# Eulerian integral associated with product of two multivariable A-functions, 

# a generalized Lauricella function and a class of polynomials 

F.Y. AYANT ${ }^{1}$

1 Teacher in High School, France

## ABSTRACT

The present paper is evaluated a new Eulerian integral associated with the product of two multivariable A-functions defined by Gautam et al [1] a generalized Lauricella function and a class of multivariable polynomials with general arguments. Several particular cases are given .

Keywords: Eulerian integral, multivariable A-function, generalized Lauricella function of several variables, multivariable H -function, generalized hypergeometric function, class of polynomials.

2010 Mathematics Subject Classification :33C05, 33C60

## 1. Introduction

In this paper, we evaluate a new Eulerian integral of most general characters associated with the products of two multivariable A-functions defined by Gautam et al [1] and a class of polynomials with general arguments but of greater order. Several particular cases are given.
The A-function is defined and represented in the following manner.
$A\left(z_{1}, \cdots, z_{r}\right)=A_{p, q: p_{1}, q_{1} ; \cdots ; p_{r}, q_{r}}^{m, n: m_{1}, n_{1} ; \cdots m_{r}, n_{r}}\left(\begin{array}{c|l}\mathrm{z}_{1} & \left(\mathrm{a}_{j} ; A_{j}^{(1)}, \cdots, A_{j}^{(r)}\right)_{1, p}: \\ \cdot & \\ \cdot & \\ \cdot & \left(\mathrm{b}_{j} ; B_{j}^{(1)}, \cdots, B_{j}^{(r)}\right)_{1, q}: \\ \mathrm{z}_{r} & \end{array}\right.$
$\left(c_{j}^{(1)}, C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, C_{j}^{(r)}\right)_{1, p_{r}}$
$\left(\mathrm{d}_{j}^{(1)}, D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, D_{j}^{(r)}\right)_{1, q_{r}}$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \phi\left(s_{1}, \cdots, s_{r}\right) \prod_{i=1}^{r} \theta_{i}\left(s_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.2}
\end{equation*}
$$

where $\phi\left(s_{1}, \cdots, s_{r}\right), \theta_{i}\left(s_{i}\right), i=1, \cdots, r$ are given by :
$\phi\left(s_{1}, \cdots, s_{r}\right)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\sum_{i=1}^{r} B_{j}^{(i)} s_{i}\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\sum_{i=1}^{r} A_{j}^{(i)} s_{j}\right)}{\prod_{j=n+1}^{p} \Gamma\left(a_{j}-\sum_{i=1}^{r} A_{j}^{(i)} s_{j}\right) \prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+\sum_{i=1}^{r} B_{j}^{(i)} s_{j}\right)}$
$\theta_{i}\left(s_{i}\right)=\frac{\prod_{j=1}^{n_{i}} \Gamma\left(1-c_{j}^{(i)}+C_{j}^{(i)} s_{i}\right) \prod_{j=1}^{m_{i}} \Gamma\left(d_{j}^{(i)}-D_{j}^{(i)} s_{i}\right)}{\prod_{j=n_{i}+1}^{p_{i}} \Gamma\left(c_{j}^{(i)}-C_{j}^{(i)} s_{i}\right) \prod_{j=m_{i}+1}^{q_{i}} \Gamma\left(1-d_{j}^{(i)}-D_{j}^{(i)} s_{i}\right)}$

Here $m, n, p, m_{i}, n_{i}, p_{i}, c_{i} \in \mathbb{N}^{*} ; i=1, \cdots, r ; a_{j}, b_{j}, c_{j}^{(i)}, d_{j}^{(i)}, A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{C}$
The multiple integral defining the A -function of r variables converges absolutely if :
$\left|\arg \left(\Omega_{i}\right) z_{k}\right|<\frac{1}{2} \eta_{k} \pi, \xi^{*}=0, \eta_{i}>0$
$\Omega_{i}=\prod_{j=1}^{p}\left\{A_{j}^{(i)}\right\}^{A_{j}^{(i)}} \prod_{j=1}^{q}\left\{B_{j}^{(i)}\right\}^{-B_{j}^{(i)}} \prod_{j=1}^{q_{i}}\left\{D_{j}^{(i)}\right\}^{D_{j}^{(i)}} \prod_{j=1}^{p_{i}}\left\{C_{j}^{(i)}\right\}^{-C_{j}^{(i)}} ; i=1, \cdots, r$
$\xi_{i}^{*}=\operatorname{Im}\left(\sum_{j=1}^{p} A_{j}^{(i)}-\sum_{j=1}^{q} B_{j}^{(i)}+\sum_{j=1}^{q_{i}} D_{j}^{(i)}-\sum_{j=1}^{p_{i}} C_{j}^{(i)}\right) ; i=1, \cdots, r$
$\eta_{i}=\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{(i)}-\sum_{j=n+1}^{p} A_{j}^{(i)}+\sum_{j=1}^{m} B_{j}^{(i)}-\sum_{j=m+1}^{q} B_{j}^{(i)}+\sum_{j=1}^{m_{i}} D_{j}^{(i)}-\sum_{j=m_{i}+1}^{q_{i}} D_{j}^{(i)}+\sum_{j=1}^{n_{i}} C_{j}^{(i)}-\sum_{j=n_{i}+1}^{p_{i}} C_{j}^{(i)}\right)$
$i=1, \cdots, r$
Consider the second multivariable A-function.
$A\left(z_{1}^{\prime}, \cdots, z_{s}^{\prime}\right)=A_{p^{\prime}, q^{\prime}: p_{1}^{\prime}, q_{1}^{\prime} ; \cdots ; p_{r}^{\prime}, q_{r}^{\prime}}^{m^{\prime}, n_{r}^{\prime}: m_{r}^{\prime}, n_{1}^{\prime} ; \cdots ; r_{r}^{\prime}, n_{r}^{\prime}}\left(\begin{array}{c|c}\mathrm{z}_{1} \\ \cdot & \left(\mathrm{a}^{\prime} ; A_{j}^{\prime}(1), \cdots, A_{j}^{\prime}(s)\right)_{1, p^{\prime}}: \\ \cdot & \\ \cdot & \left(\mathrm{b}^{\prime} ; B_{j}^{\prime(1)}, \cdots, B_{j}^{\prime(s)}\right)_{1, q^{\prime}}: \\ \mathrm{z}_{r} & \end{array}\right.$
$\left.\begin{array}{c}\left(\mathrm{c}_{j}^{(1)}, C_{j}^{\prime(1)}\right)_{1, p_{1}^{\prime}} ; \cdots ;\left(c_{j}^{\prime(s)}, C_{j}^{\prime(s)}\right)_{1, p_{s}^{\prime}} \\ \left(\mathrm{d}_{j}^{(1)}, D_{j}^{\prime(1)}\right)_{1, q_{1}^{\prime}} ; \cdots ;\left(d_{j}^{\prime(s)}, D_{j}^{\prime(s)}\right)_{1, q_{s}^{\prime}}\end{array}\right)$

