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ABSTRACT 
 This paper is concerned with the analysis of a single server batch arrival retrial queueing system 
with optional extended server vacation. Server provides two stages of heterogeneous service in 
succession. Each phase has two types of service and the customer has the option to choice any one of 
the two types at the time of service. After completion of the second phase service, the server takes 
Bernoulli vacation. After the vacation completion the server has the option to extend the vacation. The 
steady state distributions of the server state and the number of customers in the orbit are obtained 
along with other system characteristics. A general decomposition law for the model is established. 
Numerical results are calculated. 
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INTRODUCTION 

Recently, most of the studies have been devoted to batch arrival two phase retrial queue with 
vacation because of its interdisciplinary character. Numerous researchers, including Senthil Kumar 
and Arumuganathan [6,7], Arivudainambi and Godhandaraman[1] and Sumitha et al [9] have analyzed 
retrial queueing models in which the server provides, two phases of heterogeneous service in 
succession to each unit. The motivation for two phase of queueing models comes from computer 
networks and telecommunication systems where messages are processed in two stages by a single 
server.   

In this paper, we consider Mx/G/1 retrial queue with two phases and two types of general 
heterogeneous service and extended Bernoulli vacations. Just before a service starts, a customer has 
the option to choose one of the two kinds of services at each phase. This type of queueing model may 
find application in many day to day real life queueing situations encountered at automobile stations, 
post offices, banks or computer centers. Many authors like Madan[4], Madan et al[5], Baruah [2] and 
Ebenesar Anna bagyam and Udaya chandrika[3] have studied two types of heterogeneous service.  

MODEL DESCRIPTION AND NOTATIONS 
 In this section, batch arrival two phase retrial queue with two stages of heterogeneous service 
and extended Bernoulli vacation is described as follows: 
The Arrival Process: The primary calls arrive in batches according to a compound Poisson process 
with rate λ. The number of individuals arriving in a batch is k ≥ 1 with probability kC . C(z) be the 
generating function of { kC } with factorial moments kC .  
Retrial Rule: If the server is idle then one of the customers in the batch starts its service time and the 
rest join the retrial group. Upon arrival, when the server is blocked (busy or on vacation), all the 
customers enter in to the retrial group. Successive inter retrial times are governed by an arbitrary 
probability distribution function A(x), density function a(x) and Laplace Stieltjes transform )s(A* . 
The Service Process: The server provides two stages of heterogeneous service in succession. There 
are  two options  in each stage, 1A and 1B for first stage,  2A and 2B for second stage. The arriving or 
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retrial customer choses type 1A with probability 1r  or 1B with its complementary probability. After 
completion of the first stage service the customer enters second stage service and chooses 2A with 
probability 2r or 2B with probability (1 − 2r ). It is assumed that the service times of type A and type B 
services in both the stages follow general distribution with distribution function )x(BiA  and )x(BiB , 

Laplace Stieltjes transform )s(B*
iA  and )s(B*

iB  and finite moments iAn  and iBn , n ≥ 1 (i=1,2). 
The Vacation Process: As soon as the second stage service of a customer is completed, the server 
may go for a vacation with probability 1  or may continue to staying in the system with 
complementary probability. The vacation time follows a general distribution with distribution function 

)x(V1 , Laplace Stieltjes transform )s(V*
1 and finite moments n1v  , n ≥ 1. After a vacation period the 

server may extend the vacation with probability 2 or rejoin the system immediately with probability 
(1 − 2 ). The extended vacation time follows a general distribution with distribution function )x(V2 , 
Laplace Stieltjes transform )s(V*

2 and finite moments n2v , n ≥1. 
 The state of the system at time t can be described by the Markov process {X(t), t ≥ 0} = {(J(t), 
N(t), )t(i , i = 0, 1, 2, 3, 4; t ≥ 0}, where J(t) denotes the server state 0, 1, 2, 3 or 4 according as the 
server being free, busy in first stage service , busy in second stage service, on vacation or on extended 
vacation respectively and N(t) corresponds to the number of customer in the orbit at time t. If J(t) = 0 
and N(t) > 0, then )t(0 represents the elapsed retrial time; if J(t) = 1 and N(t) ≥ 0, then 

)t(1 corresponds to the elapsed time of the customer being served in first stage of service; if J(t) = 2 
and N(t) ≥ 0, then )t(2 corresponds to the elapsed time of the customer being served in second stage 
of service; if J(t) = 3 and N(t) ≥ 0  then )t(3 represents the elapsed vacation time; if J(t) = 4 and N(t) ≥ 
0  then )t(4 represents the elapsed extended vacation time at time t. 
 The hazard rate functions of repeated attempts, first stage service 1A and 1B, second stage 
service 2A and 2B, server vacation and of extended vacation are respectively. 

