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Abstract-- Tuberculosis (TB) is a big public health problem in 
India. As per WHO TB-report 2011, India accounts for one-
fourth (approximately 26%) of the global TB incident cases. 
Each year nearly 20,00000 people in India develop TB, of which 
around 870000 are infectious cases. It is estimated that every 
day approximately 1000 Indians die due to TB. In this paper, a 
mathematical model is formulated for tuberculosis using 
ordinary differential equations which is similar to SEIR 
epidemic model. The entire population is divided into five 
compartments viz. susceptible (S), exposed (E), infectious with 
pulmonary tuberculosis (I) and extra-pulmonary tuberculosis 
(X) and treated (T). Basic reproduction number 0R is defined 
and a relation is established for it. Steady state conditions are 
derived showing that when 0 1R  there is a disease free 
equilibrium which is locally asymptotically stable whereas 
for 0 1R  there exists an endemic equilibrium. Sensitivity of 0R to 
each parameter is analysed.  

Keywords-- Extra-pulmonary, Pulmonary, Tuberculosis, 
Stability analysis.  
 

I. INTRODUCTION 

UBERCULOSIS or TB (short form for Tubercle 
Bacillus) is an infectious bacterial disease caused by 
Mycobacterium Tuberculosis. It is a huge health problem 

and a big cause of infectious mortality in India. Although TB 
cases are currently reducing in many developed countries but 
it is rising in Africa, Eastern parts of Europe and Asia. The 
introduction of MDR-TB (multi-drug resistant TB) and XDR-
TB (extensively drug resistant TB) have created new 
challenges for the society and pushes the need of extensive 
work for deciding the right control strategies. 

Many mathematical models are formulated and analysed 
using several techniques and mathematical tools. Most of 
these models are SEIR type.  

Aparicio et al. discussed the re-emergence of tuberculosis 
using SEIR model [2]. In 2009, they presented a rather 
complex models using homogeneous mixing and 
heterogeneous mixing epidemic  models [1]. Coljin et al. [6] 
reviewed and compared existing models showing that even 
small changes lead to some different types of useful 

interpretations. They presented their own model also using 
delay differential equations. Castillo-Chavez et al. [5] and 
Jung et al. [3] discussed models for a two-strain tuberculosis 
For the basics of epidemic modelling and stability analysis we 
referred [8] - [12]. References [7] and [13] - [14] provide the 
required data for India for sensitivity analysis. 

Although these models of tuberculosis look similar in 
structure yet there are important (may not be apparent), 
differences in the way the population is classified and the 
transmission process is represented, leading to some other 
important conclusions. Here, we formulate the model with 
separating pulmonary and extra-pulmonary classes. And with 
the help of sensitivity analysis we try to trace the parameters 
which are most responsible for the spread of disease.  

II. HISTORY/SYMPTOMS/TRANSMISSION OF 
TUBERCULOSIS  

TB is caused by various strains of mycobacteria most 
commonly by mycobacterium tuberculosis. It most commonly 
affects the lungs (pulmonary) but can also affect other parts of 
the body (extra-pulmonary). It is transmitted from person to 
person through the air via droplets from the throat and lungs 
of people with active TB. These droplets come out when they 
cough or sneeze.  

TB generally develops slowly. In cases when the bacteria 
infect the body and cause symptoms, it is called active TB 
otherwise it is called latent TB. Depending on the type of TB 
(i.e. pulmonary and extra-pulmonary), the symptoms are 
different.  

The symptoms of active pulmonary TB are coughing, 
sometimes with sputum or blood, breathlessness, lack of 
appetite, weight loss, fever and night sweats. 

Sometimes, TB occurs outside lungs, which is known as 
extra-pulmonary TB. It is more common in people with weak 
immune system particularly with an HIV infection. An extra-
pulmonary infection site may be lymph nodes, bones and 
joints, digestive system, bladder and reproduction system, 
nervous system and any other part of the body. Out of these, 
all lymph nodes are the most common site for extra-
pulmonary TB. 

Once infected or infectious person may be cured with 
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medication or may die from TB. Recovered individuals may 
relapse to disease or be re-infected. In next section, we 
formulate mathematical model. 

III. MATHEMATICAL MODEL 
Here, we formulate a model based on SEIR model of 

infectious disease epidemiology. The entire population is 
divided into five compartments depending on disease status. 
These compartments are referred to as state variables. At time 
t, there are S susceptible, E exposed, I infectious (with 
pulmonary TB) and X with extra-pulmonary TB, and T 
treated. 