$$
\begin{equation*}
=\frac{1}{(2 \pi \omega)^{s}} \int_{L_{1}^{\prime}} \cdots \int_{L_{s}^{\prime}} \phi^{\prime}\left(t_{1}, \cdots, t_{s}\right) \prod_{i=1}^{s} \theta_{i}^{\prime}\left(t_{i}\right) z_{i}^{s_{i}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{1.10}
\end{equation*}
$$

where $\phi^{\prime}\left(t_{1}, \cdots, t_{s}\right), \theta_{i}^{\prime}\left(t_{i}\right), i=1, \cdots, s$ are given by :
$\phi^{\prime}\left(t_{1}, \cdots, t_{s}\right)=\frac{\prod_{j=1}^{m^{\prime}} \Gamma\left(b_{j}^{\prime}-\sum_{i=1}^{s} B_{j}^{\prime(i)} t_{i}\right) \prod_{j=1}^{n^{\prime}} \Gamma\left(1-a_{j}^{\prime}+\sum_{i=1}^{s} A_{j}^{\prime(i)} t_{j}\right)}{\prod_{j=n^{\prime}+1}^{p^{\prime}} \Gamma\left(a_{j}^{\prime}-\sum_{i=1}^{s} A_{j}^{\prime(i)} t_{j}\right) \prod_{j=m^{\prime}+1}^{q^{\prime}} \Gamma\left(1-b_{j}^{\prime}+\sum_{i=1}^{s} B_{j}^{\prime(i)} t_{j}\right)}$
$\theta_{i}^{\prime}\left(t_{i}\right)=\frac{\prod_{j=1}^{n_{i}^{\prime}} \Gamma\left(1-c_{j}^{\prime(i)}+C_{j}^{\prime(i)} t_{i}\right) \prod_{j=1}^{m_{i}^{\prime}} \Gamma\left(d_{j}^{\prime(i)}-D_{j}^{\prime(i)} t_{i}\right)}{\prod_{j=n_{i}^{\prime}+1}^{p_{i}^{\prime}} \Gamma\left(c_{j}^{\prime(i)}-C_{j}^{\prime(i)} t_{i}\right) \prod_{j=m_{i}^{\prime}+1}^{i_{i}^{\prime}} \Gamma\left(1-d_{j}^{\prime(i)}-D_{j}^{\prime(i)} t_{i}\right)}$

Here $m^{\prime}, n^{\prime}, p^{\prime}, m_{i}^{\prime}, n_{i}^{\prime}, p_{i}^{\prime}, c_{i}^{\prime} \in \mathbb{N}^{*} ; i=1, \cdots, r ; a_{j}^{\prime}, b_{j}^{\prime}, c_{j}^{\prime(i)}, d_{j}^{\prime(i)}, A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{C}$
The multiple integral defining the A -function of r variables converges absolutely if :

