
International Journal of Mathematics Trends and Technology- Volume4 Issue 9 - October 2013

ISSN: 2231-5373 http://www.ijmttjournal.org Page 153

 Securing Server System from Buffer Overflow
vulnerability using Vel-Alagar Algorithm

 *P.VADIVELMURUGAN #K.ALAGARSAMY

*Research Scholar, Department of Computer Center, Madurai Kamaraj University, Madurai, Tamil Nadu, India
#Associate Professor, Department of Computer Center, Madurai Kamaraj University, Madurai, Tamil Nadu, India

ABSTRACT-

Now a day’s buffer overflows have take place the most common target for network based attacks. The main proliferation method
used by worms, malicious codes and improper coding by developers. Many techniques have been developed to secure servers, but
the conciliation of the vulnerable codes make buffer overflow attacks again. Buffer overflows occur it stop system functions and
crash the memory. In the face of automatic function execution, cyclic attacks causes due to malicious codes, and it leads to repeated
restarts of the victim application, and it makes service unavailable. In this research paper we have a hopeful new move towards to
learn the characteristics of buffer overflow vulnerability, and we develop a suitable algorithm to avoid and prevent the buffer
overflows.

KEYWORDS: Buffer overflows attack, malicious code, Securing stack, vulnerability, secure server.

 I INTRODUCTION

Buffer overflows attacks accepted by computer security professionals to be one of the most vulnerable threats to the systems
security. A rudiment of buffer overflow attack is stack and heap. In C, C++ code, application library components and dynamic
components of application software. The coding practices that will avoid buffer overflow problems, and tools can use to detect
buffer overflows, and make your system secure. Every time a software program request input (from a users, from a system file, over
through a network, or by some other means), there is a potential to receive improper data. For example, the input data might be
longer than what you have reserved space for in memory.

The given input data size is longer than will fit in the reserved memory space, if you do not curtail it, that data will overwrite other
data in memory if allotted. When it happens, it is called a buffer overflow. If the memory overwritten contained data essential to the
function of the program, this overflow causes a error that, being intermittent, might be very hard to find. If we entering new data in
its place of existing, data include the address of other code to be executed and the user has complete this intentionally, the user can
point out the malicious code that your program will then execute.

 II STACK OVERFLOWS

All most all the operating systems have an application has a stack (multithreaded applications programs have one stack per thread).
This stack contains memory storage for locally assigned data. The stack is divided up into small units called stack frames. Every
stack frame holds all data exact to a particular call to a particular function. This type of data characteristically includes the
function’s parameters, the complete details of local variables within that function, and linkage information details - that is, the
address of the function calls itself, where the execution continues when the function returns). Depending on the compiler flags
segment, it may also contain the address of the top of the next stack frame. The exact data content and order of data on the stack
determined by on the operating system and CPU architecture.

Every time a program function is called, a new fresh stack frame is added to the apex of the stack. Each time a program function
returns, the vertex of stack frame is removed from the memory. If any specified point in execution, an application can directly
access the data in the top most segment of stack frame. (Pointers can get around this, but it is not a good idea to do so). This type of
design creates recursion likely possible because each nested loop is calling to a program function gets its own individual copy of
local variables and parameters. In commonly, an application should check all kind of input data to make sure it is appropriate
condition of the file. In many cases, programmers assuming that the user will not do anything difficult. This becomes a severe

International Journal of Mathematics Trends and Technology- Volume4 Issue 9 - October 2013

ISSN: 2231-5373 http://www.ijmttjournal.org Page 154

problem when the application stores that data into a fixed-length of buffer. If the user is malicious (or opens a file that contains
malicious code), they may provided data that is longer than the size of the buffer. Because the function holds only a confined
amount of memory space on the stack for this data, the data should overwrite other data on the stack.

Figure 1: Schematic view of stack function in buffer Figure 2: Stack after malicious buffer overflow crash in memory

 III CALCULATING BUFFER SIZES
If a software running with fixed length buffers, it is always use to calculate the size of a buffer, and then if we supply more data into
the buffer than it can hold. Even if it’s really assigned a static size to the buffer, either the code in the future might be change the
buffer size but it fail to change every case where the buffer is written to.

