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Abstract— In this paper numerical method for solving fuzzy ordinary differential equations using Single Term Haar Wavelet Series 
(STHWS) method [9-15] is considered. The obtained discrete solutions using STHWS are compared with the exact solutions of the 
fuzzy differential equations and Runge-Kutta method of order five [7]. Tables and graphs are presented to show the efficiency of this 
method. This STHW can be easily implemented in a digital computer and the solution can be obtained for any length of time. 
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I. INTRODUCTION 

Fuzzy differential equations are a natural way to model dynamical systems under uncertainty. First order 
linear fuzzy differential equations are one of the simplest fuzzy differential equations, which appear in 
many applications [5]. In the recent years, the topic of FDEs has been investigated extensively [1]. The 
concept of a fuzzy derivative was first introduced by S. L. Chang and L. A. Zadeh . In this paper, we have 
introduced and studied a new technique for getting the solution of fuzzy initial value problem. The 
organized paper is as follows: In the first three sections, we recall some concepts and introductory 
materials to deal with the fuzzy initial value problem. In sections four, we present STHWS [9 – 15] 
method and its iterative solution for solving Fuzzy differential equations. The proposed algorithm is 
illustrated by an example in the last section. 

II. PRELIMINARY 
A parallelogram fuzzy number u is defined by four real numbers k < l < m < n, where the base of the 

parallelogram is the interval [k, n] and its vertices at x = l, x = m. Parallelogram fuzzy number will be written 
as u = (k , l , m , n). The membership function for the parallelogram fuzzy number u = (k , , m , n) is defined 
as the following : 
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we will have : (1) u > 0 if k > 0; (2) u > 0 if > 0; (3) u > 0 if m > 0 & (4) u > 0 if n > 0. Let us denote RF by 
the class of all fuzzy subsets of R (i.e. u :R → [0, 1]) satisfying the following properties: 
(i) uRu F ,  is normal, i.e. Rx  0 with   10 xu . 
(ii) uRu F ,  is convex fuzzy set,  
i.e.          Ryxtyuxuyttxu  ,,1,0,,min1 . 
(iii) uRu F ,  is upper semi continuous on R. 
(iv)   0;  xuRx  is compact, where A  denotes the closure of A. 

Then RF is called the space of fuzzy numbers .Obviously R RF . Here R RF is understood as 
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R = {{x}; x is usual real number}. 
We define the r-level set, xR; 
[u]r = {x \ u(x) r}, 0 r 1;          (2) 

Clearly, [u]0 = { x \ u(x) > 0} is compact, which is a closed bounded interval and we denote by         
[u]r= [u(r),u(r)]. It is clear that the following statements are true. 
1.  ru  is a bounded left continuous non decreasing function over [0,1], 
2.  ru  is a bounded right continuous non increasing function over [0,1], 
3.  ru    ru  for all r (0,1], for more details see [2],[3]. 
Let D: RF RF → R+ U0, 
D (u, v) =Supr[0,1]max |  ru    rv |, |  ru    rv  | , be Hausdorff distance 
between fuzzy numbers, where [u]r= [  ru ,  ru ],[v] r = [  rv ,  rv ]. The following properties 
are well-known :  
D(u + w, v + w) = D(u, v), ,,, FRwvu  ,  
D(k.u, k.v) =|k|D(u, v), ,,, FRvuRk   
D(u + v, w + e)   D(u,w) + D(v,e), FRewvu  ,,,  and (RF, D) is a complete metric space. 

Lemma 2.1  
If the sequence of non-negative numbers  N

nnW 0  satisfy |Wn+1|   A|Wn| + B , 0  n  N -1, for the given 

positive constants A and B, then |Wn|   An |W0| + B
1
1




A
An

, 0  n  N. 

Lemma 2.2 

If the sequence of numbers  N
nnW 0 ,  N

nnV 0  satisfy |Wn+1|   |Wn| + A max {|Wn|, |Vn|} + B,  

|Vn+1|   |Vn| + A max { |Wn|, |Vn|} + B, for the given positive constants A and B, then denoting 

,nnn VWU   Nn 0 , we have, ,
1
1

0 



A

ABUAU
n

n
n  Nn 0 , where A = 1 + 2A and B =2B. 

Lemma 2.3 

Let F(t,u,v) and G(t,u,v) belong to C1(RF) and the partial derivatives of F and G be bounded over RF. Then 
for arbitrarily fixed r, 0   r   1,         ,21, 2

1
0

1 CLhtytyD nn  where L is a bound of partial 

derivatives of F and G, and           1,0;,;,max 1 rrtyrtytGC NNN .  

