MAX-NORM Q-FUZZY INTERVAL VALUED SUBGROUPS OF NEAR RINGS

A. Solairaju¹, P. Sarangapani², R. Nagarajan³ & P.Muruganantham⁴

¹AssociateProfessor, PG & Research Department of Mathematics, Jamal Mohamed College, Triuchirappalli-20, Tamilnadu, India

²Assistant Professor, Department of Computer Science, Kurinji College of Arts & Science, Tiruchirappalli-02, Tamilnadu, India

³Associate Professor, Department of Mathematics, J J College of Engineering and Technology, Tiruchirappalli-09, Tamilnadu, India

⁴Assistant Professor, Department of Mathematics, Kurinji College of Arts & Science, Tiruchirappalli-02, Tamilnadu, India

Abstract: In this paper we introduce the notion of Interval Max norm Q-fuzzy R-subgroup of near rings and investigate some of their properties. Using Lower level set, we give a characterization of Maxⁱ Q-fuzzy right R- subgroup. Finally we establish the idea of the homomorphic image and the inverse image.

Key words: Interval number, Interval max norm, Q-fuzzy set, Homomorphism, Lower level cut, near rings.

Section 1: Introduction

ISSN: 2231-5373

Zadeh [18] made an extension of the concept of fuzzy sets by an interval valued set.. Abou-zoid [1], introduced the notion of a fuzzy sub near-ring and studied fuzzy ideals of near-ring. The notion of intuitionistic Q- fuzzy semi primality in a semi group is given by Kim [3]. Roy and Biswas [12] studied the interval valued fuzzy relations and applied these in seaxhez's approach for medical diagnosis, and Jun and Kim [5] discussed interval valued fuzzy subalgebra's in BCK'S algebra's. Gor. Zalczany[2] studied the interval valued fuzzy sets for approximate reasoning. A.Solairaju and R.Nagarajan introduced the concept of Structures of Q- fuzzy groups [[13],[14],[15],[16],[17]]. In this paper, we introduce the notion of Interval Max norm Q-fuzzy R-subgroup of near rings and investigate some of their properties. Using Lower level set, we give a characterization of Maxⁱ Q-fuzzy right R- subgroup. Finally we establish the idea of the homomorphic image and the inverse image.

Section 2: Preliminaries

We first recall some basic concept which are used to present the paper.

An interval number on [0,1], say \bar{a} is a closed subinterval of [0,1], (ie) $\bar{a}=[a^-,a^+]$ where

$$0 \le a^- \le a^+ \le 1$$
.

For any interval numbers $\bar{a} = [a^-, a^+]$ and $\bar{b} = [b^-, b^+]$ on [0,1], we define

- (i) $\overline{a} \le \overline{b}$ if and only if $\overline{a} \le \overline{b}$ and $a^+ \le b^+$
- (ii) $\overline{a} = \overline{b}$ if and only if $\overline{a} = \overline{b}$ and $a^+ = b^+$

(iii)
$$\overline{a} + \overline{b} = [a^- + b^-, a^+ + b^+]$$
, whenever $\overline{a} + \overline{b} \le 1$ and $a^+ + b^+ \le 1$

Let X be a set. A mapping $A: X \to [0,1]$ is called a fuzzy set in X. Let A be a fuzzy set in

X and $\alpha \in [0,1]$. Define $L(A : \alpha)$ as follows

 $L(A: \alpha) = \{ x \in X / A(x) \le \alpha \}$. Then $L(A:\alpha)$ is called the Lower level cut of A.

Let X be a set. A mapping $\overline{A}: X \to D[0,1]$ is called on interval-valued fuzzy set (briefly i-v fuzzy set) of X, where D[0,1] denotes the family of all closed sub intervals of [0,1], and $\overline{A}(x) = [A^-(x), A^+(x)], \ \forall \ x \in X$, where \overline{A} and A^+ are fuzzy sets in X.