η(x)  =  
)x(A1

)x(a


;   )x(iA   =  
)x(B1

)x(b

iA

iA


;   )x(iB   =  
)x(B1

)x(b

iB

iB


  and  )x(i   =   
)x(V1

)x(v

i

i


, i = 1, 2 

 The condition for the system to be stable is  1C [ 1 − )(A*  ] + λ 1C [ 1r 1A1 + (1–

1r ) 1B1 + 2r 1A2 + (1– 2r ) 1B2 + 1 11v + 1 2 21v ] < 1. 

STEADY STATE DISTRIBUTION 

Define the probabilities 
I0(t) = P{ J(t) = 0, N(t) = 0} and the probability densities 
In(t,x) dx = P { J(t) = 0, N(t) = n, x ≤ )t(0 < x + dx, t ≥ 0, x ≥ 0, n ≥ 1} 
W1j(t,x) dx = P { J(t) = 1, N(t) = n, x ≤ )t(1 < x + dx, t ≥ 0, x ≥ 0, n ≥ 0, j = A, B} 
W2j(t,x) dx = P { J(t) = 2, N(t) = n, x ≤ )t(2 < x + dx, t ≥ 0, x ≥ 0, n ≥ 0, j = A, B} 
V1(t,x) dx = P { J(t) = 3, N(t) = n, x ≤ )t(3 < x + dx, t ≥ 0, x ≥ 0, n ≥ 0} 
V2(t,x) dx = P { J(t) = 4, N(t) = n, x ≤ )t(4 < x + dx, t ≥ 0, x ≥ 0, n ≥ 0} 

Let I0  = 
t

lim  I0(t), In(x) =
t

lim  In(t,x), Wij(x) =
t

lim  Wij(t,x), i=1,2; j =A, B, Vi(x) =
t

lim Vi(t,x), i = 1, 2 

The steady state equations that governs the dynamics of the system behavior are given below 

λ 0I  = ( 1 – 2 ) dx)x()x(V 1
0

0,1 


 + ( 1 – 1 ) dx)x()x(W A2
0

0,A2 
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+ dx)x()x(V 2
0

0,2 


 + ( 1 – 1 ) dx)x()x(W B2
0

0,B2 


          (1) 

)x(I
dx
d

n  = – (λ+ η(x)) )x(In , n ≥ 1       (2) 

)x(W
dx
d

n,iA  = – (λ + )x(iA ) )x(W n,iA + λ (1 – n0 ) 




n

1k
kn,iAk )x(Wc , i = 1, 2 ; n ≥ 0  (3) 

)x(W
dx
d

n,iB  = – (λ + )x(iB ) )x(W n,iB + λ (1 – n0 ) 




n

1k
kn,iBk )x(Wc , i = 1, 2 ; n ≥ 0   (4) 

)x(V
dx
d

n,i  = – (λ + )x(i ) )x(V n,i + λ (1 – n0 ) 




n

1k
kn,ik )x(Vc , i = 1, 2 ; n ≥ 0   (5) 

with boundary conditions 

)0(In   = ( 1 – 2 ) dx)x()x(V 1
0

n,1 


 + ( 1 – 1 ) dx)x()x(W A2
0

n,A2 


  

+ dx)x()x(V 2
0

n,2 


 + ( 1 – 1 ) dx)x()x(W B2
0

n,B2 


, n ≥ 1       (6) 

)0(W 0,A1  = λ 1r 1c 0I + 1r  dx)x()x(I
0

1 


           (7) 

)0(W n,A1  = λ 1r 1nc  0I + 1r  dx)x()x(I
0

1n 


 + 1r λ dx)x(Ic
0

1kn
n

1k
k 






, n ≥ 1      (8) 

)0(W 0,B1  = λ (1 – 1r ) 1c 0I + (1 – 1r ) dx)x()x(I
0

1 


         (9) 

)0(W n,B1  = λ (1 – 1r ) 1nc  0I + (1 – 1r ) dx)x()x(I
0

1n 


  

