On $\alpha^{**}g$ -Closed sets, $\alpha^{**}g$ - Continuity and $\alpha^{**}g$ - Homeomorphisms in Intuitionistic Fuzzy Topological Space

M. Thirumalaiswamy¹ and S. Birundha²

¹Asso. Prof., Department of Mathematics, NGM College, Pollachi-642001, Tamil Nadu, India.

Abstract: In this paper, we introduce and study the notions of intuitionistic fuzzy $\alpha^{**}g\text{-closed}$ sets, intuitionistic fuzzy $\alpha^{**}g\text{-continuity},$ intuitionistic fuzzy $\alpha^{**}g\text{-open}$ mapping, intuitionistic fuzzy $\alpha^{**}g\text{-homeomorphisms}$ and some of its properties in intuitionistic fuzzy topological spaces.

2010 Mathematics Subject Classification: 54A40, 03F55

Key words: Intuitionistic fuzzy α^{**} g-closed sets, intuitionistic fuzzy α^{**} g-continuity, intuitionistic fuzzy α^{**} g-open mapping, intuitionistic fuzzy α^{**} g-closed mapping and intuitionistic fuzzy α^{**} g-homeomorphisms.

I. INTRODUCTION

The concept of fuzzy sets and fuzzy topology was introduced by Zadeh [14] and Chang [2] respectively and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper, we introduce the concepts of intuitionistic fuzzy $\alpha^{**}g$ -closed sets, intuitionistic fuzzy $\alpha^{**}g$ -continuity, intuitionistic fuzzy $\alpha^{**}g$ -closed mapping, intuitionistic fuzzy $\alpha^{**}g$ -closed mapping, intuitionistic $\alpha^{**}g$ -homeomorphisms and study some of its properties in intuitionistic fuzzy topological spaces.

II.PRELIMINARIES

Definition 2.1:[1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$, where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition2.2:[1] Let A and B be intuitionistic fuzzy sets of the form $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ and $B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X \}$. Then

ISSN: 2231-5373

- 1. $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$.
- 2. A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- 3. $A^c = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \}.$
- 4. $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle$: $x \in X\}$.
- 5. $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \gamma_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$. Also for the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\gamma_A, \gamma_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\gamma_A, B/\gamma_B) \rangle$.

The intuitionistic fuzzy sets $0_{\sim} = \{ < x, 0, 1 > : x \in X \}$ and $1_{\sim} = \{ < x, 1, 0 > : x \in X \}$ are respectively the empty and whole set of X.

Definition 2.3:[3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- 1. 0_{\sim} , $1_{\sim} \in \tau$,
- 2. $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$,
- 3. \cup $G_i \in \tau$, for any family $\{G_i/i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4:[3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \gamma_A \rangle$ be an IFS in X. Then

- 1. $int(A) = \bigcup \{G / G \text{ is an IFOS in } X \text{ and } G \subseteq A\}.$
- 2. $cl(A) = \bigcap \{K/K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$
- 3. $\operatorname{cl}(A^c) = (\operatorname{int}(A))^c$.
- 4. $\operatorname{int}(A^c) = (\operatorname{cl}(A))^c$.

Result 2.5:[10] Let A be an IFS in (X, τ) . Then

- 1. $\alpha cl(A) = A \cup cl(int(cl(A)))$
- 2. $\alpha int(A) = A \cap int(cl(int(A)))$

²MPhil Scholar., Department of Mathematics, NGM College, Pollachi-642001, Tamil Nadu, India.

Definition 2.6:[4] An IFS $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ in an IFTS (X, τ) is said to be an

- 1. intuitionistic fuzzy regular open set (IFROS) if A = int(cl(A)).
- 2. intuitionistic fuzzy α open set (IF α OS) if $A \subseteq int(cl(int(A)))$.

An IFS A is said to be an intuitionistic fuzzy regular closed set (IFRCS) and intuitionistic fuzzy α - closed set (IF α CS) if the complement of A is an IFROS and IF α OS respectively.

Definition 2.7: An IFS $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \}$ in an IFTS (X, τ) is said to be an

- 1. intuitionistic fuzzy generalized closed set (IFGCS) [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.
- 2. intuitionistic fuzzy α generalized closed set (IF α GCS) [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.
- 3. intuitionistic fuzzy regular generalized closed set (IFRGCS) [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFROS in X.

An IFS A is said to be an intuitionistic fuzzy generalized open set (briefly IFGOS), intuitionistic fuzzy α - generalized open set (IF α GOS) and intuitionistic fuzzy regular generalized open set (IFRGOS) if the complement of A is an IFGCS, IF α GCS and IFRGCS respectively.

Definition 2.8:[4] Let (X, τ) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f: X \to Y$ be a function. Then f is said to be an intuitionistic fuzzy continuous if the pre image of each intuitionistic fuzzy open set of Y is an intuitionistic fuzzy open set in X.

Definition 2.9:[10] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy α -continuous if $f^{-1}(B) \in \operatorname{IF}\alpha\operatorname{O}(X)$ for every $B \in \sigma$. Definition 2.10: Let (X, τ) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f: X \to Y$ be a function. Then f is said to be an

- 1. intuitionistic fuzzy g-continuous if pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy g-closed in X.[6]
- 2. intuitionistic fuzzy αg -continuous if pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy αg -closed in X.[8]

Definition 2.11:[13] Let α , $\beta \in [0,1]$ with $\alpha + \beta \leq 1$. An intuitionistic fuzzy point (briefly IFP), written as $p_{(\alpha,\beta)}$, is defined to be an IFS of X given by

$$p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta), & \text{if } x = p \\ (0,1) & \text{otherwise.} \end{cases}$$

ISSN: 2231-5373

We observe that an IFP $p_{(\alpha,\beta)}$ is said to belong to an IFS $A = \langle x, \mu_A(x), \gamma_A(x) \rangle$, denoted by $p_{(\alpha,\beta)} \in A$ if $\alpha \leq \mu_A(x)$ and $\beta \geq \gamma_A(x)$.