For an i-v fuzzy set \overline{A} of a set X and $(\alpha, \beta) \in D[0,1]$ define $L(\overline{A}: [\alpha, \beta])$ as follows

 $\overline{L}(A:[\alpha,\beta]) = \{x \in X / \overline{A}(x) \le [\alpha,\beta]\}$ which is called the Level sub set of \overline{A} .

Section 3: Interval Max-Norm Q-fuzzy R-sub groups.

The notion of an Interval Max-Norm was introduced by Jun and Kim as follows.

Definition 3.1: A mapping

 Max^i : D[0,1] × D[0,1] \rightarrow D[0,1] given by

 $\operatorname{Max}^i(\overline{a}, \overline{b}) = [\max{(\overline{a}, \overline{b})}, \max(a^+, b^+)], \forall \overline{a}, \overline{b} \in D[0, 1] \text{ is called an Interval Max-Norm.}$

Proposition 3.1: Let Maxⁱ be an Interval Max-Norm on D[0,1] then

- (i) $\operatorname{Max}^{i}(\overline{a}, \overline{b}) = \overline{a}, \forall \overline{a} \in D[0,1]$
- (ii) $\operatorname{Max}^{i}(\overline{a}, \overline{b}) = \operatorname{Max}^{i}(\overline{b}, \overline{a}), \forall \overline{a}, \overline{b} \in D[0,1]$
- (ii) If $\overline{a} \le \overline{b}$ in D[0,1], then $Max^{i}(\overline{a},\overline{c})$ $\le Max^{i}(\overline{b},\overline{c})$, $\forall \overline{c} \in D[0,1]$

Definition 3.2: An interval valued fuzzy set $\bar{A}(i-v)$ is a near ring R is called an interval valued right (respectively left) R-subgroup of R with respect to the interval Max-norm Maxⁱ (briefly a Maxⁱ Q-fuzzy Right (respectively left)) R-subgroup if

(IVR1):
$$\bar{A}$$
 (x-y, q) \leq Maxⁱ (\bar{A} (x, q), \bar{A} (y, q))
(IVR2): \bar{A} (xr,q) \leq \bar{A} (x) (respectively)
 \bar{A} (rx) \geq \bar{A} (x) for all x, y, r \in R.

Example 3.1: Let $R = \{a,b,c,d\}$ be a set with two binary operators as follows

+	a	b	С	d
a	a	b	С	d
b	b	a	d	С
С	С	d	b	a
d	d	С	a	b

•	a	b	С	d
a	a	a	a	a
b	a	a	a	a
С	a	b	С	d

Then (R,+,.) is a near ring we define a Q-fuzzy set $\bar{A}:R\times Q\to [0,1]$ by

 $\bar{A}(c,q) = \bar{A}(d,r) = [0.3,0.4] > \bar{A}(b,q) = [0.2,0.3] > \bar{A}(a,q) = [0.1,0.2],$ then \bar{A} is a Maxⁱ Q-fuzzy Right R-subgroup of R.

Proof: For every $x \in R$, $q \in Q$,

$$\begin{split} \bar{A}(0, \, q) &= \bar{A}(x\text{-}x, \, q) \, \leq Max^i \, \{(\bar{A}(x, \, q), \, \bar{A}(x, \, q)\} \\ &= [\max{((A^-(x, \, q), \, A^-(x, \, q), \\ \max{((A^+(x, \, q), \, A^+(x, \, q))]} \\ &= [A^-(x, q), \, A^+(x, q)] = [A(x, q)] \end{split}$$

completing the proof. In what follows, the notion of Q-fuzzy (resp. Maxⁱ Q-fuzzy) R subgroup means the notion of Q-fuzzy (rsp. Maxⁱ Q-fuzzy)right R-subgroup.

Proposition 3.3: If $\{\bar{A}_i / i \in \wedge\}$ is a family of Maxⁱ Q-fuzzy R-subgroups of a near-ring R, Then so is $\wedge \bar{A}_i$ where \wedge is any index set.