$$
\begin{align*}
& \left|\arg \left(\Omega_{i}^{\prime}\right) z_{k}^{\prime}\right|<\frac{1}{2} \eta_{k}^{\prime} \pi, \xi^{\prime *}=0, \eta_{i}^{\prime}>0  \tag{1.13}\\
& \Omega_{i}^{\prime}=\prod_{j=1}^{p^{\prime}}\left\{A_{j}^{\prime(i)}\right\}^{A_{j}^{\prime}(i)} \prod_{j=1}^{q^{\prime}}\left\{B_{j}^{\prime(i)}\right\}^{-B_{j}^{\prime(i)}} \prod_{j=1}^{q_{i}^{\prime}}\left\{D_{j}^{\prime(i)}\right\}^{D_{j}^{\prime}(i)} \prod_{j=1}^{p_{i}^{\prime}}\left\{C_{j}^{\prime(i)}\right\}^{-C_{j}^{\prime(i)}} ; i=1, \cdots, s  \tag{1.14}\\
& \xi_{i}^{\prime *}=\operatorname{Im}\left(\sum_{j=1}^{p^{\prime}} A_{j}^{\prime(i)}-\sum_{j=1}^{q^{\prime}}{B_{j}^{\prime(i)}}+\sum_{j=1}^{q_{i}^{\prime}} D_{j}^{\prime(i)}-\sum_{j=1}^{p_{i}^{\prime}} C_{j}^{\prime(i)}\right) ; i=1, \cdots, s  \tag{1.15}\\
& \eta_{i}^{\prime}=\operatorname{Re}\left(\sum_{j=1}^{n^{\prime}} A_{j}^{\prime(i)}-\sum_{j=n^{\prime}+1}^{p^{\prime}} A_{j}^{\prime(i)}+\sum_{j=1}^{m^{\prime}}{B_{j}^{\prime(i)}}-\sum_{j=m^{\prime}+1}^{q^{\prime}} B_{j}^{\prime(i)}+\sum_{j=1}^{m_{i}^{\prime}} D_{j}^{\prime(i)}-\sum_{j=m_{i}^{\prime}+1}^{q_{i}^{\prime}} D_{j}^{\prime(i)}+\sum_{j=1}^{n_{i}^{\prime}} C_{j}^{\prime(i)}-\sum_{j=n_{i}^{\prime}+1}^{p_{i}^{\prime}} C_{j}^{\prime(i)}\right) \\
& i=1, \cdots, s \tag{1.16}
\end{align*}
$$

Srivastava and Garg [4] introduced and defined a general class of multivariable polynomials as follows

$$
\begin{equation*}
S_{L}^{h_{1}, \cdots, h_{v}}\left[z_{1}, \cdots, z_{v}\right]=\sum_{R_{1}, \cdots, R_{v}=0}^{h_{1} R_{1}+\cdots h_{v} R_{v} \leqslant L}(-L)_{h_{1} R_{1}+\cdots+h_{v} R_{v}} B\left(E ; R_{1}, \cdots, R_{v}\right) \frac{z_{1}^{R_{1}} \cdots z_{v}^{R_{v}}}{R_{1}!\cdots R_{v}!} \tag{1.17}
\end{equation*}
$$

## 2. Integral representation of generalized Lauricella function of several variables

The following generalized hypergeometric function in terms of multiple contour integrals is also required [5 ,page 39 eq .30]

$$
\begin{align*}
& \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}\right)} p F_{Q}\left[\left(A_{P}\right) ;\left(B_{Q}\right) ;-\left(x_{1}+\cdots+x_{r}\right)\right] \\
& =\frac{1}{(2 \pi \omega)^{r}} \int_{L_{1}} \cdots \int_{L_{r}} \frac{\prod_{j=1}^{P} \Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)}{\prod_{j=1}^{Q} \Gamma\left(B_{j}+s_{1}+\cdots+s_{r}\right)} \Gamma\left(-s_{1}\right) \cdots \Gamma\left(-s_{r}\right) x_{1}^{s_{1}} \cdots x_{r}^{s_{r}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{r} \tag{2.1}
\end{align*}
$$

where the contours are of Barnes type with indentations, if necessary, to ensure that the poles of $\Gamma\left(A_{j}+s_{1}+\cdots+s_{r}\right)$ are separated from those of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$. The above result (1.23) can be easily established by an appeal to the calculus of residues by calculating the residues at the poles of $\Gamma\left(-s_{j}\right), j=1, \cdots, r$

In order to evaluate a number of integrals of multivariable I-function, we first establish the formula
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}} \mathrm{~d} t=(b-a)^{\alpha+\beta-1} B(\alpha, \beta) \prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}$
$F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}$$\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)$
where $a, b \in \mathbb{R}(a<b), \alpha, \beta, f_{i}, g_{i}, \sigma_{i}, \tau_{j}, h_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}^{+}(i=1, \cdots, k ; j=1, \cdots, l)$
$\min (\operatorname{Re}(\alpha), \operatorname{Re}(\beta))>0, \max _{1 \leqslant j \leqslant l}\left\{\left|\tau_{j}(b-a)^{h_{j}}\right|\right\}<1, \max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$,
and $F_{1: 0, \ldots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1}$ is a particular case of the generalized Lauricella function introduced by Srivastava-Daoust[3,page 454] given by :
$F_{1: 0, \cdots, 0 ; 0, \cdots, 0}^{1: 1, \cdots, 1 ; 1 \cdots, 1}\left(\begin{array}{c}\left(\alpha: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):\left(\lambda_{1}: 1\right), \cdots,\left(\lambda_{l}: 1\right) ;\left(-\sigma_{1}: 1\right), \cdots,\left(-\sigma_{k}: 1\right) \\ \cdots \\ \left(\alpha+\beta: h_{1}, \cdots, h_{l}, 1, \cdots, 1\right):-, \cdots,-;-, \cdots,-\end{array}\right.$
$\left.; \tau_{1}(b-a)^{h_{1}}, \cdots, \tau_{l}(b-a)^{h_{l}},-\frac{(b-a) f_{1}}{a f_{1}+g_{1}}, \cdots,-\frac{(b-a) f_{k}}{a f_{k}+g_{k}}\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \prod_{j=1}^{l} \Gamma\left(\lambda_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}\right)}$
$\frac{1}{(2 \pi \omega)^{l+k}} \int_{L_{1}} \cdots \int_{L_{l+k}} \frac{\Gamma\left(\alpha+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)}{\Gamma\left(\alpha+\beta+\sum_{j=1}^{l} h_{j} s_{j}+\sum_{j=1}^{k} s_{l+j}\right)} \prod_{j=1}^{l} \Gamma\left(\lambda_{j}+s_{j}\right) \prod_{j=1}^{k} \Gamma\left(-\sigma_{j}+s_{l+j}\right)$
$\prod_{j=1}^{l+k} \Gamma\left(-s_{j}\right) z_{1}^{s_{1}} \cdots z_{l}^{s_{l}} z_{l+1}^{s_{l+1}} \cdots, z_{l+k}^{s_{l+k}} \mathrm{~d} s_{1} \cdots \mathrm{~d} s_{l+k}$