Definition 2.12:[13] Two IFSs A and B are said to be q-coincident $(A_q B \text{ in short})$ if and only if there exists an element $x \in X$ such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$.

Definition 2.13:[13] Two IFSs are said to be not q-coincident $(A_a^c B \text{ in short})$ if and only if $A \subseteq B^c$.

Definition 2.14:[4] Let (X, τ) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f: X \to Y$ be a function. Then f is said to be an

- (i) intuitionistic fuzzy closed map if the image of each intuitionistic fuzzy closed set in X is an intuitionistic fuzzy closed set in Y.
- (ii) intuitionistic fuzzy open map if the image of each intuitionistic fuzzy open set in X is an intuitionistic fuzzy open set in Y.

Definition 2.15:[5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy α -closed mapping (IF α -closed mapping in short) if f(A) is an IF α CS in Y for every IFCS A in X.

Definition 2.16:[9] Let f be a bijection mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (i) intuitionistic fuzzy homeomorphism (IF homeomorphism in short) if f and f^{-1} are IF continuous mappings.
- (ii) intuitionistic fuzzy α -homeomorphism (IF α -homeomorphism in short) if f and f^{-1} are IF α continuous mappings.

III. INTUITIONISTIC FUZZY $\alpha^{**}g$ - CLOSED SETS

In this section, we introduced the concept of intuitionistic fuzzy $\alpha^{**}g$ -closed sets and studied some of its properties in intuitionistic fuzzy topological spaces.

Definition 3.1: An IFS Aof an IFTS (X,τ) is said to be intuitionistic fuzzy $\alpha^{**}g$ -closed set (briefly IF $\alpha^{**}GCS$) if $\alpha cl(A) \subseteq int(cl(U))$ whenever $A \subseteq U$ and U is IFOS in X.

Example 3.2: Let $X = \{a, b\}$ and $\tau = \{0_{-}, A, 1_{-}\}$ be an IFTS on X, where $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$. Then the IFS $S = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$ is an IF α^{**} GCS in (X, τ) .

Theorem 3.3: Every IFCS in (X, τ) is an IF α^{**} GCS, but not conversely.

Proof: Let $A \subseteq U$ and U is IFOS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$ and A is an IFCS, $\alpha cl(A) \subseteq cl(A) = A \subseteq U \subseteq int(cl(U))$. Therefore A is an IF α^{**} GCS in X.

Example 3.4: Let $X = \{a, b\}$ and $\tau = \{0_{-1}A_11_{-1}\}$ be an IFTS on X, where $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$. Then the IFS $S = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$ is an IF α^{**} GCS in (X, τ) but not an IFCS in X.

Theorem 3.5: Every IF α CS in (X, τ) is an IF α^{**} GCS, but not conversely.

Proof: Let $A \subseteq U$ and U is IFOS in (X, τ) . By hypothesis $\alpha cl(A) = A$. Hence $\alpha cl(A) \subseteq U \subseteq int(cl(U))$. Therefore A is an IF α^{**} GCS in X.

Example 3.6: Let $X = \{a, b\}$ and $\tau = \{0_{-1}A, 1_{-1}\}$ be an IFTS on X, where $A = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$. Then the IFS $S = \langle x, (0.2, 0.6), (0.2, 0.3) \rangle$ is an IF α **GCS in (X, τ) but not an IF α CS in X.

Theorem 3.7: Every IFRCS in (X, τ) is an IF α^{**} GCS, but not conversely.

Proof: Let A be an IFRCS in (X, τ) . By definition, A = cl(int(A)). This implies cl(A) = cl(int(A)). Therefore cl(A) = A. That is A is an IFCS in X. By Theorem 3.3, A is an IF α^{**} GCS in X.

Example 3.8: Let $X = \{a, b\}$ and $\tau = \{0_{-1}A_11_{-1}\}$ be an IFTS on X, where $A = \langle x, (0.3, 0.4), (0.7, 0.6) \rangle$. Then the IFS $S = \langle x, (0.2, 0.6), (0.2, 0.3) \rangle$ is an IF α^{**} GCS in (X, τ) but not an IFRCS in X.

Theorem 3.9: Every IFGCS in (X, τ) is an IF α^{**} GCS, but not conversely.

Proof: Let $A \subseteq U$ and U is IFOS in (X, τ) . Since $cl(A) \subseteq U$ and $\alpha cl(A) \subseteq cl(A)$ we have, $\alpha cl(A) \subseteq cl(A) \subseteq U \subseteq int(cl(U))$. Therefore A is an IF $\alpha^{**}GCS$ in X.

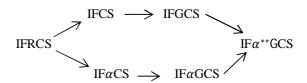
Example 3.10: Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$. Then the IFS $S = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$ is an IF $\alpha^{**}GCS$ in (X, τ) but not an IFGCS in X.

Theorem 3.11: Every IF α GCS in (X, τ) is an IF α^{**} GCS, but not conversely.

