Anti Q-Fuzzy M-Subgroups Of Near Rings

A. Solairaju¹, P. Sarangapani², R. Nagarajan³ & P.Muruganantham⁴

¹AssociateProfessor, PG & Research Department of Mathematics, Jamal Mohamed college, Triuchirappalli-20, Tamilnadu, India ²Assistant Professor, Department of Computer Science, Kurinji College of Arts & Science, Tiruchirappalli-02, Tamilnadu, India ³Associate Professor, Department of Mathematics, J J College of Engineering and Technology, Tiruchirappalli-09, Tamilnadu, India

⁴Assistant Professor, Department of Mathematics, Kurinji College of Arts & Science, Tiruchirappalli-02, Tamilnadu, India

Abstract: In this paper, we introduce the notion of Q-fuzzification of M-subgroups in a near-ring and investigate some related properties. Characterization of Anti Q-fuzzy M- subgroups with respect to s-norm is given.

Keywords: Q-fuzzy set, Q- fuzzy M-subgroup (sub near rings), anti Q-fuzzy M-subgroups, s-norm.

AMS Subject Classification (2000): 03F055, 03E72

Section - 1: Introduction

The theory of fuzzy sets which was introduced by Zadeh [9] is applied to many mathematical branches. Abou-zoid [1], introduced the notion of a fuzzy sub near-ring and studied fuzzy ideals of near-ring. This concept discussed by many researchers among Cho, Davvaz, Dudek, Jun, Kim [2]. In [5], considered the intuitionistic fuzzification of a right (respectively left) R-subgroup in a near-ring. A.Solairaju and R.Nagarajan [7] introduced the new structures of Q-fuzzy groups and then they investigate the notion Q-fuzzy left R-subgroups of near rings with respect to T-norms in [6]. Also Cho.at.al in [2] the notion of normal intuitionistic fuzzy R-subgroup in a near-ring is introduced and related properties are investigated. The notion of intuitionistic Q-fuzzy semi-primality in a semi group is given by Kim [3]. In this paper, we introduce the notion of Q-fuzzification of left M-subgroups in a near ring and investigate some related properties. Characterizations of anti Q-fuzzy M- subgroups are given.

Section-2 : Preliminaries

Definition 2.1: A non empty set R with two binary operations '+' and '.' is called a near-ring if it satisfies the following axioms

- (i) (R,+) is a group.
- (ii) (R,.) is a semi group.
- (iii) $x.(y+z) = x \cdot y + x \cdot z$ for all $x,y,z \in R$. Precisely speaking it is a left near-ring. Because it satisfies the left distributive law.
- As R subgroup of a near- ring S is a subset H of R such that
 - (i) (H, +) is a subgroup of (R, +)
 - (ii) $RH \subset H$
 - (iii) $HR \subset H$. If H satisfies (i) and (ii) then it is called left N- subgroup of R and if N satisfies (i) and (iii) then it is called a right N- subgroup of R.

A map $f: R \rightarrow S$ is called homomorphism if f(x+y) = f(x) + f(y) for all x, y in R.

Definition 2.2: Let M is a left operator sets of group G, N is right operator sets of group G.

Definition 2.3 : Let G and G¹ both be M- groups. $f : G \to G^1$ be a homomorphism's, If f(mx) = mf(x) and f(x) = f(x) for all $x \in G$, $m \in M$, then f is called M -homomorphism.

Definition 2.4: Let R be a near ring. A fuzzy set ' μ ' in R is called Q- fuzzy sub near ring in R if (i) $\mu(x-y,q) \ge \min \{\mu(x,q), \mu(y,q)\}$

International Journal of Mathematics Trends and Technology- Volume4 Issue 8 - September 2013

(ii) $\mu(xy,q) \ge \min\{\mu(x,q), \mu(y,q)\}$ for all x, y in R.