Here the contour $L_{j}^{\prime} s$ are defined by $L_{j}=L_{w \zeta_{j} \infty}\left(\operatorname{Re}\left(\zeta_{j}\right)=v_{j}^{\prime \prime}\right)$ starting at the point $v_{j}^{\prime \prime}-\omega \infty$ and terminating at the point $v_{j}^{\prime \prime}+\omega \infty$ with $v_{j}^{\prime \prime} \in \mathbb{R}(j=1, \cdots, l)$ and each of the remaining contour $L_{l+1}, \cdots, L_{l+k}$ run from $-\omega \infty$ to $\omega \infty$
(2.2) can be easily established by expanding $\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}}$ by means of the formula :
$(1-z)^{-\alpha}=\sum_{r=0}^{\infty} \frac{(\alpha)_{r}}{r!} z^{r}(|z|<1)$
integrating term by term with the help of the integral given by Saigo and Saxena [2, page 93, eq.(3.2)] and applying the definition of the generalized Lauricella function [5, page 454].

## 3. Eulerian integral

In this section, we note :
$\theta_{i}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{\zeta_{j}^{(i)}}, \zeta_{j}^{(i)}>0(i=1, \cdots, r) ; \theta_{i}^{\prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime(i)}}, \zeta_{j}^{\prime(i)}>0(i=1, \cdots, s)$
$\theta_{i}^{\prime \prime}=\prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{\prime \prime( }(i)}, \zeta_{j}^{\prime \prime(i)}>0(i=1, \cdots, u)$
$X=m_{1}, n_{1} ; \cdots ; m_{r}, n_{r} ; m_{1}^{\prime}, n_{1}^{\prime} ; \cdots ; m_{s}^{\prime}, n_{s}^{\prime} ; 1,0 ; \cdots ; 1,0 ; 1,0 ; \cdots ; 1,0$
$Y=p_{1}, q_{1} ; \cdots ; p_{r}, q_{r} ; p_{1}^{\prime}, q_{1}^{\prime} ; \cdots ; p_{s}^{\prime}, q_{s}^{\prime} ; 0,1 ; \cdots ; 0,1 ; 0,1 ; \cdots ; 0,1$
$A=\left(a_{j} ; A_{j}^{(1)}, \cdots, A_{j}^{(r)}, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0\right)_{1, p}$
$B=\left(b_{j} ; B_{j}^{(1)}, \cdots, B_{j}^{(r)}, 0 \cdots, 0,0 \cdots, 0,0 \cdots, 0\right)_{1, q}$
$A^{\prime}=\left(a_{j}^{\prime} ; 0, \cdots, 0, A_{j}^{\prime(1)}, \cdots, A_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right)_{1, p^{\prime}}$
$B^{\prime}=\left(b_{j}^{\prime} ; 0, \cdots, 0, B_{j}^{\prime(1)}, \cdots, B_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right)_{1, q^{\prime}}$
$\mathrm{C}=\left(\mathrm{c}_{j}^{(1)}, C_{j}^{(1)}\right)_{1, p_{1}} ; \cdots ;\left(c_{j}^{(r)}, C_{j}^{(r)}\right)_{1, p_{r}} ;\left(c_{j}^{\prime(1)}, C_{j}^{\prime(1)}\right)_{1, p_{1}^{\prime}} ; \cdots ;\left(c_{j}^{\prime(r)}, C_{j}^{\prime(s)}\right)_{1, p_{s}^{\prime}}$
$(1,0) ; \cdots ;(1,0) ;(1,0) ; \cdots ;(1,0)$
$D=\left(\mathrm{d}_{j}^{(1)}, D_{j}^{(1)}\right)_{1, q_{1}} ; \cdots ;\left(d_{j}^{(r)}, D_{j}^{(r)}\right)_{1, q_{r}} ;\left(\mathrm{d}_{j}^{,(1)}, D_{j}^{\prime(1)}\right)_{1, q_{1}^{\prime}} ; \cdots ;\left(d_{j}^{\prime(s)}, D_{j}^{\prime(s)}\right)_{1, q_{s}^{\prime}} ;$
$(0,1) ; \cdots ;(0,1) ;(0,1) ; \cdots ;(0,1)$
$K_{1}=\left(1-\alpha-\sum_{i=1}^{u} R_{i} a_{i} ; \mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{s}^{\prime}, h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$
$K_{2}=\left(1-\beta-\sum_{i=1}^{u} R_{i} b_{i} ; \rho_{1}, \cdots, \rho_{r}, \rho_{1}^{\prime}, \cdots, \rho_{s}^{\prime}, 0, \cdots, 0,0 \cdots, 0\right)$
$K_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)} \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 1, \cdots, 0,0 \cdots, 0\right]_{1, l}$
$K_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{(1)} \cdots, \lambda_{j}^{\prime(s)}, 0, \cdots, 0,0 \cdots, 1, \cdots, 0\right]_{1, k}$
$L_{1}=\left(1-\alpha-\beta-\sum_{i=1}^{u} R_{i}\left(a_{i}+b_{i}\right) ; \mu_{1}+\rho_{1}, \cdots, \mu_{r}+\rho_{r}, \mu_{1}^{\prime}+\rho_{1}^{\prime}, \cdots, \mu_{r}^{\prime}+\rho_{r}^{\prime}\right.$,
$\left.h_{1}, \cdots, h_{l}, 1, \cdots, 1\right)$

