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Abstract: This paper analyses a single server with bulk service queue with general arrival pattern and multiple 
working vacation period. The model is analyzed by using Embedded Markov Chain technique. The steady state 
probability distribution at pre arrival epoch and arbitrary epoch are derived and measures like mean queue length are 
calculated. Finally, through some numerical examples, the parametric effect on the performance measures are discussed 
and presented graphically.  
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1. INTRODUCTION 
  

Tian, Li and Zhang (2009) provided a survey of the results of working vacation queues and 
demonstrated that the matrix analytic methods developed by Neuts (1995) are powerful tools for 
analyzing the WVQ’s. The survey also shows that neither bulk input nor bulk service WVQs are 
considered in the existing literature. Later Xu et al. (2009) and Julia Rose Mary and Afthab Begum 
(2010) studied the bulk input Markovian MX / M / 1 queue with working vacations and presented the 
PGF of the stationary queue length.  
  

There are situations, particularly in transportation systems, where the service provided is such 
that a group (batch) of customers can be served simultaneously. The theory of batch service queues 
originated with the works of Bailey (1954). He considered a queue with Poisson arrival and fixed size 
service. Later many authors have investigated a variety of extensions of the basic model. The bulk 
service rule introduced by Neuts (1967) is the most general one and this has been further investigated 
by Medhi (1984), Borthakur et al. (1987). Julia Rose Mary and Afthab Begum (2009) have analyzed 
the Markovian M/M(a,b)/1 queueing model under multiple working vacation and derived the steady-
state probability distribution and the mean queue length for the model. 
 

In some practical situations such as production systems and distribution systems, the input to 
the queueing system may not be a Poisson process so that a more general arrival process should be 
used. Baba (2005) have analyzed GI/M/1 queue under multiple working vacation as an extension of 
/M/1 working vacation introduced by Servi and Finn (2002). In this paper, GI/M(a,b)/1 multiple 
working vacation model analyzed by assuming that the inter arrivals form an independently identically 
distributed sequence of random variables having a general distribution function and the customers are 
served in batches following General Bulk Service Rule introduced by Neuts (1967). The results of 
GI/M/1 multiple working vacation model and M/M(a,b)/1 multiple working vacation are derived as 
special cases. It is also proved that when the arrival pattern is a Markov process, then the steady state 
probability distribution at pre arrival epoch and at arbitrary epoch coincide.  

 

2. MATHEMATICAL ANALYSIS 
 

We consider a batch service queueing system GI/M(a,b)/1 under multiple working vacation. In 
this system, it is assumed that the inter arrival times (A) form an independently identically distributed 
sequence of random variables having a general distribution function A(t) = Pr (A  t). The server 
processes the customers in batches according to the GBSR introduced by Neuts (1967).  The service 
time of batches of size x (a  x  b) (a: minimum number of units, b: maximum number of units) is 
assumed to be an independently identically distributed sequence of random variables with exponential 
distribution of parameter b. 
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Whenever the server completes a service and finds less than “a” customers in the queue then he begins 
a vacation which is an exponentially distributed random variable V with parameter . After completing 
a vacation, if the system length is still less than “a”, then he takes another vacation and the vacations 
are repeated until the server finds at least “a ” customers in the queue. 
 

Suppose during vacation, if the queue size becomes at least “a” then the server starts a service 
under General Bulk Service Rule but with the service rate v which is strictly less than the regular 
service rate b. When the vacation ends, the server switches his service rate from v to b. It is assumed 
that, the size of service batch  that being served remains unchanged when the server enters into the 
regular busy period. In either case (working vacation or regular busy period), the service rates are 
assumed to be independent of the size of the batch in service (a  x  b). 

The Queueing system is formulated as an embedded two dimensional Markov chain by 
choosing arrival epochs as embedded points. The steady state distribution for the number of customers 
in the queue at arrival epochs is derived by analyzing the embedded Markov chain defined. Using the 
theory of semi Markov process, the steady state distribution for the number of customers in the queue 
at arbitrary epochs is also derived.  
 