 $\begin{array}{l} \textbf{Definition 2.5:} \ A \ Q-fuzzy \ set \ \mu \ is \ called \ a \ Anti \ Q-fuzzy \ M-subgroup \ of \ R \ over \ Q \ if \ \mu \ satisfies \\ (i) \ \mu(m(x-y), \ q) \ \leq max \{\mu(mx,q), \ \mu(my,q)\} \\ (ii) \ \mu(x,q) \ \leq \mu(x,q) \ \ for \ all \ x,y,m \ \in \ R \ and \ q \ \in \ Q. \end{array}$

Definition 2.6 : By a s-norm S, we mean a function S: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions

 $\begin{array}{ll} (S1) \ S(x,0) \ = \ x \\ (S2) \ S(x,y) \ \le \ S(x,z) \ \text{if} \ y \le z \\ (S3) \ S(x,y) \ = \ S(y,x) \\ (S4) \ S(x, \ S(y,z)) \ = \ S(S(x,y),z), \ \text{for all} \ x,y,z \ \in \ [0,1]. \end{array}$

Proposition 2.1: For a s-norm, then the following statement holds $S(x,y) \ge \max\{x,y\}$, for all $x,y \in [0,1]$.

Definition 2.8: Let S be a s-norm. A fuzzy set A in R is said to be sensible with respect to S if Im (A) c Δs , where $\Delta s = \{ s(\alpha, \alpha) = \alpha / \alpha \in [0,1] \}$

Section 3: Properties of Anti Q-Fuzzy M-Subgroups

Proposition 3.1: Let S be a s-norm. Then every imaginable anti Q- fuzzy M- subgroup μ of a near ring R is a Q-fuzzy M-subgroup of R.

Proposition 3.2: If μ is anti Q-fuzzy M-subgroups of a near ring R and Θ is an endomorphism of R, then $\mu[\Theta]$ is a anti Q-fuzzy M-sub group of R

Proposition 3.3: An onto homomorphism's of anti Q- fuzzy M-subgroup of near ring R is anti Q-fuzzy M-subgroup.

Proof: Let $f : R \to R^1$ be an onto homomorphism of near rings and let ξ be anti Q-fuzzy M-subgroup of R^1 and μ be the pre image of ξ under f, then we have

 $\begin{array}{ll} (i) \ \mu(m(x-y) \ , \ q) &= \ \xi(f(m(x-y),q)) \\ &= \ \xi(f(mx,q),f(my,q)) \\ &\leq \ S(\xi(f(mx,q)),\xi(f(my,q))) \\ &\leq \ S(\mu(mx,q),\mu(my,q)) \\ (ii) \ & \ \mu(x,q) \ &= \ \xi \ (f \ (x,q)) \\ &\leq \ \xi(f(x,q)) \\ &\leq \ \xi(f(x,q)) \\ &\leq \ \mu(x,q) \end{array}$

Proposition 3.4: An onto homomorphic image of a anti Q-fuzzy M-subgroup with the inf property is anti Q-fuzzy M-subgroup.

Proof: Let f: $R \rightarrow R^1$ be an onto homomorphism of near rings and let μ be a **inf** property of anti Q-fuzzy M- subgroups of R. Let $x^1, y^1 \in \mathbb{R}^1$, and $x_0 \in f^1(x^1), y_0 \in f^1(y^1)$ be such that $\mu(x_{0},q) = inf \mu(h,q), \mu(y_{0},q) = inf \mu(h,q)$ $(h,q) \in f^{-1}(v^1)$ $(\mathbf{h},\mathbf{q}) \in \mathbf{f}^1(\mathbf{x}^1)$ Respectively, then we can deduce that (i) $\mu^{f}(m(x^{1}-y^{1}), q) = \inf \mu(mz,q)$ $(mz,q) \in f^{-1}(m(x^1-y^1),q)$ $\leq \max \{\mu(mx_0,q), \mu(my_0,q)\}$ $= \max{\{\inf \mu(mh,q), \inf \mu(mh,q)\}}$ $(h,q) \in f^{1}(x^{1},q)$ $(h,q) \in f^{1}(y^{1},q)$ $= \max{\{\mu^{f}(mx^{1},q), \mu^{f}(my^{1},q)\}}$ (ii) $\mu^{t}(\mathbf{x},\mathbf{q})$ = **inf** $\mu(z,q)$ $(z,q) \in f^{-1}(r^1x^1,q)$ $\leq \mu(y_0, q)$ = **inf** $\mu(h,q)$ $(\mathbf{h},\mathbf{q}) \in f^{-1}(\mathbf{y}^{1},\mathbf{q})$ $= \mu^{f}(y^{1},q)$ Hence μ^{f} is a anti Q-fuzzy M-subgroup of R¹.