$$
\begin{align*}
& L_{j}=\left[1-\lambda_{j}-\sum_{i=1}^{u} R_{i} \zeta_{j}^{\prime \prime(i)} ; \zeta_{j}^{(1)}, \cdots, \zeta_{j}^{(r)}, \zeta_{j}^{\prime(1)} \cdots, \zeta_{j}^{\prime(s)}, 0, \cdots, 0,0 \cdots, 0\right]_{1, l}  \tag{3.15}\\
& L_{j}^{\prime}=\left[1+\sigma_{j}-\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)} ; \lambda_{j}^{(1)}, \cdots, \lambda_{j}^{(r)}, \lambda_{j}^{\prime(1)} \cdots, \lambda_{j}^{\prime(s)}, 0, \cdots, 0,0, \cdots, 0\right]_{1, k}  \tag{3.16}\\
& P_{1}=(b-a)^{\alpha+\beta-1}\left\{\prod_{j=1}^{k}\left(a f_{j}+g_{j}\right)^{\sigma_{j}}\right\}  \tag{3.17}\\
& P_{u}=(b-a)^{\sum_{i=1}^{u}\left(a_{i}+b_{i}\right) R_{i}}\left\{\prod_{j=1}^{h}\left(a f_{j}+g_{j}\right)^{-\sum_{l=1}^{u} \lambda_{j}^{\prime \prime(i)} R_{i}}\right\}  \tag{3.18}\\
& B_{u}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!} \tag{3.19}
\end{align*}
$$

Let $\mathfrak{A}=A, A ; \mathfrak{B}=B, B^{\prime} ; A, B, A^{\prime}$ and $B^{\prime}$ are defined by (3.4), (3.5), (3.6) and (3.7), respectively We the following generalized Eulerian integral :
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{c}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime( }(u)}\end{array}\right)$
$A\left(\begin{array}{c}\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \left.\mathrm{z}_{r=1} \theta_{r}(t-a)_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}}(b-t)^{\rho_{r}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}\end{array}\right)$
$A\left(\begin{array}{c}\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \left.\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right) \mathrm{d} t=$
$=P_{1} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{k=1}^{u} z_{k}^{\prime \prime R_{k}} P_{u} B_{u}$

where $\mathfrak{A}, \mathfrak{B}, C, D, X, K_{1}, K_{2}, K_{j}, K_{j}^{\prime}, L_{1}, L_{j}, L_{j}^{\prime}, P_{1}, P_{u}, B_{u}$ and $\mathfrak{B}_{1}$ are defined above.