Proof: Let $A \subseteq U$ and U is IFOS in (X, τ) . Since A is an IF α GCS, we have $\alpha cl(A) \subseteq U \subseteq int(cl(U))$. That is $\alpha cl(A) \subseteq int(cl(U))$. Therefore A is an IF α^{**} GCS in X.

Example 3.12: Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, A, 1_{\sim}\}$ be an IFTS on X, where $A = \langle x, (0.2, 0.4), (0.8, 0.3) \rangle$. Then the IFS $S = \langle x, (0.1, 0.4), (0.8, 0.6) \rangle$ is an IF $\alpha^{**}GCS$ in (X, τ) but not an IF αGCS in X.

Remark 3.13: From the above theorems, we have the following diagram. None of the implications are reversible.



Theorem 3.14: Let A and B are two IF α^{**} GCSs in an IFTS (X, τ) , then $A \cup B$ is IF α^{**} GCS in (X, τ) .

Proof: Let U be an IFOS in X, such that $A \cup B \subseteq U$. Since A and B are IF α^{**} GCSs we have $\alpha cl(A) \subseteq int(cl(U))$ and $\alpha cl(B) \subseteq int(cl(U))$. Therefore $\alpha cl(A) \cup \alpha cl(B) \subseteq \alpha cl(A \cup B) \subseteq int(cl(U))$. Hence $A \cup B$ is an IF α^{**} GCS in (X, τ) .

Theorem 3.15: If A is an IF α^{**} GCS and $A \subseteq B \subseteq \alpha cl(A)$ then B is an IF α^{**} GCS.

Proof: Let U be an IFOS such that $B \subseteq U$. Since A is an IF α^{**} GCS, we have $\alpha cl(A) \subseteq int(cl(U))$. By hypothesis $B \subseteq \alpha cl(A)$ then $\alpha cl(B) \subseteq \alpha cl(A)$. This implies $\alpha cl(B) \subseteq int(cl(U))$. Hence B is an IF α^{**} GCS.

Theorem 3.16: If A is an IFGCS such that $A \subseteq B \subseteq cl(A)$, where B is an IFS in an IFTS (X, τ) , then B is an IF α^{**} GCS in (X, τ)

Proof: Let U be an IFOS in (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is an IFGCS and $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq cl(A) \subseteq U$. Now $\alpha cl(B) \subseteq cl(B) \subseteq cl(A) \subseteq U \subseteq int(cl(U))$. Hence B is an IF α^{**} GCS in (X, τ) .

Definition 3.17: An IFS A of an IFTS (X, τ) is called an intuitionistic fuzzy $\alpha^{**}g$ open set $(IF\alpha^{**}GOS \text{ in short})$ if and only if A^c is an $IF\alpha^{**}GCS$ in (X, τ) .

Theorem 3.18: For any IFTS (X, τ) , we have the following:

- (i) Every IFOS is an IF α^{**} GOS
- (ii) Every IF α OS is an IF α **GOS
- (iii) Every IFROS is an IF α^{**} GOS
- (iv) Every IFGOS is an IF α^{**} GOS
- (v) Every IF α GOS is an IF α **GOS

Proof: Obvious.

Remark 3.19: Converse of the above theorem need not be hold as shown in the following example.

Let $X = \{a, b\}$ and $\tau = \{0_{-}, A, 1_{-}\}$ be an IFTS on X, where $A = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$. Then the IFS $S = \langle x, (0.6, 0.5), (0.4, 0.5) \rangle$ is an IF α^{**} GOS in (X, τ) but not an IFOS, IF α OS, IFROS, IFGOS, IF α GOS in (X, τ) .

Theorem 3.20: If A is an IF α^{**} GOS and $\alpha int(A) \subseteq B \subseteq A$, then B is an IF α^{**} GOS.

Proof: If $\alpha int(A) \subseteq B \subseteq A$, then $A^c \subseteq B^c \subseteq (\alpha int(A))^c = \alpha cl(A^c)$. Since A^c is an IF $\alpha^{**}GCS$, then by Theorem 3.15, B^c is an IF $\alpha^{**}GCS$. Therefore B is an IF $\alpha^{**}GCS$.

IV. INTUITIONISTIC FUZZY $\alpha^{**}g$ - CONTINUITY

In this section we introduced the concept of intuitionistic fuzzy $\alpha^{**}g$ -continuous mapping and studied some of its properties.

Definition 4.1: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy $\alpha^{**}g$ -continuous (briefly IF $\alpha^{**}G$ -continuous) if inverse image of every intuitionistic fuzzy closed set of Y is an intuitionistic fuzzy $\alpha^{**}g$ -closed set in X.

Example 4.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $A = \langle x, (0.3, 0.6), (0.7, 0.4) \rangle$, $B = \langle y, (0.4,0.5), (0.6,0.3) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF α^{**} G-continuous mapping.

Theorem 4.3: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an IF α^{**} G-continuous if and only if the inverse image of every IFOS of Y is an IF α^{**} GOS in X.

Proof: It is obvious, because $f^{-1}(B^c) = (f^{-1}(B))^c$ for every IFS B of Y.