Case 1 : Pre-arrival Epoch 

 Let tn, n = 1, 2, . . . ( t0 = 0) be the arrival epoch at which the nth customer arrives. The system 
is examined at time (tn – 0). The interarrival times {Tn, n  1} are independent and identically 
distributed with a general distribution function denoted by A(t) with mean 1/. The LST of A(t) is 

given by  


 
0

)()( tdAeA t . The working vacation times, the service times during regular 

service period and the service times during working vacation are all exponentially distributed with rates 
, b and  v respectively.  

Let W(t) denote the number of customers in the queue at time t, Wn = W (tn  0) and  

Jn =









periodbusy  regular during occurs arrival n the if2,
period vacation  workingduring occurs arrival n the if1,

period vacation idle during occurs arrival n the if,0

th
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 Since, the working vacation times, the service times during regular and working vacation are 
all exponentially distributed, the process {(Wn, Jn), n  1} is an embedded Markov chain with state 
space }10);0,{(}2,1,0);,{(  annjnjn . 

The steady-state queue size probabilities are defined by Rn = 
k

lim Pr(W(tk – 0) = n, Jk = 0),0  n  a1 

Qn=
k

lim  Pr (W(tk – 0) = n, Jk = 1),  n  0 and Pn =
k

lim  Pr (W(tk – 0) = n, Jk = 2), n  0. 

Then Rn, Qn and Pn respectively denote the probability that the queue contains n customers 
and the server is idle in vacation state, is busy in vacation state and regular busy state at pre arrival 
epochs. During idle vacation period, the number of customers in the system and queue are the same, 
whereas in working vacation period and in regular busy period n  denotes the number of customers in 
the queue and the system will contain (n + k), (a  k  b) customers.  

Let bk denote the probability that k batches are served at regular service rate  b during an 
interarrival time. Then  

bk = 




0

t be 
! k
t) ( k

b d A(t), k  0                       (1) 

and  


0k
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k z b  = B(zb)  =  ))z  1((A b

b             (2) 
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 Let ck denote the probability that, the working vacation time is greater than an inter arrival 
time and k batches are served at rate v during an inter arrival time. 

 Then ck= 




0

t e 
! k
t) (

 e
k

vt v
 d A(t), k  0                         (3) 

and  

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v              (4) 

 Let dk denote the probability that, the server returns from vacation in an inter arrival time and 
k service completions occur in an inter arrival time. Then 

dk  =    

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i.e., k services in an inter arrival time can occur in such a way that, i (0  i  k) service completions 
occur at rate  v (till the server returns from vacation) and the remaining (k – i) service completions 
occur at rate  b  

and  


0k
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k z d  = D(zb)  =  
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))]z  (1   ( A ))z  (1([A 

b
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            (6) 

 The steady-state queue size equations at pre-arrival epochs, are obtained by noting the 
transitions between the states of the Markov chain and are given by : 
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By operator technique, equation (7) and (9) becomes  

n
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 The characteristic equation z = C(zb) = )),z  1(  (A b
v    > 0 of the homogeneous 

difference equation (13) has a unique root r1 inside (0, 1).  
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 For (z) = )),z  1(  (A b
v  satisfies the inequality   
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Therefore, r1 = ))r  1(  (A b
1v   with  0 < r1 < 1 (Baba (2005))                           (15) 

Thus homogeneous difference equation (13) has solution  

 Qn = r1
n Q0,  n  0                 (16) 

 The characteristic equation of the non-homogeneous difference equation (14) is z  =  B(zb)  =  
))z  1((A b

b   and B(zb) is the pgf of bk’s with B(1) = 1. Hence following the arguments of Gross and 
Harris (1998), the characteristic equation z = B(zb) has a unique root in (0, 1), if B(1) > 1, i.e.,  b  =  

b b 
  < 1. Thus under the condition  b < 1, the solution of the non-homogeneous equation (14) is 

given by  Pn = (Ad rn + Bd 
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To find the remaining probabilities, the equations (11) and (12) are used.  
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       for  0  n  a1         
 After some algebraic manipulation, the steady-state queue size probabilities at arrival epochs 
are given by 
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   The mean queue length Lq is calculated as 
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Performance Measures at Pre-Arrival Epochs 