Provided that
(A) $a, b \in \mathbb{R}(a<b) ; \mu_{i}, \mu_{u}^{\prime}, \rho_{i}, \rho_{u}^{\prime}, \lambda_{j}^{(i)}, \lambda_{j}^{\prime(u)}, h_{v} \in \mathbb{R}^{+}, f_{i}, g_{j}, \tau_{v}, \sigma_{j}, \lambda_{v} \in \mathbb{C}(i=1, \cdots, r ; j=1, \cdots ; k$; $u=1, \cdots, s ; v=1, \cdots, l), a_{i}, b_{i}, \zeta_{j}^{\prime \prime(i)} \in \mathbb{R}^{+},(i=1, \cdots, u ; j=1, \cdots, k)$
(B) $m, n, p, m_{i}, n_{i}, p_{i}, c_{i} \in \mathbb{N}^{*} ; i=1, \cdots, r ; a_{j}, b_{j}, c_{j}^{(i)}, d_{j}^{(i)}, A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{C}$ $m^{\prime}, n^{\prime}, p^{\prime}, m_{i}^{\prime}, n_{i}^{\prime}, p_{i}^{\prime}, c_{i}^{\prime} \in \mathbb{N}^{*} ; i=1, \cdots, r ; a_{j}^{\prime}, b_{j}^{\prime}, c_{j}^{\prime(i)}, d_{j}^{\prime(i)}, A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{C}$
(C) $\max _{1 \leqslant j \leqslant k}\left\{\left|\frac{(b-a) f_{i}}{a f_{i}+g_{i}}\right|\right\}<1$
(D) $\operatorname{Re}\left[\alpha+\sum_{j=1}^{r} \mu_{j} \min _{1 \leqslant k \leqslant m_{i}} \frac{d_{k}^{(j)}}{D_{k}^{(j)}}+\sum_{j=1}^{s} \mu_{i}^{\prime} \min _{1 \leqslant k \leqslant m_{i}^{\prime}} \frac{d_{k}^{(j)}}{D_{k}^{\prime(j)}}\right]>0$
$\operatorname{Re}\left[\beta+\sum_{j=1}^{r} \rho_{j} \min _{1 \leqslant k \leqslant m_{i}} \frac{d_{k}^{(j)}}{D_{k}^{(j)}}+\sum_{j=1}^{s} \rho_{i}^{\prime} \min _{1 \leqslant k \leqslant m_{i}^{\prime}} \frac{d_{k}^{(j)}}{D_{k}^{\prime(j)}}\right]>0$
(E) $\operatorname{Re}\left(\alpha+\sum_{i=1}^{u} R_{i} a_{i}+\sum_{i=1}^{r} \mu_{i} s_{i}+\sum_{i=1}^{s} t_{i} \mu_{i}^{\prime}\right)>0 ; \operatorname{Re}\left(\beta+\sum_{i=1}^{u} R_{i} b_{i}+\sum_{i=1}^{r} v_{i} s_{i}+\sum_{i=1}^{s} t_{i} \rho_{i}^{\prime}\right)>0$
$\operatorname{Re}\left(\lambda_{j}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \zeta_{j}^{(i)}+\sum_{i=1}^{s} t_{i} \zeta_{j}^{\prime(i)}\right)>0(j=1, \cdots, l) ;$
$R e\left(-\sigma_{j}+\sum_{i=1}^{u} R_{i} \lambda_{j}^{\prime \prime(i)}+\sum_{i=1}^{r} s_{i} \lambda_{j}^{(i)}+\sum_{i=1}^{s} t_{i} \lambda_{j}^{(i)}\right)>0(j=1, \cdots, k) ;$
(F) $\left|\arg \left(\Omega_{i}\right) z_{k}\right|<\frac{1}{2} \eta_{i} \pi, \xi^{*}=0, \eta_{i}>0$
$\Omega_{i}=\prod_{j=1}^{p}\left\{A_{j}^{(i)}\right\}^{A_{j}^{(i)}} \prod_{j=1}^{q}\left\{B_{j}^{(i)}\right\}^{-B_{j}^{(i)}} \prod_{j=1}^{q_{i}}\left\{D_{j}^{(i)}\right\}^{D_{j}^{(i)}} \prod_{j=1}^{p_{i}}\left\{C_{j}^{(i)}\right\}^{-C_{j}^{(i)}} ; i=1, \cdots, r$
$\xi_{i}^{*}=\operatorname{Im}\left(\sum_{j=1}^{p} A_{j}^{(i)}-\sum_{j=1}^{q} B_{j}^{(i)}+\sum_{j=1}^{q_{i}} D_{j}^{(i)}-\sum_{j=1}^{p_{i}} C_{j}^{(i)}\right) ; i=1, \cdots, r$
$\eta_{i}=\operatorname{Re}\left(\sum_{j=1}^{n} A_{j}^{(i)}-\sum_{j=n+1}^{p} A_{j}^{(i)}+\sum_{j=1}^{m} B_{j}^{(i)}-\sum_{j=m+1}^{q} B_{j}^{(i)}+\sum_{j=1}^{m_{i}} D_{j}^{(i)}-\sum_{j=m_{i}+1}^{q_{i}} D_{j}^{(i)}+\sum_{j=1}^{n_{i}} C_{j}^{(i)}-\sum_{j=n_{i}+1}^{p_{i}} C_{j}^{(i)}\right)$
$-\mu_{i}-\rho_{i}-\sum_{l=1}^{k} \lambda_{j}^{(i)}-\sum_{l=1}^{l} \zeta_{j}^{(i)}>0 ; i=1, \cdots, r$
$\left|\arg \left(\Omega_{i}^{\prime}\right) z_{k}^{\prime}\right|<\frac{1}{2} \eta_{i}^{\prime} \pi, \xi^{\prime *}=0, \eta_{i}^{\prime}>0$
$\Omega_{i}^{\prime}=\prod_{j=1}^{p^{\prime}}\left\{A_{j}^{\prime(i)}\right\}^{A_{j}^{\prime}(i)} \prod_{j=1}^{q^{\prime}}\left\{B_{j}^{\prime(i)}\right\}^{-B_{j}^{\prime(i)}} \prod_{j=1}^{q_{i}^{\prime}}\left\{D_{j}^{\prime(i)}\right\}^{D_{j}^{\prime(i)}} \prod_{j=1}^{p_{i}^{\prime}}\left\{C_{j}^{\prime(i)}\right\}^{-C_{j}^{\prime(i)}} ; i=1, \cdots, s$
$\xi_{i}^{\prime *}=\operatorname{Im}\left(\sum_{j=1}^{p^{\prime}} A_{j}^{\prime(i)}-\sum_{j=1}^{q^{\prime}} B_{j}^{\prime(i)}+\sum_{j=1}^{q_{i}^{\prime}} D_{j}^{\prime(i)}-\sum_{j=1}^{p_{i}^{\prime}} C_{j}^{\prime(i)}\right) ; i=1, \cdots, s$
$\eta_{i}^{\prime}=\operatorname{Re}\left(\sum_{j=1}^{n^{\prime}} A_{j}^{\prime(i)}-\sum_{j=n^{\prime}+1}^{p^{\prime}} A_{j}^{\prime(i)}+\sum_{j=1}^{m^{\prime}} B_{j}^{\prime(i)}-\sum_{j=m^{\prime}+1}^{q^{\prime}} B_{j}^{\prime(i)}+\sum_{j=1}^{m_{i}^{\prime}} D_{j}^{\prime(i)}-\sum_{j=m_{i}^{\prime}+1}^{q_{i}^{\prime}} D_{j}^{\prime(i)}+\sum_{j=1}^{n_{i}^{\prime}} C_{j}^{\prime(i)}-\sum_{j=n_{i}^{\prime}+1}^{p_{i}^{\prime}} C_{j}^{\prime(i)}\right)$
$-\mu_{i}^{\prime}-\rho_{i}^{\prime}-\sum_{l=1}^{k} \lambda_{j}^{\prime(i)}-\sum_{l=1}^{l}{\zeta_{j}^{\prime(i)}>0 ; i=1, \cdots, s, s, ~}$
(H) $\left|\arg \left(z_{i} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\zeta_{j}^{(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(i)}}\right)\right|<\frac{1}{2} \eta_{i} \pi \quad(a \leqslant t \leqslant b ; i=1, \cdots, r)$
$\left|\arg \left(z_{i}^{\prime} \prod_{j=1}^{l}\left[1-\tau_{j}^{\prime}(t-a)^{h_{i}^{\prime}}\right]^{-\zeta_{j}^{\prime(i)}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(i)}}\right)\right|<\frac{1}{2} \eta_{i}^{\prime} \pi(a \leqslant t \leqslant b ; i=1, \cdots, s)$