+ (1 – 1r ) λ dx)x(Ic
0

1kn
n

1k
k 






, n ≥ 1        (10) 

)0(W n,A2  = 2r dx)x()x(W A1
0

n,A1 


 + 2r dx)x()x(W B1
0

n,B1 


, n ≥ 0     (11) 

)0(W n,B2  = (1 – 2r ) dx)x()x(W A1
0

n,A1 


 + (1 – 2r ) dx)x()x(W B1
0

n,B1 


, n ≥ 0    (12) 

)0(V n,1  = 1 dx)x()x(W A2
0

n,A2 


+ 1 dx)x()x(W B2
0

n,B2 


, n ≥ 0     (13) 

)0(V n,2  = 2 dx)x()x(V 1
0

n,1 


, n ≥ 0         (14) 

Define the probability generating functions for |z| < 1: 

I(z,x) = 


1n

n
n z)x(I , Wij(z,x) = 



0n

n
n,ij z)x(W , i= 1,2; j = A, B and Vi(z,x) = 



0n

n
n,i z)x(V , i= 1,2 
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Theorem 1 

 Under the steady state, the joint steady state distributions of {(J(t), N(t)), t ≥ 0} are obtained as  
I (z)    =  0I [ z – C(z) T(z)] [1 − )(A*  ] / D(z)             (15) 

)z(W A1 = 0I 1r )(A*  [1 – )))z(C1((B*
A1  ] / D(z)                  (16) 

)z(W B1 = 0I (1– 1r ) )(A*  [1 – )))z(C1((B*
B1  ] / D(z)                  (17) 

)z(W A2 = 0I )(A*  [1 – )))z(C1((B*
A2  ] 2r [ 1r )))z(C1((B*

A1  +(1– 1r ) )))z(C1((B*
B1  ]/ D(z)    (18) 

)z(W B2 = 0I )(A*  [1– )))z(C1((B*
B2  ](1– 2r )[ 1r )))z(C1((B*

A1  +(1– 1r ) )))z(C1((B*
B1  ]/D(z)  (19) 

)z(V1  = 0I )(A*  [1 – )))z(C1((V*
1  ] 1 [ 1r )))z(C1((B*

A1  + (1– 1r ) )))z(C1((B*
B1  ]   

   [ 2r )))z(C1((B*
A2  + (1– 2r ) )))z(C1((B*

B2  ] / D(z)            (20) 

)z(V2   = 0I )(A*  [1– )))z(C1((V*
2  ] 1 2 )))z(C1((V*

1  [ 1r )))z(C1((B*
A1  +(1– 1r )     

    )))z(C1((B*
B1   ] [ 2r )))z(C1((B*

A2  + (1– 2r ) )))z(C1((B*
B2  ] / D(z)      (21) 

where         0I = 3T  / )(A*                          (22) 

D(z) =T(z) [ )(A*  + C(z) (1 – )(A*  )] – z 
T(z) =[ 1r )))z(C1((B*

A1  +(1– 1r ) )))z(C1((B*
B1  ][ 2r )))z(C1((B*

A2  +(1– 2r ) )))z(C1((B*
B2  ] 

        [1– 1 + 1 (1– 2 ) )))z(C1((V*
1  + 1 2 )))z(C1((V*

1  )))z(C1((V*
2  ] 

1T =λ 1C [ 1r 11A + (1– 1r ) 1B1 + 2r 1A2 + (1– 2r ) 1B2 + 1 11v + 1 2 21v ] 

2T = 2 2
1C {[ 1r 1A1 +(1– 1r ) 1B1 ][ 2r 1A2 +(1– 2r ) 1B2 + 1 11v + 1 2 21v ]+[ 1r 2A1  

+(1– 1r ) 2B1 + 2r 2A2 +(1– 2r ) 2B2 + 1 12v +2 1 2 11v 21v + 1 2 22v ]/2 
+ 1 [ 2r 1A2 +(1– 2r ) 1B2 ][ 11v  + 2 21v ]} 

3T  = 1 − 1C [ 1 − )(A*  ] − 1T  
 
Proof: 
 Applying usual procedure, equations (2) – (14) yield  
 I (z, x)  = I (z, 0) xe  [1 – A(x)]          (23) 

)x,z(WiA  = )0,z(WiA
x))z(C1(e  [1 – )x(BiA ], i = 1, 2       (24) 