Theorem 4.4: Every intuitionistic fuzzy continuous mapping is $IF\alpha^{**}G$ - continuous, but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy continuous mapping. Let A be an IFCS in Y. Since f is an intuitionistic fuzzy continuous mapping, $f^{-1}(A)$ is an IFCS in X. Since every IFCS is an IF α^{**} GCS, $f^{-1}(A)$ is an IF α^{**} GCS in X. Hence f is an IF α^{**} G-continuous mapping. *Example 4.5:* Let X= {a, b}, Y={u, v} and A= < x, (0.3, 0.6), (0.7, 0.4) >, B = < y, (0.4,0.5), (0.6,0.3) >. Then $\tau = \{0_{-1}A_1\}_{-1}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f:(X,\tau) \to (Y,\sigma)$ by f(a) = u and f(b) = v. The intuitionistic fuzzy set S = < y, (0.6,0.3), (0.4,0.5) > is IFCS in Y. Then $f^{-1}(S)$ is IF α^{**} GCS in X but not IFCS in X. Therefore, f is an IF α^{**} G-continuous mapping but not an intuitionistic fuzzy continuous mapping.

Theorem 4.6: Every intuitionistic fuzzy g-continuous mapping is $IF\alpha^{**}G$ -continuous, but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy g-continuous mapping. Let A be an IFCS in Y. Since f is an intuitionistic fuzzy g-continuous mapping, $f^{-1}(A)$ is an IFGCS in X. Since every IFGCS is an IF α^{**} GCS, $f^{-1}(A)$ is an IF α^{**} GCS in X. Hence f is an IF α^{**} G-continuous mapping.

Example 4.7: Let X= {a, b} , Y={u, v} and A= < x, (0.4, 0.6), (0.5, 0.2) >, B = < y, (0.9, 0.3), (0.1, 0.4) >. Then = {0_, A, 1_} , $\sigma = {0_, B, 1_}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. The intuitionistic fuzzy set S = < y, (0.1, 0.4), (0.9, 0.3) > is IFCS in Y. Then $f^{-1}(S)$ is IF α^{**} GCS in X but not IFGCS in X. Therefore f is an IF α^{**} G-continuous mapping but not an intuitionistic fuzzy g-continuous mapping.

Theorem 4.8: Every intuitionistic fuzzy α -continuous mapping is IF α^{**} G-continuous, but converse may not be true. *Proof*: Let $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy α -continuous mapping. Let A be an IFCS in Y. Since f is an intuitionistic fuzzy α -continuous mapping, $f^{-1}(A)$ is an IF α CS in X. Since every IF α CS is an IF α^{**} GCS, $f^{-1}(A)$ is an IF α^{**} GCS in X. Hence f is an IF α^{**} G-continuous mapping.

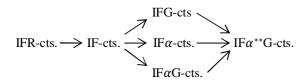
Example 4.9: Let X= {a, b} , Y={u, v} and A= < x, (0.3, 0.6), (0.7, 0.4) >, B = < y, (0.4,0.5), (0.6,0.3) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. The intuitionistic fuzzy set S = < y, (0.6, 0.3), (0.4, 0.5) > is IFCS in Y. Then $f^{-1}(S)$ is IFα**GCS in X but not IF αCS in X. Therefore, f is an IFα**G-continuous mapping but not an intuitionistic fuzzy α-continuous mapping.

Theorem 4.10: Every intuitionistic fuzzy αg -continuous mapping is $\text{IF}\alpha^{**}g$ -continuous, but converse may not be true. Proof: Let $f:(X,\tau)\to (Y,\sigma)$ is an intuitionistic fuzzy αg -continuous mapping. Let A be an IFCS in Y. Since f is an intuitionistic fuzzy αg -continuous mapping, $f^{-1}(A)$ is an IF α GCS in X. Since every IF α GCS is an IF α^{**} GCS, $f^{-1}(A)$ is an IF α^{**} GCS in X. Hence f is an IF α^{**} G-continuous mapping.

Example 4.11: Let X= {a, b} , Y={u, v} and A= < x, (0.4, 0.6), (0.5, 0.2) >, B = < y, (0.9,0.3), (0.1,0.4) >. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. The intuitionistic fuzzy set S = < y, (0.1, 0.4), (0.9, 0.3) > is IFCS in Y. Then $f^{-1}(S)$ is IFα**GCS in X but not IFαGCS

in X. Therefore f is an IF α^{**} G-continuous mapping but not an intuitionistic fuzzy α g-continuous mapping.

The relation between various types of intuitionistic fuzzy continuity are given in the following diagram. In this diagram 'cts.' means continuous.



Theorem 4.12: If $f:(X,\tau) \to (Y,\sigma)$ is an IF α^{**} G-continuous then for each IFP $p_{(\alpha,\beta)}$ of X and each IFOS B of Y such that $f(p_{(\alpha,\beta)}) \subseteq B$ there exists an intuitionistic fuzzy $\alpha^{**}g$ -open set A of X such that $p_{(\alpha,\beta)} \subseteq A$ and $f(A) \subseteq B$.

Proof: Let $p_{(\alpha,\beta)}$ be an IFP of X and B be an IFOS of Y such that $f(p_{(\alpha,\beta)}) \subseteq B$. Put $A = f^{-1}(B)$. Then by hypothesis A is an intuitionistic fuzzy $\alpha^{**}g$ -open set of X such that $p_{(\alpha,\beta)} \subseteq A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

Theorem 4.13: If $f:(X,\tau) \to (Y,\sigma)$ is an IF $\alpha^{**}G$ -continuous then for each IFP $p_{(\alpha,\beta)}$ of X and each IFOS B of Y such that $f(p_{(\alpha,\beta)})_q B$ there exists an intuitionistic fuzzy $\alpha^{**}g$ -open set A of X such that $p_{(\alpha,\beta)}_q A$ and $f(A) \subseteq B$.