Proof: Let $x, y \in R$, $q \in Q$, we have $(\land \bar{A}_i)(x-y,q)=\sup \{\bar{A}_i (x-y,q): i \in \land \}$

$$\leq sup\{Max^i\{\bar{A}_i(x,q),\,\bar{A}_i(y,q)\}:i{\in}\wedge\}$$

$$=\!\!Max^i\{sup\{\bar{A}_i(x,\!q)\!\!:\!\!i\!\in\!\wedge\},\!sup\{\;\bar{A}_i(y,\!q)\!\!:\!\!i\!\in\!\wedge\;\}\}$$

$$= Max^{i} \{ (\land \bar{A}_{i})_{i \in \land} (x,q), (\land \bar{A}_{i})_{i \in \land} (y,q) \}$$

And for every $r, x \in R$, we have $(\land \bar{A}_i)(xr,q) = \sup{\bar{A}_i(xr,q) : i \in \land}$

$$\leq sup \{\bar{A}(x r, q) : i \in \land\}$$

$$=(\wedge \bar{A}_i)(x,q)$$

Hence $\wedge \bar{A}_i$ is a Maxⁱ Q-fuzzy R-subgroup of R.

Proposition 3.4: Let R be a near-ring. An i-v Q-fuzzy set \bar{A} in R Max^i Q-fuzzy R-subgroup of R if and only if A^+ and A^- are Q-fuzzy R-subgroup of R.

Proof: Assume that A^+ and A^- are Q-fuzzy R-subgroup of R and let $x,y \in R$ and $q \in Q$. Then

$$\begin{split} \bar{A}(x-y, q) &= [\ A^{-}(x-y, q), \ A^{+}(x-y, q)] \\ &\leq Max^{i} \ \{(\bar{A}(x, q), \ \bar{A}(y, a)\} \ , \ Max^{i} \{A^{+}(x, q), \ A^{+}(y, q)\} \\ &= Max^{i} \ (\bar{A}(x, q), \ \bar{A}(y, q)) \end{split}$$

and for $x, r \in R$

$$\bar{A}(xr, q) = [A^{-}(xr, q), A^{+}(xr, q)]$$

 $\leq [A^{-}(x, q), A^{+}(x, q)] = \bar{A}(x, q)$

Here \bar{A} is a Maxⁱ Q-fuzzy R-subgroup of R.

Conversely,

$$[A^{\text{-}}(x\text{-}y,q),A^{\text{+}}(x\text{-}y,q)]\text{=}\bar{A}(x\text{-}y,q)\text{\leq}Max^{i}(\bar{A}(x,\,q),\bar{A}(y,q))$$

$$= \operatorname{Max}^{i} ([A^{-}(x,q), A^{+}(x,q)], [A^{-}(y,q), A^{+}(y,q)]) = [\operatorname{Max} (A^{-}(x,q), (A^{-}(y,q)), \operatorname{Max}(A^{+}(x,q), A^{+}(y,q))]$$

It follows that $A^{-}(x-y,q) \leq Max(A^{-}(x,q), A^{-}(y,q))$ and

$$A^{+}(x-y,q) \leq Max(A^{+}(y,q), A^{+}(y,q))$$

For any $xr \in R$ we have

$$[A^{-}(xr,q),A^{+}(xr,q)]=\bar{A}(xr,q)\leq \bar{A}(x,q)=[A^{-}(x,q),A^{+}(x,q)]$$

And So $A^-(xr,q) \le A^-(x,q)$ and $A^+(xr,q) \le A^+(x,q)$

How A and A are Q-fuzzy R subgroups of R.

Proposition 3.5: Every R subgroup of a near-ring R can be realized as an lower level R subgroup of a Maxⁱ Q-fuzzy R subgroup of R.