Table shows two ways of allotting a character buffer 1024 bytes in length, and checking the length of an input string value, and
replication it to the buffer memory.[3]

 Table 1: Calculating buffer size

Instead of this: Do this:
char buf[1024];
...
if (size <= 1023) {

#define BUF_SIZE 1024
...
char buf[BUF_SIZE];
...
if (size < BUF_SIZE) {
...
}

char buf[1024];
...
if (size < 1024) {
...}

char buf[1024];
...
if (size < sizeof(buf)) {…
.}

Function A data

parameters for call to be

function B

Function A return address

Function B data

parameters for call to be

function C

Function B return address

function C data

space for parameters for next

subroutine call

function C return address

Function A data

parameters for call to be

function B

Function A return address

Address of a malicious code

buffer overflow

Function B return address

function C data

space for parameters for next

subroutine call

function C return address

Function A

Function B

Function C

Function A

Function B

Function C

International Journal of Mathematics Trends and Technology- Volume4 Issue 9 - October 2013

ISSN: 2231-5373 http://www.ijmttjournal.org Page 155

The two oddments on the left side are safe as long as the original statement of the buffer size is never changed. However, if the
buffer size gets altered in a later edition of the program devoid of changing the test, then a buffer overflow will result.
The two oddments on the right side confirm safer versions of this code. In the beginning version, the buffer memory size is set
using a constant that is set in another place, and the verify uses the same constant. In the next version, the buffer is set to 1024 bytes,
but the check calculates the real size of the buffer. In either of these oddments, varying the original size of the buffer does not
invalidate the check.

 IV BUFFER OVERFLOW ATTACKS HELD PLACES IN NETWORKING OPERATING SYSTEMS

 Table 2: Different types of services and vulnerabilities obtainable on the network operating system [5]

The intruder can use generic buffer overflow exploits, illustrate as follows:[5]

 iis_r2r - Buffer overflow vulnerability in the Microsoft IIS web server allows remote intruders to gain root shell on the
target host.

 ssh_r2 r - Buffer overflow vulnerability in the SSH server allows remote intruders to gain root shell on the target host
 xterm_u2r -Buffer overflow vulnerability in the xterm program allows local users to gain root shell on the target host.
 at_u2r -Buffer overflow vulnerability in that program allows local users to gain root shell on the target host.

 Table 2: An experimental result exploits held conditions in networking operating systems

Exploit Preconditions Post conditions
iis_r2r(hs, ht) iis_bof(ht)

C(hs, ht, http)
plvl(hs) ≥ user
plvl(ht) < root

iis(ht)
plvl(ht) := root

sshd_r2r(hs, ht) sshd_bof(ht)
C(hs, ht, ssh)
plvl(hs) ≥ user
plvl(ht) < root

ssh(ht)
plvl(ht) := root

xterm_u2r(ht, ht) xterm_bof(ht)
plvl(ht) = user

plvl(ht) := root

at_u2r(ht, ht) at_bof(ht)
plvl(ht) = user

plvl(ht) := root

Attack types Attacking held is systems
iis_bof(h) IIS web server has buffer overflow vulnerability on host h
exchange_ivv(h) Exchange mail server has input validation vulnerability on host h
squid_conf(h) Squid web proxy is misconfigured on host h
licq_ivv(h) LICQ client has input validation vulnerability on host h
sshd_bof(h) SSH server has buffer overflow vulnerability on host h
scripting(h) HTML scripting is enabled on host h
ftp(h) FTP service is running on host h
wdir(h) FTP home directory is writable on host h
fshell(h) FTP user has executable shell on host h
xterm_bof(h) xterm program has buffer overflow vulnerability on host h
at_bof(h) at program has buffer overflow vulnerability on host h

International Journal of Mathematics Trends and Technology- Volume4 Issue 9 - October 2013

ISSN: 2231-5373 http://www.ijmttjournal.org Page 156

 V LEMMA 1: VEL-ALAGAR ALGORITHM

Current position of stack is in memory is denoted as Xi and the Rate of change stack position is consider as Vi if stack pointer is
grow. If the buffer overflow occurs in the stack pointer need to control or hold the position of stack is denoted as Best position Yi. If
spot ‘i’ the best position reached by that spot at a given time. Let “f” be the objective function to be maximized. The best position of
a particle at iteration or time step “t” is updated as every 5 seconds

 yi(t)= yi(t-1) if f(xi(t)) ≤ f(yi(t-1))
 xi(t) if f(xi(t)) ≤ f(yi(t-1)) ----------(1)

The best is determined from the entire buffer by selecting the best control position. This position is denoted as ŷ.The equation that
manipulates the update equation and is stated as

 vij(t+1)= vij(t)+c1r1(t)(yij(t)-xij(t))+ c2 r2(t)(ŷ j(t)-xij(t)) ----------(2)

Where vij (t + 1) is the position change for the jth dimension, j = 1, 2… n.

c1 and c2 are the stepping up constants, where the first control, controls the maximum step size towards the meticulous part of the
buffer(process id), while the second control the maximum step size towards the buffer consuming level - one iteration. r1j (t) and r2j
(t) are two random values in the range [0, 1] and given the algorithm to control the buffer overflow.

