International Journal of Mathematics Trends and Technology- Volume 4 Issue 9- October 2013

Inextensible flows of curves in the equiform
geometry of the simple isotropic space 7,
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Abstract--In this paper, evolution equations for inextensible flows of curves in the simple isotropic space are
investigated and necessary and sufficient conditions for simple isotropic inextensible curve flow are expressed as a
partial differential equation involving the equiform curvature and equiform torsion in the equiform geometry of the

simple isotropic space .73(1) .
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I. INTRODUCTION

The flow of curve is called to be simple isotropic inextensible if the arclength is preserved in the equiform

geometry of the simple isotropic space .7 @

g Inextensible curve flows is used computer vision, computer

animation and structural mechanic .

Inextensible flow of curves and developable surfaces for plane and space curves is investigated by Kwon and
Park [1] . Later author studied inextensible flow of curves and developable surfaces and space curves in
Minkowski 3-space [2].

In this work, we derive evolution equations for simple isotropic inextensible flows of curves in the

equiform geometry of the simple isotropic space 13(1) . Also, we give necessary and sufficient conditions for

simple isotropic inextensible curve flows in the equiform geometry of the simple isotropic space Js(l) .

In this section we give fundamental definitions relation simple isotropic space js(l) [31.[4].

The simple isotropic geometry is one of the real Kayley-Klein geometries. The scalar product of two

vectors a =(a,,a,,a;).b=(b,,b,,b;) e]s(l) is given by

ab +ab, a =0 b =0 i1=12
asb, a=a,=b =b,=0

(28,5~

The formulas analogous to the Frenet’s frame in the equiform geometry of the simple isotropic space are
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where 77 is an equiform invariant parameter. The equiform curvature and the equiform torsion of a curve is
defined by K and 7 [4].

I1. INEXTENSIBLE FLOWS OF CURVES IN THE SIMPLE ISOTROPIC SPACE Jg(l)

Let H:[0,1]x[0,t) > 13(1) be a family of differentiable curves in the equiform geometry of the simple

isotropic space Js(l) . Any flow of H is given by

oH oH\"’ o 10
The curve speed V=| —,— and —=——-.
o0& o0& on Vvo&

)

2.1 Definition . A curve evolution H (&,t) in JS( and its flow is called to be simple isotropic inextensible if

O |/oH H\ _ 4
at\\oc o/

2.1 Lemma.
xy_%» +VpK (2.1)
ot o '
Proof .
v2 = <ﬁ,ﬁ> 2.2)
08 0 [
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From (2.2), we have

N S[HB) D ot i)
ot ot\oc'og ) w \o&'og Lo
o

- Op R A A . or A
=2(vT,(—+vpx—gV)T +(pv+—+agvxk)N + (vg7 + —+rvx)B
< (ag px —qv)T +(p oc qv)N +(vqr oF K)>

| 3(1)

2v(2—p+vp12—qv) (2.3)
From (2.3), we obtain

y_%» +VpK—QV.

ot o0&

2.1 Theorem . (Necessary and sufficient conditions for simple isotropic inextensible flow of curves.)

oH ~ & A
Let — = pT +gN +rB be a differentiable flow in the equiform geometry of simple isotropic space. The

curve flow is simple isotropic inextensible if and only if

»

on =—pK+( (2.4)

Proof.

os(&t SOV
el —j— &= j(—+vpz< qVE=0.

Thus, we obtain (2.4).
2.1 Corallary . An simple isotropic curve flow is independent of I binormal component in Ig(l) .

3.1 Lemma.

of - o9 . R S
—=qT +(—+qgx+ p)N + +—+r1K)B
il (677 qx+p)N +(a7 on )

oN e a
e (p+—+gA)T +06B
" (p on qx)

aB——(qﬂﬁﬂ;e)f—@l\]
on

ot
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Proof.

T oM _aM_ 0
ot oton on ot On
q

op -
=(—+ T+(p+—
(877 px)T +(p on

+qi)N +(qf+ﬂ+rz€)é
on

From (2.1), we obtain

aq

of
—=qT +(p+—
P qT +(p on

+q)N +(qf+§—r+r1%)l_3> (2.5)
n

Also, we have

0 (2.6)

Q1) =0 p+g_q+q,e+<f%>
3 n

i<‘|°,l§>|3® :0:>qf+aa—r+r12+<'f,

> =0 (2.7)
n 1,®

From (2.6), (2.7) and (2.8), we find

oN A v 4
—=—(p+—+ T + OB 2.9
o (p on qx) (2.9)

®B_ —(q7 o re)T—6ON  (2.10)
ot on

We derive equations for

2.2 Theorem. ( Inextensible evolution equations in equiform geometry of simple isotropic space .)

oH ~ 0 4
Let the curve flow E = pT +gN +rB be simple isotropic inextensible in the equiform geometry of the

simple isotropic space. The following system of partial differential equations are satisfied

oK o°r .00 OK .  ama
— =5+ —+_—+pr+qiK)7
ot on on 0On
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0t 00

.o
—+(q7+—+rK)
ot oOn on

2 A
®= 0 r2+3 8_q+8_+ pPT+Qq7K
on on 0n

Proof .

o oT

aq or
—[qT +(p+—+ N +(q7 +—+r&)B
on ot on % [T +(p on qr)N +(q7 on K)

—pf+(—(p+—q+qz%)+q+1%(—q+ p+£q))N (2.11)
on on on

+(—=+ p+;eq)f+i(qf+ﬂ+n&)w&(qﬂﬂme))é
on on on on

o ot

G _C kT +N
ot on at( )

S o T+ Py pargi?)N + (o + 2 4T +O)B (212)
ot on on on
ooT oot
(2.13)
ot on 877 ot

From (2.11), (2.12), (2.13), we obtain

QG_T (p+ +qx)r+—(qr+ﬂ+rzc) (2.14)
ot on on on on '

As similar,

o oB 0

OB g+ T vy — k(i + R+ O)T
on ot on on on

—(qr+ﬂ+a—®+® AN —0B (2.15)
on on

ISSN: 2231-5373 http://www.ijmttjournal.org

Page 193



International Journal of Mathematics Trends and Technology- Volume 4 Issue 9- October 2013

OB 0, .4

———=——(xB)

oton 0On
_RE_(igr+ k42T —ORN (2.16)
ot on

— == (2.17)

From (2.15), (2.16), (2.17), we obtain

A

n 2
o —(C L3y Ty pirqin)t
7

Qﬂzi(—hm +17B)
on

ot on
=((a—K—®f—(p+a—q+q,2))N+((p—,e(p+a—q+qze)—f(qf+ﬂ+ne))f
ot on on on
ot R . or o A
—+0OK— +—+rkK))B 2.18
+((8t Kk—(Qq7 on K)) (2.18)
. ) .
ON_ % qay-kge-00 g X K)ot g2+ TP _oproN-0@
on ot on on on 07 on on
oK R aq R . aq N aya O oy
=((—-07—(p+—+9gK))N+((p—-«x(p+—+09x)—-7(q7 +—+rx))T (2.19)
ot on on on
ooN 8 oN
— (2.20)
oton onon

From (2.18), (2.19), (2.20), we obtain

ot 00 . or .
—=—+(Q7+—+rK)
ot 0n on
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