 Let  Pv, PI and Pbusy denote that the server is busy in vacation, idle in vacation and in regular 
busy state respectively at pre-arrival epochs. Then,  
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Case 2  :  Random Epoch 

 To obtain the limiting probabilities of queue size at random epochs, the system is examined at 
some time t, proceding an arrival epoch. Then using the relation between the two sequences,  (W(t), 
J(t)), (tn  t < tn+1)  and  (Wn, Jn), (n = 0, 1, 2, . . . ), the steady-state equations satisfied by the 
steady-state queue size probabilities  
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lim Pr (W(t) = n, J(t) = (0,1,2)) at arbitrary epochs are obtained : 
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where 
kb , 

kc  and 
kd  are the corresponding quantities for bk, ck and  dk respectively, where the 

interarrival time A is replaced by T – the period of time between a random epoch and the preceding 
arrival epoch. The distribution function FT(t) and the density function fT(t) of T are given by  FT(t)  =   
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i.e., 
kb  denotes the probability that k customers are served at regular service rate  b in an interval of 

time T and similarly 
kc   and 

kd  can be interpreted. 

 Substituting for the steady-state probabilities at pre-arrival epochs, the limiting probability 
distribution at arbitrary epochs are 
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The mean queue length 
qL  at arbitrary epoch is calculated as 
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3. PARTICULAR CASES 
I. M / M(a, b) / 1 / MWV: If the inter arrival time follows exponential distribution, then the 
limiting probabilities at arbitrary epochs  and at pre-arrival epochs coincide and give the steady-state 
queue size probabilities of the Markovian M / M(a, b) / 1 / MWV. These results coincide with the 
corresponding results of Julia Rose Mary and Afthab Begum (2009) with the following identifications 
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II. GI / M / 1 / MWV: When a = b = 1, the steady-state queue size probabilities coincide with the 
corresponding results of Baba (2005) by using the following relations. 

 
r
A   =  ,

r
B 

1

d    Bd  =  
)r  (1 )  (  1vb 

   =   and  
1

0

r
Q   =  (1 – r)   

 where    =  
r)  (1 )  (  
)r  (1 )  (  

vb

1vb


  

4. NUMERICAL ANALYSIS 
 To demonstrate the influence of the system parameters on (i) the waiting line (Lq), (ii) steady 
state queue size probabilities and (iii) the average number of customers waiting in the queue, when the 
system is in different states, we consider different distributions for the interarrival time are considered.  

In Table 1, the mean queue size both at arbitrary epochs (Larb) and at pre-arrival epochs 
(Larrival) are presented for different values of the vacation parameter () and vacation service rate (v) 
corresponding to different interarrival time distributions (Erlang-k = 1, 3, 5, 10 and deterministic) to 
know how the expected queue length changes with the parameters. It is shown that  

(i) both Larb and Larrival decrease as v or  increases. 
(ii) The performance measures at arbitrary epoch and pre-arrival epochs coincide for Markovian 

interarrival time distribution. 
(iii) The smaller values of  significantly affect the queue size. 
(iv) When v = b, the queue length of working vacation model and classical non-vacation model 

coincide.  
The graphical representation of the effect of v and    on the mean queue length (Larb) for 
Deterministic and Erlang-3 type inter arrival type can be seen in Figures 1a and 1b respectively.  