)x,z(WiB  = )0,z(WiB
x))z(C1(e  [1 – )x(BiB ], i = 1, 2       (25) 

)x,z(Vi  = )0,z(Vi
x))z(C1(e  [1 – )x(Vi ], i = 1, 2            (26) 

 I(z, 0) = λ 0I [ z – C(z) T(z)] / D(z)                   (27) 

)0,z(W A1  = λ 0I 1r )(A*  [1 – C(z)] / D(z)             (28) 

)0,z(W B1  = λ 0I (1– 1r ) )(A*  [1 – C(z)] / D(z)        (29) 

)0,z(W A2  = λ 0I )(A*  [1 –C(z)] 2r [ 1r )))z(C1((B*
A1  +(1– 1r ) )))z(C1((B*

B1  ]/D(z)     (30) 

)0,z(W B2  =λ 0I )(A*  [1–C(z)](1– 2r )[ 1r )))z(C1((B*
A1  +(1– 1r ) )))z(C1((B*

B1  ]/D(z)          (31) 

)0,z(V1  = λ 0I )(A*  [1 – C(z)] 1 [ 1r )))z(C1((B*
A1  + (1– 1r ) )))z(C1((B*

B1  ]   
[ 2r )))z(C1((B*

A2  + (1– 2r ) )))z(C1((B*
B2  ] / D(z)      (32) 
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)0,z(V2  = λ 0I )(A*  [1 – C(z)] 1 2 )))z(C1((V*
1   

    [ 1r )))z(C1((B*
A1  + (1– 1r ) )))z(C1((B*

B1  ] 
[ 2r )))z(C1((B*

A2  + (1– 2r ) )))z(C1((B*
B2  ] / D(z)      (33) 

Using equations (27) – (33) in the equations (23) – (26), we have the following partial 
generating functions 
I (z, x)   = λ 0I [ z – C(z) T(z)] xe  [1 – A(x)] / D(z)            (34) 

)x,z(W A1  = λ 0I 1r )(A*  [1 – C(z)] x))z(C1(e  [1 – )x(B A1 ]/ D(z)          (35) 

)x,z(W B1  = λ 0I (1– 1r ) )(A*  [1 – C(z)] x))z(C1(e  [1 – )x(B B1 ]/ D(z)         (36) 

)x,z(W A2  = λ 0I )(A*  [1 – C(z)] 2r [ 1r )))z(C1((B*
A1  +(1– 1r ) )))z(C1((B*

B1  ]  
   x))z(C1(e  [1 – )x(B A2 ]/ D(z)              (37) 

)x,z(W B2  = λ 0I )(A*  [1–C(z)] (1– 2r ) [ 1r )))z(C1((B*
A1  +  

(1– 1r ) )))z(C1((B*
B1  ] x))z(C1(e  [1 – )x(B B2 ]/ D(z)           (38) 

)x,z(V1  = λ 0I )(A*  [1 – C(z)] 1 [ 1r )))z(C1((B*
A1  + (1– 1r ) )))z(C1((B*

B1  ]   

[ 2r )))z(C1((B*
A2  +(1– 2r ) )))z(C1((B*

B2  ] x))z(C1(e  [1– )x(V1 ]/ D(z)   (39) 

)x,z(V2  = λ 0I )(A*  [1 – C(z)] 1 2 )))z(C1((V*
1   

    [ 1r )))z(C1((B*
A1  + (1– 1r ) )))z(C1((B*

B1  ] 
[ 2r )))z(C1((B*

A2  + (1– 2r ) )))z(C1((B*
B2  ] x))z(C1(e  [1– )x(V2 ]/ D(z)  (40) 

Integrating equations (34) – (40) from0 to ∞ we get the results in the equations (15) – (21). By 

using the normalizing condition 0I +
1z

lim


[I(z)+ 


2

1i
(WiA(z)+WiB(z)+Vi(z))]=1 we obtain 

0I = 3T / )(A*  . 
Corollary-1 
 The mean number of customers in the orbit and system are  

qL  = 4T  / 3T             (41) 

sL  =  qL + λ 1C [ 1r 1A1 +(1– 1r ) 1B1 + 2r 1A2 +(1– 2r ) 1B2 ]           (42) 

where 4T  = 2T  + [ 1T 1C + 2C /2] (1 − )(A*  ) 
Proof: 
 The probability generating function of the number of customers in the orbit is  