Proposition 3.5: Let S be a continuous s-norm and let f be a homomorphism on a near ring R. If μ is anti Q-fuzzy M-subgroup of R, then μ^{f} is anti Q-fuzzy M-subgroup of f(R).

Proof: Let $A_1 = f^{-1}(y_1,q)$, $A_2 = f^{-1}(y_2,q)$ and $A_{12} = f^{-1}(n(y_1-y_2), q)$ where $y_1, y_2 \in f(S)$, $q \in Q$ Consider the set $A_1 - A_2 = \{ x \in S / (x,q) = (a_1,q) - (a_2,q) \}$ for some $(a_1,q) \in A_1$ and $(a_2,q) \in A_2$. If $(x,q) \in A_1$ - A_2 , then $(x,q) = (x_1,q) - (x_2,q)$ for some $(x_1,q) \in A_1$ and $(x_2,q) \in A_2$ so that we have $f(x,q) = f(x_1,q) - f(x_2,q)$ $= y_1 - y_2$ $(x,q) \in f^{-1}((y_1,q) - (y_2,q))$ $= f^{-1}(n(y_1-y_2), q) = A_{12}$ Thus $A_1 - A_2 \subset A_{12}$ It follows that (i) $\mu^{f}(m(y_1-y_2), q)$ $= \inf \{ \mu(mx,q)/(mx,q) \in f^{1}(my_{1},q) - (my_{2},q)) \}$ = $\inf \{ \mu(mx,q) / (x,q) \in A_{12} \}$ \geq **inf**{ $\mu(mx,q)/(x,q) \in A_1-A_2$ } $\geq \inf \{\mu((mx_1,q), (mx_2,q)) \mid (x_1,q) \in A_1 \text{ and } (x_2,q) \in A_2 \}$ \geq **inf**{S($\mu(mx_1,q)$, $\mu(mx_2,q)$)/(x_1,q) \in A₁ and (x_2,q) \in A₂} Since S is continuous. For every $\varepsilon > 0$, we see that if inf { $\mu(mx_1,q) / (x_1,q) \in A_1$ } - (mx_1^*, q) } $\geq \delta$ and inf { $\mu(mx_2,q) / (x_2,q) \in A_2$ } - (mx_2^*,q)} $\geq \delta$

$$\begin{split} & S\{\inf\{\mu(mx_1,q) \mid (x_1,q) \in A_1\}, \inf\{\mu(mx_2,q) \mid (x_2,q) \in A_2\} - S\left((mx_1^*,q), (mx_2^*,q) \geq \epsilon \right. \\ & Choose\left(a_1,q\right) \in A_1 \text{ and } (a_2,q) \in A_2 \text{ such that} \\ & \inf\{\mu(mx_1,q) \mid (x_1,q) \in A_1\} - \mu(ma_1,q) \geq \delta \quad \text{ and} \\ & \inf\{\mu(mx_2,q) \mid (x_2,q) \in A_2\} - \mu(ma_2,q) \geq \delta. \\ & Then we have \\ & S\{\inf\{\mu(mx_1,q)/(x_1,q) \in A_1\}, \inf\{\mu(mx_2,q)/(x_2,q) \in A_2\} - S(\mu(ma_1,q),\mu(ma_2,q) \geq \epsilon \\ & \text{ consequently, we have } \mu^f(m(y_1 - y_{j_1}, q) \leq \inf\{S(\mu(mx_1,q), \mu(x_2,q)) \mid (x_1,q) \in A_1, (x_2,q) \in A_2\} \\ & \leq S \left(\inf\{\mu(mx_1,q) \mid (x_1,q) \in A_1\}, \inf\{\mu(mx_2,q) \mid (x_2,q) \in A_2\} \\ & \leq S \left(\inf\{\mu(mx_1,q) \mid \mu^f(my_2,q)\} \\ & \text{ Similarly we can show } \mu^f(x,q) \leq \mu^f(y,q) \\ & \text{ Hence } \mu^f \text{ is anti } Q\text{-fuzzy } M\text{-subgroup of } f(R). \end{split}$$