Proof: Let $p_{(\alpha,\beta)}$ be an IFP of X and \dot{B} be an IFOS of Y such that $f(p_{(\alpha,\beta)})_q B$. Put $A = f^{-1}(B)$. Then by hypothesis A is an intuitionistic fuzzy $\alpha^{**}g$ -open set of X such that $p_{(\alpha,\beta)}{}_q A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

Definition 4.14: Let (X, τ) be an IFTS and A be an IFS in X. Then $\alpha^{**}g$ - interior and $\alpha^{**}g$ -closure of A are defined as

 $\alpha^{**}gcl(A) = \bigcap \{K : K \text{ is an IF}\alpha^{**}GCS \text{ in X and } A \subseteq K\}$ $\alpha^{**}gint(A) = \bigcup \{G : G \text{ is an IF}\alpha^{**}GOS \text{ in X and } G \subseteq A\}$ If A is IF $\alpha^{**}GCS$, then $\alpha^{**}gcl(A) = A$.

Theorem 4.15: If $f:(X,\tau) \to (Y,\sigma)$ is $IF\alpha^{**}G$ - continuous and $g:(Y,\sigma) \to (Z,\mu)$ in intuitionistic fuzzy continuous, then $g \circ f:(X,\tau) \to (Z,\mu)$ is $IF\alpha^{**}G$ - continuous

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFCS in Y because g is intuitionistic fuzzy continuous. Therefore, $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an IF α^{**} GCS in X. Hence $g \circ f$ is IF α^{**} G- continuous.

Definition 4.16: An IFTS (X, τ) is said to be an intuitionistic fuzzy $\alpha^{**}g - T_{1/2}$ space if every IF α^{**} GCS in X is IFCS in X.

Theorem 4.17: If $f:(X,\tau) \to (Y,\sigma)$ is $IF\alpha^{**}G$ - continuous and $g:(Y,\sigma) \to (Z,\mu)$ is intuitionistic fuzzy g-continuous and (Y,σ) is intuitionistic fuzzy $(\alpha^{**}g - T_{1/2})$ space then $g \circ f:(X,\tau) \to (Z,\mu)$ is an $IF\alpha^{**}G$ - continuous.

Proof: Let A be an IFCS in Z. Then $g^{-1}(A)$ is an IFGCS in Y. Since Y is $(\alpha^{**}g - T_{1/2})$ space then $g^{-1}(A)$ is an IFCS in Y. Therefore, $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is an IF α^{**} GCS in X. Hence $g \circ f$ is IF α^{**} G- continuous.

Theorem 4.18: Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping and let $f^{-1}(A)$ be an IFRCS in X for every IFCS A in Y. Then f is an IF α^{**} G-continuous mapping.

Proof: Let A be an IFCS in Y. Then $f^{-1}(A)$ is an IFRCS in X. Since every IFRCS is an IF α^{**} GCS, $f^{-1}(A)$ is an IF α^{**} GCS in X. Hence f is an IF α^{**} G-continuous mapping. Theorem4.19: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF α^{**} G-continuous mapping. Then the following conditions are hold:

- (i) $f(\alpha^{**}gcl(A)) \subseteq cl(f(A))$, for every IFS A in X
- (ii) $\alpha^{**}gcl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

Proof: (i) Since cl(f(A)) is an IFCS in Y and f is an IF α^{**} G-continuous mapping, then $f^{-1}(cl(f(A)))$ is IF α^{**} GCS in X. That is $\alpha^{**}gcl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(\alpha^{**}gcl(A)) \subseteq cl(f(A))$, for every IFS A in X. (ii) Replacing A by $f^{-1}(B)$ in (i), we have $f(\alpha^{**}gcl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$.

Hence $\alpha^{**}gcl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$, for every IFS B in Y.

V. INTUITIONISTIC FUZZY $\alpha^{**}g$ - OPEN MAPPING

In this section we introduced the concept of intuitionistic fuzzy $\alpha^{**}g$ - open mapping and studied some of its properties. *Definition 5.1:* A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy $\alpha^{**}g$ -open mapping (briefly IF $\alpha^{**}G$ -open mapping) if the image of every IFOS in X is IF $\alpha^{**}G$ OS in Y. *Example 5.2:* Let $X = \{a, b\}, Y = \{x, y\}$ and $A = \langle x, (0.4, 0.6), (0.5, 0.2) \rangle$, $B = \langle y, (0.2, 0.3), (0.1, 0.4) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f:(X,\tau) \to (Y,\sigma)$ by f(a) = x and f(b) = y. Then f is an IF $\alpha^{**}G$ -open mapping.

Theorem 5.3: Every intuitionistic fuzzy open map is an $IF\alpha^{**}G$ -open map but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an intuitionistic fuzzy open mapping. Let A be an IFOS in X. Since f is an intuitionistic fuzzy open mapping, f(A) is an IFOS in Y. Since every IFOS is an IF α^{**} GOS, f(A) is an IF α^{**} GOS in Y. Hence f is an IF α^{**} G-open mapping.

Example 5.4: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.4, 0.6), (0.5, 0.2) \rangle$, $B = \langle y, (0.2, 0.3), (0.1, 0.4) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF α^{**} G-open mapping but not an intuitionistic fuzzy open

mapping since $S = \langle a, (0.4, 0.6), (0.5, 0.2) \rangle$ is an IF α^{**} GOS but f(S) is not an IFOS in Y.