The population move from one compartment to the other in 
the manner as shown in fig.1: 

 
Fig.1: Flow of population from one compartment to the other 
 
The state variables and parameters used are listed below: 

 S:  Number of susceptibles 
 E:  Number of exposed (latently infected) 
 I:  Number of infectious (pulmonary TB) 
 X: Number of individuals with extra-

pulmonary TB (non-infectious) 
 R:  Number of treated 
 B:  Recruitment  as susceptible per unit time 
 ν1: Rate of progression of individuals from 

the exposed class to the infectious 
(pulmonary) class 

 ν2: Rate of progression of individuals from 
the exposed class to the non-infectious 
(extra-pulmonary) class 

 γ1: treatment rate of latent individuals  
 γ2: treatment rate of infectious (pulmonary) 

individuals 
 γ3: treatment rate of non-infectious (extra-

pulmonary) individuals 
 δ1:  Disease-induced death rate (pulmonary)  
 δ2:  Disease-induced death rate (extra-

pulmonary) 

 µ:  Natural death rate   
  β:  Probability that a susceptible becomes 

infected per contact per unit time 
 β':  Probability that a treated becomes 

infected per contact per unit time   
 c: Contact rate 

The model takes the form as follows: 

 

 

 

'
1 1 2

1 1 2

2 2 3

'
1 2 3

dS SIB c S
dt N
dE SI TIc c E
dt N N
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dt
dX E X
dt
dT TIE I X c T
dt N

 

     

   

   
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  

     

   
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               (1)                                      

 

Adding above equations, we have 

    1 2
d S E I X T B S E I X T I X
dt

               

   S E I X T B S E I X T            

Then  lim supt
BS E I X T
       

So, the feasible region for the system is  

  : , 0, 0, 0BS E I X T S E I X T S E I


 
              

 
 

Now the basic reproduction number 0R  will be calculated 
using the approach given in Drissche and Watmough [8]. 

The basic reproduction number, 0R , is defined as the 
expected number of secondary cases produced by a single 
(typical) infection in a completely susceptible population. 

Let  E , , , ,S E I X T  be the equilibrium point of the system 

(1). Since the recruitment term can never be zero and 
population can never extinct, therefore there is no trivial 
equilibrium point like    E , , , , 0,0,0,0,0S E I X T  .  

It is easy to see that the system has a disease free 

equilibrium at  0E , , , , ,0,0,0,0BS E I X T


 
  
 

  . 

Let  E , , , , TE I X T S                      
Therefore, 

EE E Ed
dt

   F( ) -V( )  
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where EF( )  gives the rate of appearance of new infections 
in a compartment and EV( )  gives the transfer of 
individuals, where 

E 0
0
0
0

SI TIc c
N N
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 
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V( ) =  

Since 0E is the disease free equilibrium therefore the 
derivatives 0EDF( ) and 0EDV( )  are partitioned as  

0

   0
E

0    0
F
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 
 

F( ) =     and   0
1 2

    0
E

   
V

D
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where F and V are 3 × 3 matrices given by 

0        0
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Respectively. 
Then 

   
1

1 2 1 2
1

        0

        0                        0             0
        0                        0             0

cB cB
N N
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
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Therefore, basic reproduction number 

      1
0R FV   = spectral radius of 1FV   

   
1

0
1 2 1 1 2

B c
R

N
 
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 
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                     (2) 

IV. STABILITY OF DISEASE FREE EQUILIBRIUM  
The disease free equilibrium is stable if all the eigen values 

of the Jacobian matrix of the given system have negative real 
parts. In order to check this, the Jacobian of the system (1) at 

 0E , , , , ,0,0,0,0BS E I X T


 
  
 

 takes the form  
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Here,  
trace (J) =  1 2 1 2 3 1 2 5                
Clearly, trace (J) < 0. 
For det (J) to be > 0, we should have  
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1

1 1 2 2 2

cN
B

 
      
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 (on solving determinant 

of J) 

or 
   

1

1 1 2 2 2

1
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N
 

       


    
 

i.e.                    0 1R  . 
This implies that the disease free equilibrium is locally 

asymptotically stable if 0 1R   otherwise unstable. 

V. STABILITY OF ENDEMIC EQUILIBRIUM  

Let the endemic equilibrium point be 
   E *, *, *, *, * 0,0,0,0,0e S E I X T  . 

Here, the Jacobian takes the form 
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Clearly, trace (JE) < 0. 
For det (JE) > 0, after a long cumbersome calculation and 
assuming    , we finally get that  
                                        0 1R   

Thus the endemic equilibrium is stable if 0 1R  . 

VI. SENSITIVITY ANALYSIS   

   Here, we evaluate the sensitivity indices of 0R  to all the 
different parameters it depends on. These indices tell us how 
crucial each parameter is to disease spread and guide us to 
find the right parameter to be taken care of.  

TABLE I 
VALUES OF PARAMETERS FOR TB (IN INDIA)  

 

 
 

TABLE II 
SENSITIVITY INDICES OF 0R TO THE PARAMETERS 

FOR TB  

 

VII. RESULT AND DISCUSSION  
In this study,  we formulate a mathematical model for 

understanding the population dynamics of tuberculosis 
considering the pulmonary and extra-pulmonary separately. 
For starting the qualitative analysis of the model, a relation 
for basic reproduction number R0 is established. Then the 
existence of steady states and their stabilities is analysed. The 
analysis shows that the disease free equilibrium is globally 
asymptotically stable if 0 1R  . Also the endemic equilibrium 
is found to be globally asymptotically stable if 0 1R   
provided it exists.  

Sensitivity analysis of the model is carried out using the 
data for India. Here, we use the normalised forward 
sensitivity index of a variable, u (say), which depends 
continuously on a parameter, p (say). The results of sensitivity 
analysis shows that overcrowding un sanitary conditions were 
the major causes in for the prevalence of the disease in India 
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as it increases  the contact rate and provides the bacteria the 
environment to survive longer.  
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