Proof: Let H be an R subgroup of a near-ring R and let Ā be on i-v Q-fuzzy set in R defined by

$$\bar{A}(x,q) = \begin{cases} \overline{a} & \text{if } x \in H \\ \overline{0} & \text{otherwise} \end{cases}$$

Where $\overline{a}\ (\neq \overline{0}) \in D[0,1]$. It is clear that $\overline{L}(\overline{A},\overline{a}) = H$. We will show that A is a Max^i Q-fuzzy R-subgroup of R. If $x,y\in H$, then $x-y\in H$ and so

$$\bar{A}(x-y,q) = \overline{a} = Max^{i} \ (\overline{a}, \overline{a}) = Max^{i} \ (\bar{A}(x,q), \ \bar{A}(x,q)).$$

If x,y does not belongs to H ,then $\bar{A}(x,q) = \bar{0} = \bar{A}(y,q)$ and thus

$$\bar{A}(x-y,q) \le = Max^i(\bar{0},\bar{0}) = Max^i(\bar{A}(x,q),\bar{A}(x,q))$$

Suppose that the only one of x, y belongs to H, say x. then

 $\bar{A}(x-y) \leq \overline{0} = Max^i(\overline{a},0) = Max^i \ (\bar{A}(x,q), \ \bar{A}(y,q)). \ \ Now \ if \ x \in R/H \ , \ then \ \bar{A}(x,q) = \overline{0} \ \ and \ so \ \bar{A}(xr,q) \leq \overline{0} = \bar{A}(x)$ for all $r \in R$. If $x \in H$, then $xr \in H$ which implies that $\bar{A}(xr,q) = \overline{a} = \bar{A}(x,q)$ for all $r \in R$. Hence \bar{A} is a Max^i Q-fuzzy R-subgroups of R.

Proposition 3.6: Let H be a subset of a near-ring R. A function $\tau_H : R \times Q \to D[0,1]$ Defined by

$$\tau_H(x,q) = \left\{ \begin{array}{ll} \overline{1} & \text{if} \ x \in H \\ \overline{0} & \text{otherwise} \end{array} \right.$$

for all $x \in R$ is a Max^i Q-fuzzy R-subgroup of R. If and only if H is an R-subgroup of R.

Proof: Let H be an R-subgroup. Using the same inference of Proposition 3.4.

We know that τ_H is a Maxⁱ Q-fuzzy R-subgroup of R. Conversely, suppose that τ_H is a

Maxⁱ Q-fuzzy R-subgroup of R.

Let $x,y \in H$ then $\tau_H(x,q) = 1 = \tau_H(y,q)$, and so

$$\tau_H(x\text{-} y,\,q) \leq Max^i \, \{\tau_H(x\,\,,\,q), \tau_H(y,\,q)\} = Max^i(1\,\,,1) = 1.$$

It follows that $\tau_H(x-y,q) = 1$ so that $x-y \in H$.

Let $r \in R$ and $x \in H$ then we have $\tau_H(xr,q) \le \tau_H(x,q) = 1$ and So $xr \in H$. Hence H is an R-subgroup of R.

Proposition 3.7: If \bar{A} is a Maxⁱ Q-fuzzy R-subgroup of R, then the set

$$R_{\bar{A}}$$
: = { $x \in R/\bar{A}$ (x,q) = $\bar{A}(0,q)$ } is an R-subgroup of R.

 $\textbf{Proof} \hbox{: Let x , $y \in R_{\bar{A}}$ and $q {\in} Q$ then}$

$$\bar{A}(x,q) = \bar{A}(0,q) = \bar{A}(y,q)$$
 and so

$$\bar{A}(x-y,q) < Max^{i}(\bar{A}(x,q),\bar{A}(y,q)) = Max^{i}(\bar{A}(0,q),\bar{A}(0,q))$$

$$= \bar{A}(0,q)$$

It follows from Proposition 1.1 that $\bar{A}(x-y,q)=\bar{A}(0,q)$ So that $x-y\in R_{\bar{A}}$.