Theorem 5.5: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an IF α^{**} Gopen mapping if and only if for every IFS U of X $f(int(U)) \subseteq \alpha^{**}gint(f(U))$

Proof:

Necessity: Let f be an IF α^{**} G-open mapping and U be an IFOS in X. Now, $int(U) \subseteq U$ which implies that $f(int(U)) \subseteq f(U)$. Since f is an IF α^{**} G-open mapping, f(int(U)) is an IF α^{**} GOS in Y such that $f(int(U)) \subseteq f(U)$ therefore, $f(int(U)) \subseteq \alpha^{**}gint(f(U))$.

Sufficiency: For the converse, suppose that U is an IFOS of X. Then $f(U) = f(int(U)) \subseteq \alpha^{**}gint(f(U))$. But $\alpha^{**}gint(f(U)) \subseteq f(U)$. Consequently $f(U) = \alpha^{**}gint(U)$ which implies that f(U) is an IF α^{**} GOS in Y and hence f is an IF α^{**} G-open mapping.

Theorem 5.6: If $f:(X,\tau) \to (Y,\sigma)$ is IF $\alpha^{**}G$ - open map then $int(f^{-1}(G)) \subseteq f^{-1}(\alpha^{**}gint(G))$ for every IFS G of Y.

Proof: Let G be an IFS of Y. Then $int(f^{-1}(G))$ is an IFOS in X. Since f is an IF α^{**} G-open map $f(int(f^{-1}(G)))$ is IF α^{**} GOS in Y and hence $f(int(f^{-1}(G))) \subseteq \alpha^{**}gint(f(f^{-1}(G))) \subseteq \alpha^{**}gint(G)$. Thus $int(f^{-1}(G)) \subseteq f^{-1}(\alpha^{**}gint(G))$.

Theorem 5.7: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an IF α^{**} Gopen if and only if for each IFS S of Y and for each IFCS U of X containing $f^{-1}(S)$ there is an IF α^{**} GCS V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq int(cl(U))$.

Proof:

Necessity: Suppose that f is an IF α^{**} G-open map. Let S be the IFCS of Y and U be an IFCS of X such that $f^{-1}(S) \subseteq U$. Then $V = (f^{-1}(U^c))^c$ is an IF α^{**} GCS of Y such that $f^{-1}(V) \subseteq int(cl(U))$.

Sufficiency: Suppose that F is an IFOS of X. Then $f^{-1}(f(F))^c \subseteq F^c$ and F^c is an IFCS in X. By hypothesis there is an IF α^{**} GCS V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$, since V^c is an IF α^{**} GOS of Y. Hence f(F) is an IF α^{**} GOS in Y and thus f is an IF α^{**} GOPen map.

Theorem 5.8: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an $\text{IF}\alpha^{**}G$ open if and only if $f^{-1}(\alpha^{**}gcl(B)) \subseteq cl(f^{-1}(B))$ for every
IFS B of Y.

Proof:Necessity: Suppose that f is an IF α^{**} G-open map. For any IFS B of Y, $f^{-1}(B) \subseteq cl(f^{-1}(B))$. Therefore by Theorem (5.7) there exists an IF α^{**} GCS F of Y such that

 $B \subseteq F$ and $f^{-1}(F) \subseteq cl(f^{-1}(B))$. Therefore we obtain that $f^{-1}(\alpha^{**}gcl(B)) \subseteq f^{-1}(F) \subseteq cl(f^{-1}(B))$.

Sufficiency: Suppose that B is an IFS of Y and F is an IFCS of X containing $f^{-1}(B)$. Put V = cl(B), then $B \subseteq V$ and V is $IF\alpha^{**}GCS$ and $f^{-1}(V) \subseteq cl(f^{-1}(B) \subseteq F$. Then by Theorem (5.7) f is an $IF\alpha^{**}G$ -open map.

VI. INTUITIONISTIC FUZZY $\alpha^{**}g$ - CLOSED MAPPING

In this section we introduced the concept of intuitionistic fuzzy $\alpha^{**}g$ - closed mapping and studied some of its properties.

Definition 6.1: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy $\alpha^{**}g$ -closed mapping (briefly IF $\alpha^{**}G$ -closed mapping) if the image of every IFCS in X is IF $\alpha^{**}G$ CS in Y

Example 6.2: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.3, 0.5), (0.2, 0.5) \rangle$, $B = \langle y, (0.5, 0.2), (0.3, 0.6) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF $\alpha^{**}G$ -closed mapping.

Theorem 6.3: Every intuitionistic fuzzy closed map is an $IF\alpha^{**}G$ -closed map but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an intuitionistic fuzzy closed mapping. Let A be an IFCS in X. Since f is an intuitionistic fuzzy closed mapping, f(A) is an IFCS in Y. Since every IFCS is an IF α^{**} GCS, f(A) is an IF α^{**} GCS in Y. Hence f is an IF α^{**} G-closed mapping.

Example 6.4: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.3, 0.5), (0.2, 0.5) \rangle$, $B = \langle y, (0.5, 0.2), (0.3, 0.6) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF $\alpha^{**}G$ -closed mapping but not intuitionistic fuzzy closed mapping since $S = \langle a, (0.2, 0.5), (0.3, 0.5) \rangle$ is an IFCS in X but f(S) is not an IFCS in Y.