 Theorem 2.4 
Let F(t,u,v) and G(t,u,v) belong to C1(RF) and the partial derivatives of F and G be bounded over RF. Then 
for arbitrarily fixed r, 0   r   1, the numerical solutions of  rty n ;1  and  rty n ;1  converge to the exact 

solutions  rtY ;  and  rtY ;  uniformly in t.   

Theorem 2.5 
Let F(t,u,v) and G(t,u,v) belong to C1(RF) and the partial derivatives of F and G be bounded over RF and 
2Lh<1. Then for arbitrarily fixed 0   r   1, the iterative numerical solutions of   rty n

j ; and  
  rty n

j
; converge to the numerical solutions   rty n ;  and  rty n ;  in Nn ttt 0 , when j . 
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III. FUZZY INITIAL VALUE PROBLEM 
Consider a first-order fuzzy initial value differential equation is given by  

      
  







,
,,,,
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0
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         (3) 

where y is a fuzzy function of t, f (t, y) is a fuzzy function of the crisp variable t and the fuzzy variable y, 
y is the fuzzy derivative of y and   00 yty   is a parallelogram or a parallelogram shaped fuzzy number. 

We denote the fuzzy function y by  yyy , . It means that the r-level set of y(t) for  Ttt ,0 is 

                 1,0,;,;,;,; 000  rrtyrtytyrtyrtyty rr  

we write       ytfytfytf ;,;;   and        yytGytfyytFytf ,,;,,,;  . Because of    ytfty ,  we 
have  

       rtyrtytFrtytf ;,;;;;           (4) 

       rtyrtytGrtytf ;,;;;;            (5) 
By using the extension principle, we have the membership function 
f(t; y(t))(s) = Sup{y(t)(  )\s = f( t,  )}, s R        (6) 
so fuzzy number f(t; y(t)). From this it follows that 

            1;0,;,,;,;  rrtytfrtytftytf r           (7) 
where         rtyuutfrtytf  \,min;,         (8) 

        rtyuutfrtytf  \,max;,         (9) 

Definition 3.1 
A function f: R → RF is said to be fuzzy continuous function, if for an arbitrary fixed Rt 0 and 

0,0    such that       00 , tftfDtt   exists. 
Throughout this paper we also consider fuzzy functions which are continuous in metric D. Then the 

continuity of f(t, y(t); r) guarantees the existence of the definition of f(t, y(t); r) for  Ttt ,0  and  1,0r  [8]. 
Therefore, the functions G and F can be definite too. 

IV. SINGLE-TERM HAAR WAVELET SERIES METHOD 

The orthogonal set of Haar wavelets  thi  is a group of square waves with magnitude of 1 in some 
intervals and zeros elsewhere [12]. In general,  
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Namely, each Haar wavelet contains one and just one square wave, and is zero elsewhere. Just these 
zeros make Haar wavelets to be local and very useful in solving stiff systems. Any function y(t), which is 
square integrable in the interval [0,1). Can be expanded in a Haar series with an infinite number of terms 
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where the Haar coefficients 

 
1

0

)(2 dtthtyc i
j

i  

are determined such that the following integral square error  is minimized:  
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usually, the series expansion Equation (10) contains an infinite number of terms for a smooth y(t). If y(t) is 
a piecewise constant or may be approximated as a piecewise constant, then the sum in Eq. (10) will be 
terminated after m terms, that is  

         1,0,)(
1

0






tthcthcty m
T
m

m

i
ii  

                  ,... 110
T

mm ccctc                                                        (11) 

           ,... 110
T

mm thththth   
where “T” indicates transposition, the subscript m in the parantheses denotes their dimensions. The 
integration of Haar wavelets can be expandable into Haar series with Haar coefficient matrix P[3].  

              1,0, tthPdh mmmm   

where the m-square matrix P is called the operational matrix of integration and single-term   2
1

11 P . Let 

us define [12] 
               tMthth mm

T
mm  ,                                                   

and     .011 thtM   Equation (3) satisfies    

           ,thCctM mmmmmm    
where  mc  is defined in Equation (11)  and   011 cC  .   

V. NUMERICAL RESULTS 
In this section, the exact solutions and approximated solutions obtained by STHWS method and Runge-Kutta 

method of order five (RK-5). To show the efficiency of the STHW, we have considered the following 
problem taken from [4] and [7], with step size 1.0r  along with the exact solutions.  