 
 
 

Table  1  Expected queue size (Larrival and Larb) with respect to    and  v 
(a, b, , b, b)  =  (5, 15, 7, 0.9, 0.5) 
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v  D/M(a, b)/1 M/M(a, b)/1 E3/M(a, b)/1 E5/M(a, b)/1 E10/M(a, b)/1 

0.005 

0.05 
104.748 135.263 134.696 134.504 134.235 

71.232 135.264 134.942 134.832 134.678 

0.1 
54.493 67.071 66.508 66.319 66.053 
38.583 67.071 66.750 66.642 66.488 

0.2 
29.545 34.118 33.569 33.384 33.124 
22.219 34.118 33.804 33.699 33.549 

0.050 

0.05 
94.139 122.801 122.225 122.031 121.759 

60.762 122.801 122.470 122.358 122.200 

0.1 
49.584 61.328 60.761 60.570 60.301 
34.495 61.328 61.002 60.891 60.735 

0.2 
27.449 31.665 31.124 30.939 30.679 

20.718 31.665 31.359 31.253 31.102 

0.500 

0.05 
19.510 26.223 25.538 25.309 24.987 

15.834 26.223 25.770 25.618 25.405 

0.1 
17.608 19.285 18.713 18.521 18.252 
14.387 19.285 18.938 18.821 18.658 

0.2 
15.322 14.654 14.143 13.975 13.739 
12.742 14.654 14.362 14.267 14.134 

0.900 

0.05 
7.130 9.382 9.000 8.872 8.694 

7.894 9.382 9.192 9.129 9.042 

0.1 
7.130 9.382 9.00 8.872 8.694 
7.894 9.382 9.192 9.129 9.042 

0.2 
7.130 9.382 9.000 8.872 8.694 
7.894 9.382 9.192 9.129 9.042 

               Larrival                      Larb 

         
 

In Table 2, the values of the expected queue size at arbitrary and prearrival epochs are 
presented for different values of arrival rate  and for different vacation service rates v for two 

Figure  1a  D/M(a, b)/1/MWV 

 
Figure  1b  E3/M(a, b)/1/MWV 
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different values of regular service rate b for Erlang-3 interarrival distribution. The values show that 
mean queue size increases with the arrival rate  and decreases as the service rate increases.  

Table  2  Mean queue size with respect to  and v for b = 1 and b = 1.5 
 v 0.1 0.2 0.3 0.4 0.5 

5 
b = 1 

34.508 24.641 17.238 12.381 9.390 
34.817 24.946 17.531 12.660 9.656 

b = 1.5 
34.425 24.478 16.989 12.063 9.033 
34.729 24.779 17.276 12.336 9.290 

6 
b = 1 

43.918 33.017 24.044 17.459 13.098 
44.233 33.332 24.348 17.754 13.382 

b = 1.5 
43.663 32.697 23.638 16.967 12.541 
43.973 33.008 23.937 17.257 12.818 

7 
b = 1 

53.727 42.085 31.916 23.758 17.862 
54.046 42.406 32.228 24.064 18.160 

b = 1.5 
53.096 41.420 31.187 22.950 16.978 
53.411 41.737 31.495 23.250 17.270 

Prearrival epochs    Arbitrary epochs 

 The influence of  and v on the mean queue length at arbitrary epochs is graphically 
represented in Figures 3a and 3b for Deterministic and Erlang–3 inter arrival time distribution. Table 3 
gives the data for the graphs. 

Table  3  Mean queue size with respect to  and v  
(b, , a, b) = (0.9, 0.1, 5, 15) 

 v 

b 
0.1 0.3 0.5 0.7 

2 0.15 
2.106 2.088 2.062 2.047 
9.936 4.462 3.032 2.507 

3 0.22 
3.981 3.543 3.252 2.789 

17.411 7.654 4.661 3.485 

4 0.29 
4.916 4.573 4.211 4.101 

25.872 12.033 6.910 4.893 

5 0.37 
7.881 7.526 7.380 7.063 

34.950 17.713 9.873 6.736 

D / M(a,b) / 1 / MWV    E3 / M(a, b) / 1 / MWV 
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5. CONCLUSION 
In this paper, a Non Markovian bulk service queue GI/M(a,b)/1 is investigated using Embedded 

Markov chain technique and the steady state queue size probabilities at pre arrival epochs as well as 
arbitrary epochs are obtained and few existing models are proved as particular cases. The expected queue 
length is calculated numerically and presented graphically. 
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