Let $r \in R$ and $x \in R_{\bar{A}}$ then we have

 $\bar{A}(xr,q) \le \bar{A}(x,q) = \bar{A}(0,q).$

Hence $\bar{A}(xr,q) = \bar{A}(x,q)$ and so $xr \in R_{\bar{A}}$.

Definition 3.3: Let R and R' be near-rings. A map $f:R \to R'$ is called a (near-ring) homomorphism if f(x+y) = f(x) + f(y) and f(xy) = f(x) f(y) for all $x, y \in R$.

Let X and Y be sets. A mapping $f: X \rightarrow Y$ induces two mappings.

 $F_f: IF(x) \rightarrow IF(y)$ and $F_f^{-1}: IF(y) \rightarrow IF(x)$

$$\text{We define } F_f(\bar{A})(y) = \begin{cases} \sup \bar{A}(x) & f^{-1}(y) \neq 0 \\ & x \in f^{-1}(y) \\ & \overline{0} \text{ otherwise} \end{cases}$$

and $F_f^{-1}(\overline{B})(x) = \overline{B}f(x) \ \forall x \in X$ where $\overline{A} = IF(x)$, \overline{B} IF(y) and

$$F^{-1}(y) = \{x \in X / f(x) = y\}$$

Proposition 3.8: An i-v Q-fuzzy set \bar{A} is a near-ring R is a Maxⁱ Q-fuzzy R-subgroup of R if and only if the non-empty lower level set $\bar{L}(\bar{A}:[\alpha,\beta])$ is an R-subgroup of R for $\alpha,\beta\in D[0,1]$

Proof: Assume that \bar{A} is a Maxⁱ Q-fuzzy R-subgroup of R and Let $[\alpha, \beta] \in D[0,1]$ be such that

 $x, y \in L(\bar{A}:[\alpha, \beta])$ Then $\bar{A}(x-y,a) \leq Max^{i}(\bar{A}(x,q),\bar{A}(y,q))$

$$\leq$$
Maxⁱ([α , β],[α , β])=[α , β],

and so $x-y \in \overline{L}(\bar{A}; [\alpha, \beta])$, let $r \in R$ Then we have

 $\bar{A}(xr,q) \le \bar{A}(x,q) = [\alpha,\beta]$ for every $x \in \bar{L}(\bar{A};[\alpha,\beta])$ and so $xr \in \bar{L}(\bar{A};[\alpha,\beta])$

Thus $\overline{L}(\overline{A}; [\alpha, \beta])$ is on R-subgroup of R.

Conversely, Assume that $\overline{L}(\bar{A}; [\alpha, \beta]) (\neq 0)$ is an R-subgroup of R for every $[\alpha, \beta] \in D[0, 1]$.

Suppose that there exist $x_0, y_0 \in R$ such that $\bar{A}(x_0 - y_0, q) > Max^i (\bar{A}(x_0, q), \bar{A}(y_0, q))$

Let
$$\bar{A}(x_0,q)=[\alpha_1\ ,\,\beta_1]$$
 , $\bar{A}(y_0,q)=[\alpha_2\ ,\,\beta_2]$ and $\bar{A}(x_0-y_0,q)=[\sigma_1,\,\sigma_2]$

Then
$$[\sigma_1, \sigma_2] > \text{Max}^i([[\alpha_1, \beta_1], [[\alpha_2, \beta_2])] = [\text{Max}^i(\alpha_1, \alpha_2), \text{Max}^i([\alpha_2, \beta_2)]]$$

Using the definition of the interval numbers with respect to the order '>'without loss of generality we may assume that $\delta_1 > \max(\alpha_1, \alpha_2)$ and $\delta_2 > \max(\beta_1, \beta_2)$,

Let
$$[\lambda_1, \lambda_2] = \frac{1}{2} (\bar{A}(x_0-y_0,q) + Max^i (\bar{A}(x_0,q), \bar{A}(y_0,q)))$$