Theorem 6.5: Every intuitionistic fuzzy α -closed map is an IF α^{**} G-closed map but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an intuitionistic fuzzy α -closed mapping. Let A be an IFCS in X. Since f is an intuitionistic fuzzy α -closed mapping, f(A) is an IF α CS in Y. Since every IF α CS is an IF α^{**} GCS, f(A) is an IF α^{**} GCS in Y. Hence f is an IF α^{**} G-closed mapping.

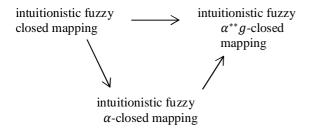
Example 6.6: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.3, 0.5), (0.2, 0.5) \rangle$, $B = \langle y, (0.5, 0.2), (0.3, 0.6) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an IF α^{**} G-closed mapping but not intuitionistic fuzzy α -closed

mapping since $S = \langle a, (0.2, 0.5), (0.3, 0.5) \rangle$ is an IFCS in X but f(S) is not an IF α CS in Y.

Theorem 6.7: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an IF α^{**} G-closed mapping if and only if the image of each IFOS in X is an IF α^{**} GOS in Y.

Proof: Let A be an IFOS in X. This implies A^c is IFCS in X. Since f is an IF α^{**} G-closed mapping, $f(A^c)$ is an IF α^{**} GCS in Y. Since $f(A^c) = (f(A))^c$, f(A) is an IF α^{**} GOS in Y.

The relation between various types of intuitionistic fuzzy closed mappings are given in the following diagram.



Theorem 6.8: A mapping $f:(X,\tau) \to (Y,\sigma)$ is an IF α^{**} G-closed if and only if for each IFS S of Y and for each IFOS U of X containing $f^{-1}(S)$ there is an IF α^{**} GOS V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq int(cl(U))$.

Proof:

Necessity: Suppose that f is an IF α^{**} G-closed map. Let S be the IFCS of Y and U be an IFOS of X such that $f^{-1}(S) \subseteq U$. Then $V = Y - f^{-1}(U^c)$ is an IF α^{**} GOS of Y such that $f^{-1}(V) \subseteq int(cl(U))$.

Sufficiency: For the converse, suppose that F is an IFCS of X. Then $(f(F))^c$ is an IFS in Y and F^c is an IFOS in X such that $f((f^{-1}(F))^c) \subseteq F^c$. By hypothesis there is an IF α^{**} GOS V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$, since V^c is an IF α^{**} GCS of Y. Hence f(F) is an IF α^{**} GCS in Y and thus f is an IF α^{**} Gclosed map.

Theorem 6.9: If $f:(X,\tau) \to (Y,\sigma)$ is an intuitionistic fuzzy closed map and $g:(Y,\sigma) \to (Z,\mu)$ is an IF α^{**} G-closed map, then $g \circ f:(X,\tau) \to (Z,\mu)$ is IF α^{**} G-closed mapping.

Proof: Let H be an IFCS of an IFTS (X, τ) . Then f(H) is IFCS of (Y, σ) , because f is intuitionistic fuzzy closed map. Now $g \circ f(H) = g(f(H))$ is an IF $\alpha^{**}GCS$ in (Z, μ) because g is IF $\alpha^{**}G$ -closed map. Thus $g \circ f: (X, \tau) \to (Z, \mu)$ is IF $\alpha^{**}G$ -closed mapping.

Theorem 6.10: Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ are two IF α^{**} G-closed mappings. If (Y,σ) is intuitionistic fuzzy $\alpha^{**}g - T_{1/2}$ space. Then $g \circ f:(X,\tau) \to (Z,\mu)$ is IF α^{**} G-closed mapping.

Proof: Let H be an IFCS of an IFTS (X, τ) . Then f(H) is IF $\alpha^{**}GCS$ of (Y, σ) , because f is IF $\alpha^{**}G$ -closed mapping. Now $g \circ f(H) = g(f(H))$ is an IF $\alpha^{**}GCS$ in (Z, μ) because

g is IF α^{**} G-closed map. Thus $g \circ f: (X, \tau) \to (Z, \mu)$ is IF α^{**} G-closed mapping.

Theorem 6.11: Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\mu)$ are two intuitionistic fuzzy mappings such that their composition $g \circ f:(X,\tau) \to (Z,\mu)$ is IF α^{**} G-closed mapping. If f is intuitionistic fuzzy continuous and surjective, then g is IF α^{**} G-closed.

Proof: Let A be an IFCS of Y Since f is intuitionistic fuzzy continuous $f^{-1}(A)$ is IFCS in X. Since $g \circ f$ is IF α^{**} G-closed, $g \circ f(f^{-1}(A))$ is intuitionistic fuzzy $\alpha^{**}g$ -closed in Z. That is g(A) is IF α^{**} G-closed in Y, because f is surjective. Therefore g is IF α^{**} G-closed.

(iii)→(i): Let F be an IFCS in X. By assumption, $f(F) = (f^{-1})^{-1}(F)$ is IF α^{**} GCS in Y. Therefore f^{-1} is an IF α^{**} Gcontinuous.

VII. INTUITIONISTIC FUZZY $\alpha^{**}g$ -HOMEOMORPHISMS

In this section we introduced the concept of intuitionistic fuzzy $\alpha^{**}g$ - homeomorphisms and studied some of its properties.

Definition 7.1: A bijection mapping $f:(X,\tau) \to (Y,\sigma)$ is called an intuitionistic fuzzy $\alpha^{**}g$ -homeomorphism (IF $\alpha^{**}g$ -homeomorphism in short) if f and f^{-1} are IF $\alpha^{**}G$ -continuous mappings.