Proposition 3.6: Let μ be anti Q-fuzzy M-subgroup of R. Then the Q-fuzzy subset $\langle \mu \rangle$ is a anti Q-fuzzy M-subgroup of S generated by μ . More over $\langle \mu \rangle$ is the smallest anti Q-fuzzy M-subgroup containing μ .

Proof: Let $x, y \in N$ and let $\mu(x,q) = t$, $\mu(y,q) = t_2$ and $\mu(m(x-y),q) = t$ Let it possible $t = \langle \mu \rangle (m(x-y),q) \ge S\{\langle \mu \rangle (mx,q),\langle \mu \rangle (my,q)\}$ S { t_1, t_2 } = t_1 (say) Then $t_1 = \langle \mu \rangle (mx,q) = \inf\{k/x \in \langle \mu_k \rangle\} \le t$, therefore there exist k_1 , such that $x \in \langle \mu_{k1} \rangle$. Also $t_2 = \langle \mu \rangle (my,q) = \sup\{k/y \in \langle \mu_k \rangle\} t_1 \leq t$. Therefore there exists $k_2 \leq t$ such that $y \in \langle \mu_k \rangle$ without loss of generality, we may assume that $k_1 k_2$, so that $\langle \mu_{k1} \rangle \subset \langle \mu_{k2} \rangle$. Then $x, y \in \langle \mu_k \rangle$ that is x-y which is a contradiction since $k_2 \leq t$. therefore $t \leq t_1$. Consequently, $\mu(m(x-y),q) \le S\{\langle \mu \rangle (mx,q), \langle \mu \rangle (my,q)\}$ ----- (1) Now let, if possible, $t_3 = \langle \mu \rangle (x,q) \leq \langle \mu \rangle (x,q) = t_1$ Then $t_1 = \langle \mu \rangle$ (x,q) = **inf** {k / x $\in \langle \mu_k \rangle$ } $\leq t_3$, therefore there exists k such that x $\in \langle \mu_k \rangle$ and $t_1 \le k \le t_3$ so that $x \in \langle \mu_k \rangle \subset \{\mu_{t_1}\}$ which is a contradiction. Hence $t_3 = \langle \mu \rangle (x,q) \leq \langle \mu \rangle (x,q) = t_1$ ----- (2) Consequently conditions (1) and (2) yield that $\langle \mu \rangle$ is a anti Q-fuzzy M- subgroup of R. Finally, to show that $\langle \mu \rangle$ is the smallest anti Q-fuzzy M-subgroup containing μ , let us assume that θ to be anti Q-fuzzy M-subgroup of R such that $\mu \subset \theta$ and show that $\langle \mu \rangle$ $\subset \theta$. Let it possible, $t = \langle \mu \rangle (x,q) \ge \theta (x,q)$ for some $x \in N$, $q \in Q$. Let $\varepsilon > 0$ be given, then $t = \mu_t = \sup \{ k / x \in \langle \mu_k \rangle \}$. Therefore there exists k such that $x \in \langle \mu_k \rangle$ and $t - \varepsilon \geq k \geq t$ so that $x \in \langle \mu_k \rangle \subset \langle \mu_t - \varepsilon \rangle$, for all $\varepsilon > 0$. Now $\mathbf{x} = \dot{\alpha}_1 \mathbf{x}_1 + \dot{\alpha}_2 \mathbf{x}_2 + \dots \dot{\alpha}_n \mathbf{x}_n$, $\dot{\alpha}_i \in \mathbf{N}$, \mathbf{x}_i belongs to t- ε . $\mathbf{x}_i \varepsilon \mu_{t-\varepsilon}$ implies $\mu(\mathbf{x}_i, \mathbf{q}) \le t-\varepsilon$, that is $\theta(\mathbf{x}_i, \mathbf{q}) \le t-\varepsilon$ for all $\varepsilon > 0$. Therefore $\theta(\mathbf{x},\mathbf{q}) \leq S \{\theta(\mathbf{x}_1,\mathbf{q}), \theta(\mathbf{x}_2,\mathbf{q}) \dots \theta(\mathbf{x}_n,\mathbf{q})\}$ \leq t- ε for $\varepsilon > 0$ Hence $\theta(x, q) = t$ which is a contradiction to our assumption.