Then
$$[\lambda_1, \lambda_2] = \frac{1}{2}([\delta_1, \delta_2] + [\max(\alpha_1, \alpha_2).\min(\beta_1, \beta_2)]) = [\frac{1}{2}(\delta_1 + \max(\alpha_1, \alpha_2)), \frac{1}{2}(\delta_2 + \max(\beta_1, \beta_2))]$$

It follows that $\max(\alpha_1, \alpha_2) < \lambda_1 = \frac{1}{2}(\sigma_1 + \max(\alpha_1, \alpha_2)) < \delta_1$

$$\max(\beta_1, \beta_2) < \lambda_2 = \frac{1}{2}(\sigma_2 + \max(\beta_1, \beta_2)) < \delta_2$$

So that

$$[\min(\alpha_1, \alpha_2), \min(\beta_1, \beta_2)] < [\lambda_1, \lambda_2] < [\delta_1, \delta_2] = \bar{A}(x_0 - y_0, q)$$

Therefore
$$x_0, y_0 \in \overline{L}$$
 (\overline{A} :[λ_1, λ_2])

On other hand, noticing that

$$\max(\alpha_1, \alpha_2) \ge \alpha_1$$
, $\max(\alpha_1, \alpha_2) \ge \alpha_2$,

$$\max(\beta_1, \beta_2) \ge \beta_1, \max(\beta_1, \beta_2) \ge \beta_2$$
 and we get

$$\bar{A}(x_0,q) = [\alpha_1,\beta_1] \leq [\max(\alpha_1,\alpha_2),\max(\beta_1,\beta_2)] < [\lambda_1,\lambda_2]$$

And

$$\bar{A}(y_0,q) = [\alpha_2,\beta_2] \leq [\max(\alpha_1,\alpha_2),\max(\beta_1,\,\beta_2)] < [\lambda_1,\lambda_2]$$

And so $x_0, y_0 \in \overline{L}(\bar{A}; [\lambda_1, \lambda_2])$ It contradicts that $\overline{L}(\bar{A}; [\lambda_1, \lambda_2])$ is on R-subgroup of R. Also suppose that there exists $x_0, y_0 \in R$ such that $\bar{A}(x_0r_0, q) > \bar{A}(x_0, q)$

Let $\bar{A}(x_0,q)=[\alpha_1,\beta_1]$ and $\bar{A}(x_0r_0,q)=[\delta_1,\delta_2]$

Then $[\delta_1, \delta_2] > [\alpha_1, \beta_1]$

Let [λ_1, λ_2] = $\frac{1}{2}(\bar{A}(x_0r_0, q) + \bar{A}(x_0, q))$

Then $[\lambda_1, \lambda_2] = \frac{1}{2}([\delta_1, \delta_2] + [\alpha_1, \beta_1]) = \frac{1}{2}(\delta_{1+} \alpha_1, \delta_{2+} \beta_1)$

it follows that $\alpha_1 < \lambda_1 = \frac{1}{2}(\delta_{1+} \alpha_1) < \delta_1$ and

$$\beta_1 < \lambda_2 = \frac{1}{2}(\delta_{2+}, \beta_1) < \delta_2$$

So that $[\alpha_1,\beta_1]<[\lambda_1,\lambda_2]<[\delta_1,\,\delta_2]=\bar{A}(x_0r_0,q)$

Therefore $x_0r_0 \in \overline{L}(\bar{A};[\lambda_1,\lambda_2])$. On the other hand ,we get $\bar{A}(x_0,\,q)=[\alpha_1,\beta_1]<[\lambda_1,\lambda_2]$ and so $x_0\in \overline{L}(\bar{A};[\lambda_1,\lambda_2])$. It contradicts that $\overline{L}(\bar{A};[\lambda_1,\lambda_2])$ is an R-subgroup of R. Hence \bar{A} is a Maxⁱ Q-fuzzy R-subgroup of R. This completes the proof.