## Proof

To prove (3.20), first, we express in serie a class of multivariable polynomials defined by Srivastava et al [4], $S_{L}^{h_{1}, \cdots, h_{u}}[$.$] with the help of (1.7), espressing the A-function of \mathrm{r}$ variables by the Mellin-Barnes contour integral with the help of the equation (1.2), the A-function of $s$ variables by the Mellin-Barnes contour integral with the help of the equation (1.5). Now collect the power of $\left[1-\tau_{j}(t-a)^{h_{i}}\right]$ with $(i=1, \cdots, r ; j=1, \cdots, l)$ and collect the power of $\left(f_{j} t+g_{j}\right)$ with $j=1, \cdots, k$. Use the equations (2.2) and (2.3) and express the result in Mellin-Barnes contour integral. Interpreting the $(r+s+k+l)$ dimensional Mellin-Barnes integral in multivariable A-function defined by Gautam et al [1], we obtain the equation (3.20).

## Remarks

If a) $\rho_{1}=\cdots, \rho_{r}=\rho_{1}^{\prime}=\cdots, \rho_{s}^{\prime}=0$; b) $\mu_{1}=\cdots, \mu_{r}=\mu_{1}^{\prime}=\cdots, \mu_{s}^{\prime}=0$, we obtain the similar formulas that (3.20) with the corresponding simplifications.

## 4. Particular cases

a) If $A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{R}, m=0$ and $A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{R}$ and $m^{\prime}=0$, the multivariable A-functions reduces to multivariable H -functions defined by Srivastava et al [6], we obtain the following result.
$\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}$
$S_{L}^{h_{1}, \cdots, h_{u}}\left(\begin{array}{cc}\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} & \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\ \cdot & \cdot \\ \cdot & \\ \mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}} & \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(u)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}\end{array}\right)$
$H\left(\begin{array}{c}\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \left.\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\ \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}\end{array}\right) \mathrm{d} t=$
$=P_{1} \sum_{R_{1}, \cdots, R_{u}=0}^{h_{1} R_{1}+\cdots h_{u} R_{u} \leqslant L} \prod_{k=1}^{u} z_{k}^{\prime \prime R_{k}} P_{u} B_{u}$

under the same notations and validity conditions that (3.24) with $A_{j}^{(i)}, B_{j}^{(i)}, C_{j}^{(i)}, D_{j}^{(i)} \in \mathbb{R}, m=0$ and $A_{j}^{\prime(i)}, B_{j}^{\prime(i)}, C_{j}^{\prime(i)}, D_{j}^{\prime(i)} \in \mathbb{R}$ and $m^{\prime}=0$
b) If $B\left(L ; R_{1}, \cdots, R_{u}\right)=\frac{\prod_{j=1}^{\bar{A}}\left(a_{j}\right)_{R_{1} \theta_{j}^{\prime}+\cdots+R_{u} \theta_{j}^{(u)}} \prod_{j=1}^{B^{\prime}}\left(b_{j}^{\prime}\right)_{R_{1} \phi_{j}^{\prime}} \cdots \prod_{j=1}^{B^{(u)}}\left(b_{j}^{(u)}\right)_{R_{u} \phi_{j}^{(u)}}}{\prod_{j=1}^{\bar{C}}\left(c_{j}\right)_{m_{1} \psi_{j}^{\prime}+\cdots+m_{u} \psi_{j}^{(u)}} \prod_{j=1}^{D^{\prime}}\left(d_{j}^{\prime}\right)_{R_{1} \delta_{j}^{\prime}} \cdots \prod_{j=1}^{D^{(u)}}\left(d_{j}^{(u)}\right)_{R_{u} \delta_{j}^{(u)}}}$
then the general class of multivariable polynomial $S_{L}^{h_{1}, \cdots, h_{u}}\left[z_{1}, \cdots, z_{u}\right]$ reduces to generalized Lauricella function defined by Srivastava et al [3]. We have