)z(Pq = 0I + I(z) + 


2

1i
[ )z(WiA  + )z(WiB  + )z(Vi ] = 0I )(A*  (1 – z) / D(z)       (43) 

 The probability generating function of the number of customers in the system is 

)z(Ps  = )z(Ps  = 0I + I(z) + 


2

1i
[z )z(WiA  + z )z(WiB  + )z(Vi ] 

= 0I )(A*  (1 – z) [ 1r )))z(C1((B*
A1  + (1– 1r ) )))z(C1((B*

B1  ] 
[ 2r )))z(C1((B*

A2  + (1– 2r ) )))z(C1((B*
B2  ] / D(z)      (44) 

The results are obtained by differentiating equations (43) and (44) with respect to z and taking z→1. 
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The following theorem gives the decomposition of expected number of customer in the system 

and in the orbit for the model under consideration. 
Theorem 2 
 sL = L + L  and qL = L + L , where L  and L  are respectively the expected number of 
customers in the system and queue for the classical  bulk arrival two phase queue with two types of 
heterogeneous service and extended Bernoulli vacation and L is the expected number of customers in 
the orbit during retrial time for the model under study. 
Proof: 
 The probability generating function of the number of customer in the system for the classical 
bulk arrival two phase queue with two types of heterogeneous service and extended Bernoulli vacation 
is given by 

ϕ(z) =      ]T1[ 1 [1 − z] [ 1r )))z(C1((B*
A1  + (1– 1r ) )))z(C1((B*

B1  ] 
   [ 2r )))z(C1((B*

A2  + (1– 2r ) )))z(C1((B*
B2  ] / [T(z) – z]      (45) 

L  =  )z(
dz
dlim

1z



= 2T / ]T1[ 1 +λ 1C [ 1r 1A1 +(1– 1r ) 1B1 + 2r 1A2 +(1– 2r ) 1B2 ]         (46) 

 The probability generating function of the number of customer in the queue for the classical 
bulk arrival two phase queue with two types of heterogeneous service and extended Bernoulli vacation 
is  
 φ (z)    =     ]T1[ 1 [1 − z] / [T(z) – z]                       (47) 

      L  =  )z(
dz
dlim

1z



= 2T / ]T1[ 1            (48) 

 If the server is idle either due to retrial of customers from the orbit or due to empty system. 
Then 

 (z) = 
(1)  
(z)  

0

0



   
=  0I )(A*  [T(z) – z] / {D(z) ]T1[ 1 }            (49)

 
          L  =   )z(

dz
dlim

1z



 = 4T / 3T  − 2T  / ]T1[ 1         (50) 

 From equations (41), (42), (46), (48) and (50) it is clear that sL = L + L  and qL = L + L  
SYSTEM MEASURES 
 In this section, we provide explicit expressions for the system state probabilities and some 
important performance measures. 

 The probability that the server is idle in the non empty system is  
I  = 

1z
lim


I(z)  =  [1 − )(A*  ][ 1T + 1C − 1] / )(A*                (51) 

The mean system size when the server is in idle is 
 LI  = 

1z
lim


I '(z)  = [1 − )(A*  ]{[ 1C 1T + 2C / 2+ 2T ] +[ 1T − 1C + 1] 4T / 3T }/ )(A*      (52) 

 The probability that the server is busy is  

W =  )z(W
2

1i

B

Aj
ij 

 
 = λ 1C  [ 1r 1A1 + (1– 1r ) 1B1 + 2r 1A2 + (1– 2r ) 1B2 ]     (53) 

The mean system size when the server is busy is  
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WL = 2 2
1C [ 2r 2A2  + (1– 2r ) 2B2 + 1r 2A1  + (1– 1r ) 2B1 ] / 2  

+ λ 1C 4T [ 2r 1A2 + (1– 2r ) 1B2 + 1r 1A1 + (1– 1r ) 1B1 ] / 3T  

+ 2 2
1C [ 1r 2A1  + (1– 1r ) 2B1 ][ 2r 1A2 + (1– 2r ) 1B2 ]               (54) 

 The probability that the server is in on vacation is  
V = 1z

lim


[ )z(V1 + )z(V2 ] = 1 [ 11v + 2 21v ] λ 1C                           (55) 