Memory position changes vi updates on each dimension can be secured with a user defined changing speed up the vulnerable
detection Vmax, which would prevent them from exploding, thereby causing premature convergence. Each portion of buffer
updates its position using the following equation:

 xi(t+1)=xi(t)+vi(t+1) ------------(3)

In the vel-alagar algorithm, the memory part ‘I’ show the best position is changing to its new position xi (t + 1). After the new
position is calculated for each part of the buffer memory position, the iteration counter increases and the new buffer memory
positions are evaluated. This process is repeated until some convergence conditions are satisfied.

Therefore, the buffer memory remains continuous assessed. Since each Vij is a true value, a memory mapping needs to be defined
from Vij to a probability in the range [0 to n]. This is done by using an algorithm function to control the congestion speeds into a [0
to n] range. The sigmoid function is defined as

 Sig(v)=1/1+e-v --------------(4)

The equation for updating the new positions is then swapped by the following probabilistic update equation:

 Xij(t+1)=0 if r3j(t)≥ sig(vij(t+1)) ---------------(5)
 nifr3j (t) < sig(vij(t+1))

Where r3j (t) is a random value in the range [0 to n].In the vel-alagar algorithm behavior it protect from buffer overflow attack. With
the speed of deduced as a probability of change, speeding up the vulnerable detection Vmax, sets the minimal probability of causing
the buffer overflow attack.

International Journal of Mathematics Trends and Technology- Volume4 Issue 9 - October 2013

ISSN: 2231-5373 http://www.ijmttjournal.org Page 157

 VI CONCLUSION

Every attack circumstances are a series of exploits initiated by an intruder for a particular goal. To prevent an exploit, the security
analyst must deploy an appropriate countermeasure such as the installing firewall or add patch the vulnerabilities that made this
exploit possible. The group of possible attack scenarios in a computer system can be represented by malicious code developers. To
overcome or minimization the buffer overflow vulnerability the lemma 1, vel-alagar algorithm is a new step of solution to control
and prevent the buffer overflow vulnerability in the networking operating system.

 REFERENCES

1. Eugen Leontie, Gedare Bloom, Olga Gelbart, Bhagirath Narahari and Rahul Simha
 Department of Computer Science,The George Washington University,Washington, DC 20052 A Compiler- Hardware
 Technique for Protecting Against Buffer Overflow Attacks

2. I. simon. “A comparative analysis of methods of defense against buffer overflows
attackshttp://www.mcs.csuhayward.edu/˜simon/security/boflo.html, January 2001.

3. https://developer.apple.com/library/ios/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.
html

4. J. McCarthy “Take Two Aspirin, and Patch That System – Now”, SecurityWatch, August 31, 2001

5. Mahdi Abadi and Saeed Jalili (2011). A Memetic Particle Swarm Optimization Algorithm for Network Vulnerability

Analysis, Evolutionary Algorithms, Prof. Eisuke Kita (Ed.), ISBN: 978-953-307-171-8,
InTech,http://www.intechopen.com/books/evolutionary-algorithms/a-memetic-particle-swarmoptimization- algorithm-for-
network-vulnerability-analysis

6. Mathematical Symbol Table http://xaravve.trentu.ca/mascot/handbook/SEC_symbols.pdf

7. peter Silverman and Richard Johnson “A comparison buffer overflow prevention, implementation and weakness”
8. P. Vadivel Murugan, and K. Alagarsamy "Buffer Overflow Attack Vulnerability in Stack.", International Journal of

Computer Applications 13.5 (2011): 1-2.

9. Seema Yadav, Khaleel Ahmad and Jayant Shekhar. “Classification and Prevention Techniques of Buffer Overflow
Attacks” Proceedings of the 5th National Conference; INDIACom-2011 Computing For Nation Development, March 10 –
11, 2011

10. Tz-Rung Lee1, Kwo-Cheng Chiu1, and Da-Wei Chang A. Hua and S.-L. Chang “A Lightweight Buffer Overflow

Protection Mechanism with Failure-Oblivious Capability”, (Eds.): ICA3PP 2009, LNCS 5574, pp. 661–672, 2009.
Springer - Verlag Berlin Heidelberg 2009

11. Vadivel Murugan.P K.Alagarsamy “Averting Buffer Overflow Attack in Networking OS using – BOAT Controller”,

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 7–July 2013

12. V.Selvi Dr.R.Umarani, “Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques”
International Journal of Computer Applications (0975 – 8887) Volume 5– No.4, August 2010