The discrete solutions obtained by the two methods, STHW and the RK-5 methods; the absolute errors 
between them are tabulated and are presented in Table 1 - 3. To distinguish the effect of the errors in 
accordance with the exact solutions, graphical representations are given for selected values of “r“and are 
presented in Fig. 1 to Fig. 6 for the following problem, using three dimensional effects.   
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Example 5.1 
Consider the initial value problem [4]  
     
   







erery

tttfty

1.05.1,1.001.10

,1,0,
 

The exact solution at t = 0.1 is given by        10,1.05.1,1.001.1;1.0 005.0005.0  reereerrY  

 

Example 5.2 
Consider the fuzzy initial value problem [8]  
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The exact solution is given by  
        tt eryrtYeryrtY ;0;,;0; 2211   which at t = 1  
       .10,125.0125.1,25.075.0;11  rererrY  

 

Example 5.3 
Consider the fuzzy initial value problem [6]  

 
      00,2

2
1  yctycty  

where ,0ic  for i = 1,2 are triangular fuzzy numbers. 
The exact solution is given by  
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where  
      rcrcc r 2,11,11 ,  and       rcrcc r 2,21,22 ,  
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which defines a fuzzy number. We have 
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TABLE I 
 

r 
Example 5.1 

Exact Solutions RK-5 Error STHWS Error 

1y  2y  1y  2y  1y  2y  
0 1.015063 1.507519  0.00035 0.00027 1.00E-07 1.00E-07 

0.1 1.031633 1.524089  0.00035 0.00048 2.00E-07 2.00E-07 
0.2 1.048202 1.540658  0.00036 0.00048 3.00E-07 3.00E-07 
0.3 1.064772 1.557228  0.00038 0.00047 4.00E-07 4.00E-07 
0.4 1.081342 1.573798  0.00038 0.00046 5.00E-07 5.00E-07 
0.5 1.097912 1.590368  0.0004 0.00046 6.00E-07 6.00E-07 
0.6 1.114482 1.606938  0.00041 0.00045 7.00E-07 7.00E-07 
0.7 1.131052 1.623508  0.00042 0.00045 8.00E-07 8.00E-07 
0.8 1.147622 1.640078  0.00043 0.00045 9.00E-07 9.00E-07 
0.9 1.164191 1.656647  0.00045 0.000488 1.00E-06 1.00E-06 
1.0 1.180761 1.673217  0.000455 0.000497 1.10E-06 1.10E-06 

 
 
 

TABLE III 
 

r 
Example 5.2 

Exact Solutions RK-5 Error STHWS Error 

1y  2y  1y  2y  1y  2y  
0.01 2.0394  3.0578 0.00611 0.00876 6.00E-07 6.00E-07 
0.1 2.1067 3.0241 0.0063 0.00845 7.00E-07 7.00E-07 
0.2 2.1746 2.9901 0.00649 0.00856 8.00E-07 8.00E-07 
0.3 2.2426 2.9561 0.00669 0.00847 9.00E-07 9.00E-07 
0.4 2.3105 2.9222 0.00689 0.00837 1.00E-06 1.00E-06 
0.5 2.3785 2.8882 0.00709 0.00826 1.10E-06 1.10E-06 
0.6 2.4465 2.8542 0.00728 0.00817 1.20E-06 1.20E-06 
0.7 2.5144 2.8202 0.00748 0.00807 1.30E-06 1.30E-06 
0.8 2.5824  2.7862 0.00768 0.00797 1.40E-06 1.40E-06 
0.9 2.6503  2.7523 0.00788 0.00788 1.50E-06 1.50E-06 
1.0 2.7183  2.7183 0.0080727 0.0078047 1.60E-06 1.60E-06 

 
 
 

TABLE IIIII 
 

r 
Example 5.3 

Exact Solutions RK-5 Error STHWS Error 

1y  2y  1y  2y  1y  2y  
0.01 0.8650 4.3914 1.00E-06 1.00E-07 1.00E-07 1.00E-08 
0.1 0.9079 3.7886 2.00E-06 2.00E-07 2.00E-07 2.00E-08 
0.2 0.9585 3.2851 3.00E-06 3.00E-07 3.00E-07 3.00E-08 
0.3 1.0129 2.8994 4.00E-06 4.00E-07 4.00E-07 4.00E-08 
0.4 1.0715 2.5918 5.00E-06 5.00E-07 5.00E-07 5.00E-08 
0.5 1.1348 2.3419 6.00E-06 6.00E-07 6.00E-07 6.00E-08 
0.6 1.2038 2.1330 7.00E-06 7.00E-07 7.00E-07 7.00E-08 
0.7 1.2793 1.9568 8.00E-06 8.00E-07 8.00E-07 8.00E-08 
0.8 1.3625 1.8051 9.00E-06 9.00E-07 9.00E-07 9.00E-08 
0.9 1.4545 1.6732 1.00E-05 9.90E-07 1.00E-06 9.90E-08 
1.0 1.5574 1.5574 1.10E-05 1.10E-06 1.10E-06 1.10E-07 
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Fig. 1 Error estimation of Example 5.1 at y1                                                                   Fig. 2 Error estimation of Example 5.1 at y2 