The mean system size when the server is on vacation is  
Lv = 2 2

1C 1 [( 1r 1A1 + (1– 1r ) 1B1 + 2r 1A2 + (1– 2r ) 1B2 )[ 11v + 2 21v ]]  

           +  1  λ 1C 4T [ 11v + 2 21v ] / 3T  + 2 2
1C 1 [ 12v + 22v +2 11v 21v ] / 2           (56) 

 The availability of the server under the steady state condition is given by  

 A  = 0I +
1z

lim


{ I(z) + 


2

1i
 [ )z(WiA + )z(WiB ]} 

  ={ 3T +[1− )(A*  ][ 1T + 1C − 1]} / )(A*  + [ 1r 1A1 + (1– 1r ) 1B1 + 2r 1A2 + (1– 2r ) 1B2 ] λ 1C     (57) 
 
NUMERICAL ILLUSTRATION 

Assuming that the retrial time, service time and vacation time are exponentially distributed with 
parameters η, μij, βi, (i=1,2; j=A, B). Using MATLAB the performance measures are calculated and 
presented in table by taking the parameter values (θ1, θ2, µ1A, µ1B, µ2A, µ2B, r1, r2, c1, c2) = (0.5,0.5, 15, 
14, 12, 10, 0.5, 0.5, 0.5, 0.5) 

Table -1 Performance measures A, Lq and Ls 
λ Η β1 β2 A Lq Ls 

0.5 

10 
10 10 0.9437 0.0796 0.2002 

15 0.9500 0.0757 0.1963 

15 10 0.9562 0.0725 0.1931 
15 0.9625 0.0690 0.1895 

30 
10 10 0.9437 0.0450 0.1656 

15 0.9500 0.0420 0.1625 

15 10 0.9562 0.0396 0.1601 
15 0.9625 0.0368 0.1574 

50 
10 10 0.9437 0.0383 0.1589 

15 0.9500 0.0355 0.1560 

15 10 0.9563 0.0332 0.1538 
15 0.9625 0.0306 0.1512 

1 

10 
 

10 
10 

10 0.8875 0.3673 0.6083 
15 0.9000 0.3399 0.5810 

15 
15 

10 0.9125 0.3173 0.5584 
15 0.9250 0.2934 0.5345 

30 

10 
10 

10 0.8875 0.2122 0.4533 
15 0.9000 0.1937 0.4348 

15 
15 

10 0.9125 0.1790 0.4201 
15 0.9250 0.1629 0.4040 

50 
 

10 
10 

10 0.8875 0.1845 0.4256 
15 0.9000 0.1676 0.4086 

15 
15 

10 0.9125 0.1542 0.3952 
15 0.9250 0.1394 0.3804 

1.5 10 
 

10 
10 

10 0.8313 1.3859 1.7475 
15 0.8500 1.2230 1.5846 
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15 
15 

10 0.8688 1.0933 1.4549 
15 0.8875 0.9698 1.3314 

30 
 

10 
10 

10 0.8312 0.6841 1.0458 
15 0.8500 0.6069 0.9685 

15 
15 

10 0.8687 0.5460 0.9076 
15 0.8875 0.4840 0.8456 

50 
 

10 
10 

10 0.8313 0.5833 0.9450 
15 0.8500 0.5164 0.8780 

15 
15 

10 0.8688 0.4639 0.8255 
15 0.8875 0.4097 0.7713 

2 

10 
 

10 
10 

10 0.7750 14.8114 15.2936 
15 0.8000 8.7901 9.2722 

15 
15 

10 0.8250 6.0918 6.5739 
15 0.8500 4.4958 4.9780 

30 
 

10 
10 

10 0.7750 2.3716 2.8537 
15 0.8000 1.9535 2.4357 

15 
15 

10 0.8250 1.6495 2.1317 
15 0.8500 1.3827 1.8648 

50 
 

10 
10 

10 0.7750 1.8484 2.3306 
15 0.8000 1.5421 2.0242 

15 
15 

10 0.8250 1.3157 1.7978 
15 0.8500 1.1097 1.5919 

 
CONCLUSION 

 In this paper MX/ 








B2B1

A2A1
GG
GG

/1 queue with general retrial times, Bernoulli vacation and 

extended server vacation is analysed. Performance measures are obtained analytically and numerically. 
Future investigation can be carried out to incorporate a more complex system having non- Markovian 
input, balking and reneging. 
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