Proposition3.7: Let μ be a anti Q-fuzzy M-subgroup of a near ring R and let μ^* be a Q-fuzzy set in N defined by $\mu^*(x,q) = \mu(x,q) + 1-\mu(0,q)$ for all $x \in N$. Then μ^* is a normal anti Q-fuzzy M-subgroup of R containing μ .

Proof : For any x, y \in R and q \in Q we have $\mu^*(m(x-y),q) = \mu(m(x-y),q) + 1 - \mu(0,q) \le S(\mu(mx,q)+1-\mu(0,q), (\mu(my,q)+1-\mu(0,q)))$ $= T (\mu^*(mx,q), \mu^*(my,q)).$ $\mu^*(x,q) = \mu(x,q) + 1 - \mu(0,q)$ $\le \mu(x,q) + 1 - \mu(0,q)$ $= \mu(x,q)$

Proposition 3.8: Let μ be anti Q- fuzzy M- subgroup of near ring R. Let μ^+ be a fuzzy α -cut set in R defined by $\mu^+(x,q) = \mu(x,q) + 1 - \mu(0,q)$ for $x \in R$, $q \in Q$. Then μ^+ is α - cut normal anti Q-fuzzy M- subgroup of R which contains μ .

Proof: For any $x, y \in R$, we have $\mu^+(x,q) + 1 - \mu(0,q)$ and $\mu^+(x,q) \le \alpha$ for all $x \in R$, $m \in M$. $\mu^+(m(x-y), q) = \mu(m(x-y), q) + 1 - \mu(0,q)$
$$\begin{split} & \leq \max \; \{ \; \mu(m_{x,}q), \mu(m_{y,}q) \} + 1 - \mu(0,q) \\ & = \max \{ \mu(m_{x,}q) + 1 - \mu(0,q), \mu(m_{y,}q) + 1 - \mu(0,q) \} \\ & = \max \; \{ \; \mu^{+}(m_{x,}q), \; \mu^{+}(m_{y,}q) \} \\ & \leq \max \; \{ \; \alpha, \alpha \} \leq \alpha \\ \mu^{+}(x,q) & = \mu(x,q) + 1 - \mu(0,q) \\ & \leq \mu(x,q) + 1 - \mu(0,q) \\ & = \mu^{+}(x,q) \\ & = \mu^{+}(x,q) \\ & \leq \alpha \end{split}$$

Therefore, μ^+ is a α -cut normal Anti Q-fuzzy M-subgroup of R.

Definition 3.9: Let u and v be Q-fuzzy subsets in R. Then the S-product of u and v written as $[u,v]_S(x,q) = S(u(x,q),v(x,q))$ for all $x \in R, q \in Q$.

Proposition 3.10 : If u and v be Anti Q-fuzzy M-subgroups of R, then the S-product of Anti Q-fuzzy M-subgroups of R is Anti Q-fuzzy M-subgroups of R.

Hence S-product of Anti Q-fuzzy M-subgroups of R is Anti Q-fuzzy left M-subgroups of R.

Definition3.11: Anti Q-fuzzy M- subgroup near ring R is said to Anti Q-fuzzy characteristic, if $A^{f}(x,q) = A(x,q)$ for all $x \in R, q \in Q$.