 

      
Fig. 3 Error estimation of Example 5.2 at y1                                         Fig. 4 Error estimation of Example 5.2 at y2 

 

        
Fig. 5 Error estimation of Example 5.3 at y1                                          Fig. 6 Error estimation of Example 5.3 at y2 

 

VI. CONCLUSIONS 

A simple and easy method is introduced in this paper to obtain discrete solutions of FDE using STHWS. 
The efficiency and the accuracy of the STHWS method have been illustrated by suitable examples. The 
solutions obtained are compared well with the exact solutions and RK-5 method. It has been observed that 
the solutions by our method show good agreement with the exact solutions. The present method is very 
convenient as it requires only simple computing systems, less computing time and less memory. The 
STHWS method is very simple and direct which provides the solutions for any length of time. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the Dr.A.R.Rajamani, Principal, Government Arts College 
(Autonomous), Salem-636 007, for encouragement and support. The authors also thank 



International Journal of Mathematics Trends and Technology- Volume4 Issue 9 - October 2013 
 

ISSN: 2231-5373                         http://www.ijmttjournal.org Page 188 
 

Mr.R.P.Sampathkumar, Associate Professor and Head of the Department of Mathematics, Government 
Arts College (Autonomous), Salem-636 007, Tamil Nadu, India, for his kind help and encouragement. 

REFERENCES 
[1]  S. Abbasbandy and T. Allahviranloo, “Numerical solutions of fuzzy differential equations by Taylor method”, Journal of Computational Methods in 

Applied Mathematics. vol.2, pp. 113-124, 2002.  
[2]  J.J. Buckley and E. Eslami, Introduction to Fuzzy Logic and Fuzzy Sets, Physica- Verlag, Heidelberg, Germany, 2001.  
[3]  J.J. Buckley, E. Eslami and T. Feuring, Fuzzy Mathematics in Economics and Engineering, Physica-Verlag, Heidelberg, Germany, 2002.  
[4]  C. Duraisamy and B. Usha, “Another Approach to Solution of Fuzzy Differential Equations”, Applied Mathematical Sciences, vol.4, No.16, 777-790, 

2010.  
[5]  C. Duraisamy and B. Usha, “Numerical Solution of Fuzzy Differential Equations by Taylor method”, International journal of Mathematical Archive, 

vol.2, 2011.  
[6]  James J. Buckley and Thomas Feurihg, “Fuzzy Differential Equations”, Fuzzy Sets and Systems,vol.110, pp.43-54, 2000. 
[7]  T. Jayakumar, D. Maheskumar and K. Kanagarajan, “Numerical Solution of Fuzzy Differential Equations by Runge Kutta Method of Order Five”, 

Applied Mathematical Sciences, vol. 6, no. 60, pp. 2989 – 3002,2012. 
[8]  M. Ma, M. Friedman and A. kandel, “Numerical Solutions of Fuzzy Differential Equations”, Fuzzy Sets and Systems, vol.105, 133-138, 1999. 
[9]  S. Sekar and A. Manonmani, “A study on time-varying singular nonlinear systems via single-term Haar wavelet series”, International Review of Pure 

and Applied Mathematics, vol.5, pp. 435-441, 2009.  
[10]  S. Sekar and G.Balaji, “Analysis of the differential equations on the sphere using single-term Haar wavelet series”, International Journal of Computer, 

Mathematical Sciences and Applications, vol.4, pp.387-393, 2010. 
[11]  S. Sekar and M. Duraisamy, “A study on CNN based hole-filler template design using single-term Haar wavelet series”, International Journal of Logic 

Based Intelligent Systems, vol.4, pp.17-26, 2010. 
[12]  S. Sekar and K. Jaganathan, “Analysis of the singular and stiff delay systems using single-term Haar wavelet series”, International Review of Pure and 

Applied Mathematics, vol.6, pp. 135-142, 2010. 
[13]  S. Sekar and R. Kumar, “Numerical investigation of nonlinear volterra-hammerstein integral equations via single-term Haar wavelet series”, 

International Journal of Current Research, vol.3, pp. 099-103, 2011. 
[14]  S. Sekar and E. Paramanathan, “A study on periodic and oscillatory problems using single-term Haar wavelet series”, International Journal of Current 

Research, vol.2, pp. 097-105, 2011. 
[15]  S. Sekar and M. Vijayarakavan, “Analysis of the non-linear singular systems from fluid dynamics using single-term Haar wavelet series”, International 

Journal of Computer, Mathematical Sciences and Applications, vol.4, pp. 15-29, 2010. 