Proposition 3.9: Let $f: R \to R'$ be an onto homomorphism of near-ring. If \bar{A} is a Maxⁱ Q-fuzzy R-subgroup of R. Then $F_f(\bar{A})$ is a Maxⁱ Q-fuzzy R-subgroup of R.

Proof: For any $y_1, y_2 \in R'$, let $S_1 = f^1(y_1)$

$$S_2=f^1(y_2)$$
 and $S_{12}=f^1(y_1-y_2)$

Consider the set

$$S_1 \text{ - } S_2 \text{ = } \{ \text{ } x \in R \text{ } / \text{ } x \text{=} a_1 \text{ - } a_2 \text{ for some } a_1 \in S, a_2 \in S \}$$

If $x \in S_1$ - S_2 , then $x = x_1$ - x_2 for $x_1 \in S$ and $x_2 \in S_2$ and so $f(x) = f(x_1 - x_2) = f(x_1) - f(x_2) = y_1 - y_2$

(ie)
$$x \in f^1(y_1-y_2,q) = S_{12}$$
. Thus $S_1 - S_2 \subseteq S_{12}$ it follows that

$$F_f(\bar{A}) (y_1-y_2,q) = \text{Sup} \ \bar{A}(x,q)$$

$$x \in f^{-1}(y_1 - y_2)$$

$$= \mathbf{Sup} \ \bar{A}(x \ ,q)$$
$$x \in S_{12}$$

$$\leq$$
 Sup $\bar{A}(x,q)$

$$x \in S_1 - S_2$$

= **Sup**
$$\bar{A}(x_1 - x_2, q)$$

$$x \in S$$
, $x_2 \in S2$

$$<$$
 Sup Maxⁱ ($\bar{A}(x_1,q)$, $\bar{A}(x_2,q)$)

$$x_1$$
- $x_2 \in S$

$$<$$
 Max^{i} ($Sup \bar{A}(x_1,q)$, $Sup \bar{A}(x_2,q)$)

$$x_1{\in S} \qquad \qquad x_2 \in S$$

$$= Max^{i} (F_{f}(\bar{A})(y_{1},q),F_{f}(\bar{A})(y_{2},q))$$

Also, for any $x,r \in R$. Let $T_1 = f^1(x)$, $T_2 = f^1(r)$ and $T_{12} = f^1(xr)$. Consider the set

$$T_1T_2 = \! \{y \!\in\! R \! / \ y \!\!=\! t_1t_2 \text{ for } t_1 \!\in\! T_1 \text{ and } t_2 \in\! T_2 \}. \text{ If } y \!\in\! T_1T_2 \text{ , then }$$

y = x'r' for some $x' \in T_1$ and $r' \in T_2$ and so

$$F(y) = f(x'r') = f(x')f(r') = xr$$

(ie)
$$y \in f^{-1}(x_2) = T_{12}$$
 thus $T_1T_2 \subseteq T_{12}$

It follows that $F_f(\bar{A})(xr,q) = \mathbf{Sup} \; \bar{A}(y,q)$

$$y \in f^{-1}(xr)$$

$$= \mathbf{Sup} \ \bar{A}(y,q)$$

$$y \in T_{12}$$

$$< \mathbf{Sup} \ \bar{A}(y,q)$$

$$y \in T_1T_2$$

$$= \mathbf{Sup} \ \bar{A}(x'r',q)$$

$$x' \in T_1,r' \in T_2$$

$$\leq \mathbf{Sup} \ \bar{A}(x',q)$$

$$x' \in T_1 = f^{-1}(x)$$

$$= F_f(\bar{A}) \ (x,q)$$

Similarly, $F_f(\bar{A})(r'x') \leq Ff^1(\bar{A})(x,q)$

Proposition 3.10: Let $f: R \to R'$ be a homomorphism of near rings. If B is a Maxⁱ Q-fuzzy R subgroup of R ,then $F_f^{-1}(\overline{B})$ is a Maxⁱ Q-fuzzy R subgroup of R.