Proposition 3.12 : Let $f : R \to R'$ be an epimorphism of A, A is an anti Q-fuzzy M-subgroups of R then A^f is anti Q-fuzzy M-subgroups of R'.

 $\begin{array}{rl} \textbf{Proof:} \ \mbox{Let } x,y \in R \ \mbox{and} \ q \in Q \\ A^f(m(x-y),q) &= A \ f(m(x-y),q) \\ &= A \ (f(mx) - f(my), q) \\ &\leq max \ \{ \ A \ (f(mx),q), \ A \ (f(my),q) \} \\ &\leq max \ \{ \ A^f(mx,q), \ A^f(my,q) \} \\ A^f(x,q) &= A f(x,q) \\ &\leq A f(x,q) \\ &\leq A^f(x,q) \\ & \mbox{Therefore, } A^f \ \mbox{is anti } Q\mbox{-fuzzy } M\mbox{-N subgroup of } R^{\prime}. \end{array}$

Proposition 3.13 : Let $f : R \to R'$ be epimorphism. If A^f is anti Q-fuzzy M-subgroup of R', then A is anti Q-fuzzy M-subgroup of R.

Proof: Let $x, y \in R, q \in Q$, then there exists $a, b \in X$ such that f(a,q) = x and f(b,q) = y. It follows that $A(x,q) = A f(a,q) = A^{f}(a,q)$ $A(m(x-y),q) = A f(a,q) = A^{f}(a,q) \le \max \{A^{f}(a,q), A^{f}(b,q)\}$ $= \max \{A(a,q), A(b,q)\}$ $\le \max \{A(x,q), A(y,q)\}$ $A(xn,q) = A f(a,q) = A^{f}(a,q) \le A f(a,q) \le A f(x,q)$ Therefore A is anti Q-fuzzy M- subgroup of R.

International Journal of Mathematics Trends and Technology- Volume4 Issue 8 - September 2013

Conclusion: Osman kazanci, Sultanyamark and Serifeyilmaz introduced the intutionistic Q-fuzzy R-subgroups of near rings. A.Solairaju and R.Nagarajan investigate the notion of Q-fuzzy left R-subgroup of near rings with respect to T-norms. In this paper we investigate the notion of anti Q-fuzzy M-subgroup of near ring with respect to s-norm and the characterization of them.

References:

[1]. S. Abou-Zoid, "On fuzzy sub near rings and ideals", Fuzzy sets. Syst. 44 (1991), 139-146.

[2]. Y.U. Cho, Y.B.Jun, "On intuitionistic fuzzy R- subgroup of near rings", J. Appl. Math. and Computing, 18 (1-2) (2005), 665-677.

[3]. K.H.Kim, Y.B. Jun, "On fuzzy R- subgroups of near rings, J. fuzzy math 8 (3) (2000), 549-558.

[4]. K.H.Kim, Y.B.Jun, "Normal fuzzy R- subgroups of near rings", J. fuzzy sets. Syst.121(2001), 341-345.

[5]. Osman Kazanci, Sultan Yamark and Serife Yimaz "On intuitionistic Q- fuzzy
mathematical forum, 2, 2007, 59, (2899-2910)R- subgroups of near rings, International
59, (2899-2910)[6]. A. Solairaju and R. Nagarajan, "Q-fuzzy left R-subgroups of near rings with respect to T-norm", Antarctica Journal of
Mathematics, 5(2)(2008), 59-63.

[7]. A. Solairaju and R. Nagarajan, "A New structure and construction of Q-fuzzy groups", Advanced Fuzzy Mathematics, 4(1)(2009), 23-29.

[8]. Solairaju A, P.Sarangapani, R.Nagarajan, Union fuzzy soft N-groups, International Research Journal of Pure Algebra, Vol.3,No.6(2013), PP 242-246.

[9]. Zadeh L.A, "Fuzzy Sets", Information and Control Vol.8,(1965) pp 338-353.