Example 7.2: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.3, 0.5), (0.2, 0.5) \rangle$, $B = \langle y, (0.5, 0.2), (0.3, 0.6) \rangle$. Then $\tau = \{0_{-}, A, 1_{-}\}$, $\sigma = \{0_{-}, B, 1_{-}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f and f^{-1} are IF $\alpha^{**}G$ -continuous mappings. Then f is an intuitionistic fuzzy $\alpha^{**}g$ -homeomorphism.

Theorem 7.3: Every IF homeomorphism is an IF α^{**} G-homeomorphism but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an IF homeomorphism. Then f and f^{-1} are IF continuous mappings. This implies f and f^{-1} are IF α^{**} G-continuous mappings. Hence f is IF α^{**} G-homeomorphism.

Example 7.4: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.3, 0.5), (0.2, 0.5) \rangle$, $B = \langle y, (0.5, 0.2), (0.3, 0.6) \rangle$. Then $\tau = \{0_{\sim}, A, 1_{\sim}\}$, $\sigma = \{0_{\sim}, B, 1_{\sim}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is intuitionistic fuzzy $\alpha^{**}g$ -homeomorphism but not an IF homeomorphism since f and f^{-1} are not an IF continuous mappings.

Theorem 7.5: Every IF α homeomorphism is an IF α^{**} G-homeomorphism but converse may not be true.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be an IF α -homeomorphism. Then f and f^{-1} are IF α -continuous

mappings. This implies f and f^{-1} are IF α^{**} G-continuous mappings. Hence f is IF α^{**} G-homeomorphism.

Example 7.6: Let $X = \{a, b\}$, $Y = \{x, y\}$ and $A = \langle x, (0.3, 0.5), (0.2, 0.5) \rangle$, $B = \langle y, (0.5, 0.2), (0.3, 0.6) \rangle$. Then $\tau = \{0_{-}, A, 1_{-}\}$, $\sigma = \{0_{-}, B, 1_{-}\}$ are intuitionistic fuzzy topologies on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = x and f(b) = y. Then f is an intuitionistic fuzzy $\alpha^{**}g$ -homeomorphism but not an IFα-homeomorphism since f and f^{-1} are not an IFα-continuous mappings.

Theorem 7.7: Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective mapping. If f is an IF α^{**} G-continuous mapping, then the following are equivalent.

- (i) f is an IF α^{**} G-closed mapping
- (ii) f is an IF α^{**} G- open mapping
- (iii) f is an IF α^{**} G- homeomorphism.

Proof: $(i) \rightarrow (ii)$: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping and let f be an IF $\alpha^{**}G$ - closed mapping. This implies $f^{-1}: (Y, \sigma) \rightarrow (X, \tau)$ is IF $\alpha^{**}G$ - continuous mapping. That is every IFOS in X is an IF $\alpha^{**}GOS$ in Y. Hence f is an IF $\alpha^{**}G$ - open mapping.

 $(ii) \rightarrow (iii)$: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a bijective mapping and let f be an IF α^{**} G- open mapping. This implies $f^{-1}: (Y, \sigma) \rightarrow (X, \tau)$ is IF α^{**} G- continuous mapping. But f is an IF α^{**} G- continuous mapping by hypothesis. Hence f and f^{-1} are IF α^{**} G-continuous mappings. Thus, f is IF α^{**} G-homeomorphism.

(iii) \rightarrow (i): Let f be an IF α^{**} G-homeomorphism.That is f and f^{-1} are IF α^{**} G-continuous mappings. Sine every IFCS in X is an IF α^{**} GCS in Y, f is an IF α^{**} G-closed mapping.

REFERENCES

- K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20 (1986), 87-96.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1986), 81-89.
- [3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88 (1997), 81-89.
- [4] H. Gurcay, D. Coker and Es. A. Hayder, On fuzzy continuity in intuitionistic fuzzy topological spaces, The Journal of Fuzzy Mathematics, 5 (1997), 365-378.
- [5] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19 (2005), 3091-3101.
- [6] Jyoti Pandey Bajpai and S. S. Thakur, Intuitionistic Fuzzy rgα continuity, Int. J. Contemp. Math. Sciences, 6 (2011), 2335-2351.
- [7] D. Kalamani, K. Sakthivel and C. S. Gowri, Generalized alpha closed sets in intuitionistic fuzzy topological spaces, Applied Mathematical Sciences, 6 (94) (2012), 4691-4700.
- [8] K. Sakthivel, Intuitionistic fuzzy Alpha generalized continuous mappings and Intuitionistic fuzzy Alpha generalized irresolute mappings, Applied Mathematical Sciences, 4 (2010), 1831-1842.
- [9] R. Santhi and K. Sakthivel, Alpha generalized Homeomorphisms in Intuitionistic Fuzzy Topological Spaces, NIFS, 7 (2011), 30-36.

- [10] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5 (2009), 73-82.
- [11] S. S. Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(3) (2008), 559-572.
- [12] S. S. Thakur and Rekha Chaturvedi, Regular generalized closed sets in in intuitionistic fuzzy topology, Universitatea Din Dacau, Studii Si Cercetari Stiinti Ce, Seria: Matematica, 16(2006), 257-272.
- [13] M. Thirumalaiswamy, *Intuitionistic fuzzy* $g\alpha^{**}$ -closed sets, International Refereed Journal of Engineering and Sciences, 2 (2013), 11-16.
- [14] L. A. Zadeh, Fuzzy sets, Information and control, 16 (1965), 338-353.