$$
\int_{a}^{b}(t-a)^{\alpha-1}(b-t)^{\beta-1} \prod_{j=1}^{l}\left[1-\tau_{j}(t-a)^{h_{i}}\right]^{-\lambda_{j}} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{\sigma_{j}}
$$

$$
F_{\bar{C}: D^{\prime} ; \cdots ; D^{(u)}}^{1+\bar{A}: B^{\prime} ; \cdots ; B^{(u)}}\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime \prime} \theta_{1}^{\prime \prime}(t-a)^{a_{1}}(b-t)^{b_{1}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{u}^{\prime \prime} \theta_{u}^{\prime \prime}(t-a)^{a_{u}}(b-t)^{b_{u}}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime \prime(1)}} \\
j=1
\end{array} f_{j} t+g_{j}\right)^{\left.-\lambda_{j}^{\prime \prime( }\right)}
$$

$$
\left.\begin{array}{c}
{\left[(-\mathrm{L}) ; \mathrm{R}_{1}, \cdots, R_{u}\right]\left[(a) ; \theta^{\prime}, \cdots, \theta^{(u)}\right]:\left[\left(b^{\prime}\right) ; \phi^{\prime}\right] ; \cdots ;\left[\left(b^{(u)}\right) ; \phi^{(u)}\right]} \\
{\left[(\mathrm{c}) ; \psi^{\prime}, \cdots, \psi^{(u)}\right]:\left[\left(d^{\prime}\right) ; \delta^{\prime}\right] ; \cdots ;\left[\left(d^{(u)}\right) ; \delta^{(u)}\right]}
\end{array}\right)
$$

$$
A\left(\begin{array}{c}
\mathrm{z}_{1} \theta_{1}(t-a)^{\mu_{1}}(b-t)^{\rho_{1}} \\
\cdot \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(1)}} \\
\cdot \\
\cdot \\
\mathrm{z}_{r} \theta_{r}(t-a)^{\mu_{r}}(b-t)^{\rho_{r}}
\end{array} \prod_{j=1}^{k}\left(f_{j} t+g_{j}\right)^{-\lambda_{j}^{(r)}}\right)
$$

$$
A\left(\begin{array}{c}
\mathrm{z}_{1}^{\prime} \theta_{1}^{\prime}(t-a)^{\mu_{1}^{\prime}}(b-t)^{\rho_{1}^{\prime}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{z}_{s}^{\prime} \theta_{s}^{\prime}(t-a)^{\mu_{s}^{\prime}}(b-t)^{\rho_{s}^{\prime}} \\
\left.f_{j} t+g_{j}\right)^{-\lambda_{j}^{\prime(1)}} \\
j=1
\end{array}\right) \mathrm{d} t=\sum_{R_{1}, \cdots, R_{u}=0}^{\left.h_{1} t+g_{j}\right)^{-\lambda_{j}^{\prime(s)}}} \prod_{k=1}^{h_{1}+\cdots h_{u} R_{u} \leqslant L} z_{k}^{u} R_{k} P_{u} B_{u}^{\prime}
$$


under the same conditions that (3.24)
and $B_{u}^{\prime}=\frac{(-L)_{h_{1} R_{1}+\cdots+h_{u} R_{u}} B\left(E ; R_{1}, \cdots, R_{u}\right)}{R_{1}!\cdots R_{u}!} ; B\left(L ; R_{1}, \cdots, R_{u}\right)$ is defined by (4.2)

## Remark:

By the following similar procedure, the results of this document can be extented to product of any finite number of multivariable A-functions and a class of multivariable polynomials defined by Srivastava et al [4].

## 5. Conclusion

In this paper we have evaluated a generalized Eulerian integral involving the product of two multivariable A-functions defined by Gautam et [1] and a class of multivariable polynomials defined by Srivastava et al [4] with general arguments. The formulae established in this paper is very general nature. Thus, the results established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

## REFERENCES

[1] Gautam B.P., Asgar A.S. and Goyal A.N. On the multivariable A-function. Vijnana Parishas Anusandhan Patrika Vol 29(4) 1986, page 67-81.
[2] Saigo M. and Saxena R.K. Unified fractional integral formulas for the multivariable H-function I. J.Fractional Calculus 15 (1999), page 91-107.
[3] Srivastava H.M. and Daoust M.C. Certain generalized Neumann expansions associated with Kampé de Fériet function. Nederl. Akad. Wetensch. Proc. Ser A72 = Indag Math 31(1969) page 449-457.
[4] Srivastava H.M. And Garg M. Some integral involving a general class of polynomials and multivariable H-function. Rev. Roumaine Phys. 32(1987), page 685-692.
[5] Srivastava H.M. and Karlsson P.W. Multiple Gaussian Hypergeometric series. Ellis.Horwood. Limited. New-York, Chichester. Brisbane. Toronto , 1985.
[6] H.M. Srivastava And R.Panda. Some expansion theorems and generating relations for the H-function of several complex variables. Comment. Math. Univ. St. Paul. 24(1975), p.119-137.

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE

