Let	푋	 = 	 [0,1] and the natural ordering ≤ of the real numbers as the partial ordering ≼.  Let 푀(푥,푦, 푡) 	= 	 푒
∣ 	 	 ∣	 

for all 푡	 > 	0,푥,푦	 ∈ 	푋 and 푎	 ⋆ 	푏	 = 	푚푖푛	{푎, 푏} for all 푎, 푏	 ∈ 	 [0,1]. It is easy to verify that M(x,y,t) is a  complete fuzzy metric 

space. Let  퐹:	푋3 → 	푋, 퐹(푥,푦,푧) =
2 	 2 	 2

4
	+ 3

4
		푔:	푋 → 	푋,푔(푥) 	= 	 푥2. Then 퐹: (푋3) ⊆ 	푔(푋) and F satisfies the mixed 

푔 −monotone property. 

  Let 훾 ∶ 	 [0,1] →	 [0,1] be defined as 훾(푠) 	= 	푠 for each 푠	 ∈ 	 [0,1]. Let {푥 }, {푦 } and {푧 } be sequences in 푋 such that  

   푙푖푚 →	∞ 	퐹(푥 ,푦 , 푧 ) 	= 	푎,				푙푖푚 →	∞푔(푥 ) 	= 	푎,	  

   푙푖푚 →	∞퐹(푦 , 푥 ,푦 ) 	= 	푏,				푙푖푚 →	∞푔(푦 ) 	= 	푏,	  

   푙푖푚 →	∞ 	퐹(푧 ,푦 , 푥 ) 	= 	푐, 푙푖푚 →	∞푔(푧 ) 	= 	푐,	  

Now, for all 푛 ≥ 	0, 

   푔(푥 ) = 	 푥2 , 푔(푦 ) 	= 	 푦2		푎푛푑			푔(푧 ) 	= 	 푧2.	  

Then necessarily 푎	 = 	푏	 = 	푐	 = 3
4
.  

 It then follows from Lemma 7  that, for all 푡	 > 	0, 

   푙푖푚 →∞푀 푔 	퐹(푥 ,푦 , 푧 ) ,퐹 푔(푥 ),푔(푦 ), 푔(푧 ) , 푡 	= 	1,	  

   푙푖푚 →	∞푀 푔 	퐹(푦 , 푥 ,푦 ) , 퐹 푔(푦 ), 푔(푥 ),푔(푦 ) , 푡 	= 	1,	  

and 
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    푙푖푚 →	∞푀 푔 	퐹(푧 ,푦 ,푥 ) ,퐹 푔(푧 ),푔(푦 ),푔(푥 ) , 푡 	= 	1.	  

Therefore the mappings 퐹 and 푔 are compatible in 푋. 

Let 푘	 = 3
4
. Then we show that 3.1 is satisfied with 	푘	 = 3

4
, for all	푡	 > 	0 and 푥,푦, 푧,푢,푣,푤	 ∈ 	푋. If  3.1  does not hold, then there 

exists 푡	 > 	0 such that  

  푀(퐹(푥, 푦, 푧),퐹(푢, 푣,푤),푘푡) 	< 	푚푖푛	{푀(푔(푥), 푔(푢), 푡),푀(푔(푦),푔(푣), 푡),푀(푔(푧),푔(푤), 푡)},	  

that is  

  푀(퐹(푥, 푦, 푧),퐹(푢, 푣,푤),푘푡) 	< 	푀(푔(푥), 푔(푢), 푡),	  

  푀(퐹(푥, 푦, 푧),퐹(푢, 푣,푤),푘푡) 	< 	푀(푔(푦),푔(푣), 푡),	  

and  

   푀(퐹(푥,푦,푧),퐹(푢, 푣,푤),푘푡) 	< 	푀(푔(푧),푔(푤), 푡),	  

that is, 

    푒 	
∣

2 	 2 	 2
4 	

2 	 2 	 2
4 	 3

4∣	 	< 	 푒
∣ 2 	 2 ∣

		,	  

    푒
∣

2 	 2 	 2

4 	
2 	 2 	 2

4 	 3
4∣

	< 	 푒
∣ 2 	 2 ∣

,	  

and 

    푒
2 	 2 	 2

4

2 	 2 	 2

4
3
4

< 	 푒
∣ 2 	 2 ∣

	,	  

that is, 

   1
4
∣ 	(푥2 −	푦2 −	푧2) −	(푢2 −	푣2 −	푤2) ∣	>	∣ 	 푥2 −	푢2 ∣,	  

   1
4
∣ 	(푥2 −	푦2 −	푧2) −	(푢2 −	푣2 −	푤2) ∣	>	∣ 	 푦2 −	푣2 ∣,	  

and  

   1
4
∣ 	(푥2 −	푦2 −	푧2) −	(푢2 −	푣2 −	푤2) ∣	>	∣ 	 푧2 −	푤2 ∣.	  

Since we have assumed 푘	 = 3
4
, the three inequalities reduce to , 

    1
3
∣ 	(푥2 −	푦2 −	푧2) −	(푢2 −	푣2 −	푤2) ∣	>	∣ 	 푥2 −	푢2 ∣,	  

    1
3
∣ (푥2 −	푦2 −	푧2)−	(푢2 −	푣2 −	푤2) ∣	>	∣ 	 푦2 −	푣2 ∣,	  

and  

    1
3
∣ (푥2 −	푦2 −	푧2) 	−	(푢2 −	푣2 −	푤2) ∣	>	∣ 	 푧2 −	푤2 ∣.		  

Combining the above three inequalities, we have ∣ 	(푥2 −	푦2 −	푧2) 	− 	(푢2 −	푣2 −	푤2) ∣		>	∣ 	 푥2 −	푢2 ∣ 	+	∣ 	 푦2 −	푣2 ∣ 	+	∣

	푧2 −	푤2 ∣, which contradiction. Hence (3.1) holds. Thus all the conditions of Theorem 21  satisfied. Then, by an application of 

Theorem 21, we conclude that g and F have a tripled coincidence point. Here 3
4

, 3
4

, 3
4
	 is tripled coincidence point of 푔 and 

퐹 in 푋. 

Remark 25: In Example 24,  the function g and F do not commute. Hence Corollary 22  cannot be applied to this example. This 

shows that Theorem 21  properly contains its Corollary 22.  Theorem 21, and all its corollaries are valid for Hadzic 푡 − 푛표푟푚 

like minimum 푡 − 푛표푟푚 as is used in Example 24. But Theorem 21  cannot be applied to other cases as for example, when 

푎 ⋆ 	푏	 = 	푎푏 which is not a Hadzic type 푡 − 푛표푟푚. 
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Application to a new result in metric spaces 

In this section we present a tripled coincidence point result in partially ordered metric space. This is obtained by an application 

of the theorem established in the previous section. 

Theorem 26:  Let (푋,≼) be a partially ordered set and 푑 be a metric on 푋 such that (푋,푑) is a complete metric space. Let 

퐹:	푋3 → 	푋 and 푔:	푋 → 	푋 be two mappings such that 퐹 has the mixed 푔 −monotone property and satisfies the following 

condition; 

  푑 퐹(푥,푦, 푧),퐹(푢 ,푣,푤) ≤	
3
푑 푔(푥),푔(푢) + 	푑 푔(푦),푔(푣) + 	푑 푔(푧),푔(푤)      (4.1) 

for all 푥,푦,푧,푢,푣,푤	 ∈ 	푋, with 푔(푥) ≼ 	푔(푢), 푔(푦) ≽ 	푔(푣) and 	푔(푧) ≼ 	푔(푤), where  0	 < 	푘	 < 	1. Suppose 퐹(푋3) ⊆ 	푔(푋),푔 

is continuous and (푔, 퐹) is compatible pair. Also suppose that X has the following properties; 

i. if a non-decreasing sequence {푥 } → 	푥, then 푥 ≼ 	푥 for all 푛 ≥ 	0, 

iv.  if a non-decreasing sequence {푦 } → 푦, then 푦 ≽ 	푦 for all 푛 ≥ 	0, 

v. if a non-decreasing sequence {푧 } → 	푧, then 푧 ≼ 	푧 for all 푛 ≥ 	0. 

If there are 푥0,푦0,푧0 ∈ 	푋 such that 푔(푥0) ≼ 	퐹(푥0,푦0, 푧0), 푔(푦0) ≽ 	퐹(푦0, 푥0,푦0) and  푔(푧0) ≼ 	퐹(푧0,푦0, 푥0), then there exist 

푥,푦,푧	 ∈ 	푋 such that	푔(푥) 	= 	퐹(푥,푦, 푧), 푔(푦) 	= 	퐹(푦, 푥,푦) and 푔(푧) 	= 퐹(푧,푦, 푥),  that is, 푔 and 퐹 have a tripled coincidence 

point in 푋. 

For all 푥,푦, 푧	 ∈ 	푋 and 푡	 > 	0, we define 

   푀(푥,푦, 푡) =
	 	 ( , )

        (4.2) 

and 푎 ⋆ 	푏	 = 	푚푖푛{푎, 푏}. Then, as noted earlier, (푋,푀,⋆) is a fuzzy metric space. 

Further, from the above definition of M, 푀(푥, 푦, 푡) → 	1	푎푠	푡 → 	∞,푓표푟	푎푙푙	푥,푦, 푧	 ∈ 	푋. 

Using Lemma \ref(lem2.15), we conclude that (푔, 퐹) is a compatible pair in this fuzzy metric space. Next we show that the 

inequality (4.1) implies (3.1) with 훾(푠) 	= 	푠 where	0	 ≤ 	푠	 ≤ 	1. If otherwise, from (3.1), for some 푡	 > 	0,푥,푦, 푧,푢, 푣,푤	 ∈ 	푋 we 

have 

  
	 1 ( , , ), ( , , ) 	

		< min
	 	 ( ), ( )

,
	 	 ( ), ( )

	 ,
	 	 ( ), ( )

	,	  

that is,  

  푡	 + 1 푑 퐹(푥,푦, 푧),퐹(푢,푣,푤) 	> 	푡	 + 	푑 푔(푥),푔(푢)   

  푡	 + 1 푑 퐹(푥,푦, 푧),퐹(푢,푣,푤) 	> 	푡	 + 	푑 푔(푦),푔(푣) 	  

and 

  푡	 + 1 푑 퐹(푥,푦, 푧),퐹(푢,푣,푤) 	> 	푡	 + 	푑 푔(푧),푔(푤) .		  

Combining the above three inequalities, we have that  

  푑 퐹(푥,푦, 푧),퐹(푢 ,푣,푤) 	 ≤
3
푑 푔(푥),푔(푢) + 	푑 푔(푦),푔(푣) + 	푑 푔(푧),푔(푤) 	  

which is contradiction with 4.1. 

The proof is the completed by an application of Theorem 21. 

Remark  27: Theorem 26  is an special case of Berinde and Borcut [14] for 푎	 = 	푏	 = 	푐	 =
3

. 

Conclusion 

 In this paper we have proved tripled coincidence point results in partially ordered fuzzy metric spaces by assuming 

an inequality, certain conditions on the t-norm and compatibility condition between the mappings. There is no natural way 
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generating a partial ordered from a fuzzy metric. Fuzzy metric spaces and partially ordered metric spaces have essential 

differences. It remain to be seen whether the same result can be obtained under different sets of conditions. Particularly, 

whether conditions weaker than compatibility can be defined which can replace compatibility in Theorem \ref(thm1) is an 

interesting open problem. 
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