Proof: Let
$$x,y \in R$$
, then $F_f^{-1}(\overline{B})(x-y,q) = \overline{B}(f(x-y,q))$

$$= \overline{B}(f(x,q)-f(y,q)) \leq \operatorname{Max}^i(\overline{B}(f(x,q),\overline{B}(f(y,q)))$$

$$= \operatorname{Max}^i(F_f^{-1}(\overline{B})(x,q),F_f^{-1}(\overline{B})(y,q))$$

Let $r \in \mathbb{R}$, then we have

$$Ff^{-1}(\overline{B})(xr,q) = \overline{B}(f(xr,q)) = \overline{B}(f(x,q),f(r,q))$$

$$\leq \overline{B}(f(x,q)) = F_f^{-1}(\overline{B})(x,q)$$

Hence $F_f^{-1}(B)$ is a Max^i Q-fuzzy R subgroup of R.

Conclusion : Y.B.Jun [6] introduced the concept of interval valued fuzzy R-subgroup of near ring. In this paper we introduce the notion of Interval Max norm Q-fuzzy R-subgroup of near rings and investigate some of their properties. Using Lower level set, we give a characterization of Maxⁱ Q-fuzzy right R- subgroup. Finally we establish the idea of the homomorphic image and the inverse image.

Future work: One can obtain the similar idea in interval valued soft fuzzy subgroup of near rings with suitable mathematical tool and characterize the images of soft fuzzy groups.

References:

- [1] Abou-Zoid S, Fuzzy sets and syst. 44(1991) 139-146.
- [2] Gor. Zalczany M.B, Fuzzy sets syst. 21 (1987) 1-17
- [3] Hong S.M, Y.B.Jun and H.S.Kim, Bull. Korean. Math. Soe 35(3)(1998) 455-464.
- [4] Hor C.K and H.S.Kim, Far East J.Math.Sci. Special Volume(1997) Part V 215-252.
- [5] Jun Y.B and K.H.Kim ,Bull. Korean. Math. Sci.(submitted)
- [6] Jun Y.B Indian Journal of Pure. Appl. Math 33(1) (2002) ,71-80.
- [7] Kim K.H and Y.B.Jun Journal of Fuzzy Math. 8(8) (2000) 549-558.
- [8] Kim K.H and Y.B.Jun, Scientific Mathemeticia 2(2) (1999) 147-153.
- [9] Kim K.H and Y.B.Jun.Korean Journal Comp. & Appl.Math 7(2)(2000) 685-692.
- [10] Kim S.D and H.S.Kim Bull. Korean. Math. Sci. 33(1996) 593-601.
- [11] Liu W Fuzzy sets. Syst. 8(1982) 133-139.
- [12] Roy M.K and R.Biswas. Fuzzy sets. Syst. 47(1992). 35-38.
- [13] Solairaju A, R.Nagarajan Q- fuzzy left R- subgroup of near rings w.r.t T- norms, Antarctica Journal of Mathematics, 5, no.2(2008), 59-63.
- [14] Solairaju A, R.Nagarajan A New structure and construction of Q- fuzzy groups, Advances in Fuzzy Mathematics, 4, No.1(2009), 23-29.
- [15] A.Solairaju and R.Nagarajan, Lattice valued Q- fuzzy sub modules of near rings with respect to norms", Advances in Fuzzy mathematics, 4(2)(2009),137-145.

[16] A.Solairaju and R.Nagarajan, Q- fuzzy subgroups of Beta fuzzy congruence relations on a group,. International Journal of Algorithms computing and Mathematics, Vol.3, No.3 (2010), PP 45-50.

[17] Solairaju and R.Nagarajan, characterization of interval valued anti fuzzy left h- ideals over hemi rings, Advances in Fuzzy Mathematics, 4(2)(2009), 129-136.

[18] Zadeh. L.A Information. Sci. 8 (1975) 199-249.