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Abstract: Pnueli Lempel and Even introduced the
concept of Permutation Graphs in 1971. If i, j
belong to a permutation on p symbols {1, 2, ..., p}
and i is less than j then there is an edge between i
and j in the permutation graph if i appears after j in
the sequence of permutation. The permutations
realizing path, complete graph, bipartite graph,
tripartite graph, double star, wind mill and
elongated happy man had been characterized in the
first phase of our research. The notion of extending
a permutation by ConCatenating with other
permutations was introduced by us earlier. This has
persuaded to see the permutation of certain
caterpillars as Catenation of permutations which is
described in this paper.
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I. INTRODUCTION

The permutation graph is introduced by Pnueli,
Lempel and Even in 1971[1]. The idea of extending
a permutation by finite number of elements is
conceived by us which further led us to extend a
permutation by ConCatenating permutations at
either or both sides[7]. In the course of
ConCatenating a permutation of a path with other
permutations remarkably we came across some
special types of caterpillars. The corresponding
permutation is further decomposed into a product of
cyclic permutations. We have characterised
permutations realising some standard graphs earlier.
In this paper we have proved that Catenating the
permutation of a path with permutations of a star
realise special types of caterpillars.

Section | contains an introduction. Section I
includes the preliminary definitions required for
proving the results in ConCatenating the
permutations. Section 111 comprises of the results on
permutations realising a path with even and odd
number of elements Catenated with permutations
realising stars.

Il. PRELIMINARIES

Definition:2.1: Let nm be a permutation on p
symbols V={aj,a,,...,a,} where n(a;) = a&’, I<i<p
and |ai« — &l = ¢, ¢ >0, 1< < p. Then the sequence
of permutation s(m) is {a;’, a;’,...,a,"}. When the

elements are ordered in a line L; and the elements of
s(m) are ordered in a lineL, parallel to Ly, then a line
joining & in L; and & in L, is known as line
representation of a; in « and is denoted by 1; [2]. The
Residue of a; and a; is denoted by Res(a;;) and is
given by Res(a;,a))=(a; - a)(r™(a) - 7(ay)). Then I;
and [; cross each other if Res(aj,a) < 0. The
neighbourhood of & in @ is Ni(a) = {a € V/
Res(aj,a;) < 0} and d,(a;)) = [Nx(a;)| is the number of
lines that cross I; in 7.[3]

Definition: 2.2: Let 7 be a permutation on a
finite set V = {a,a..8}) given Dby

ﬂ:(al. az.map.j wherela,; —a;|=c, ¢ >0,
a'a,’.a,

1<i<p-1. Then the permutation graph
G, = (V_,E_)whereV =V and ageE_  if
Res (a; ,a;) < 0. A graph G is a permutation graph if
there exists 7 such that G” ~ G . Thatis agraph G

is a permutation graph if it is realisable by a
permutation 7. Otherwise it is not a permutation
graph [3]

Note: C,, n > 5, are not permutation graphs. [3]
Definition: 2.3: A Caterpillar is a tree T such
that the removal of all pendant vertices leaves a path,
Pe:( Uy, Uy, ..., uy), which is called the spine of T. For
each i, 1 <i <k, if v; is the finite number of pendant
vertices of T that are adjacent to the vertex u;, then
the caterpillar T can be represented by the finite
sequence (Vi, Vo, ..., vi). Each v; is non-negative and
v;>0,v>0.[4]

Definition:2.4: The double star S(n,m), n > 0,
m >0, is the graph consisting of the union of two
stars Ky , and K; ,, together with the line joining their
centres. The double star has a path P, joining the
centres of the n-star and m-star. The Double Star is a
Caterpillar T: (n,m). The generalised form S(n,m:k)
has a path P, joining the n-star and m-star.[6]
S(n,m:k) is also known as Elongated Double Star
(EDS) which is a Caterpillar (n,0,0,...,0,m). When n
=m = k = 2, then S(2,2:2) is the Happy Man and
when n =m = 2, k > 3 then S(2,2:k) is known as
Elongated Happy Man [8]. S(n,0:k) is known as a
Coconut Tree[7].

Theorem 2.5: Let 7 be a permutation on p symbols
V = {a;,8,,...,a,} given by m(a;)=a;",1< i < p , where
[aiss —al =c,c>0.(i.e) s(m) = {a’y,a’,...,a°p}. If n
realises a path then n° (Restructured Permutation),
where s(nR) =is {a’, a’3, a’1,a’4,a’s,..., 8’ps,2’p1,@ ).
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22°p,a’ 3} for odd p and s(x¥) = {a’, a’s; a’y,
a’4,’s,...,8°p.3, a’p, @'pp, @’p1} TOr even p, realise the
Elongated Happy Man S(2,2:p-4).[8]

Theorem 2.6: Let m be a permutation on p
symbols V = {a;,8,,...,a,} given by n(aj)=g;’, 1<1 <
p, where |aj;; — | =c,c>0. (i.e) s(n ) = {a’,a’5,...,
a’p}. If m realises a path then 7% = myn my, where my =
(a3 @ @p-1), even p (or) my = (8p-2 8p-1 8p), 0dd p and
2 =(218223).[8]

I11.PERMUTATIONS EXTENDED BY FINITE NUMBER
OF ELEMENTS

Definition 3.1: Let  be a connected permutation
on a finite set V = {a;,a,,...,ap} such that |a;.,- aj| =
¢, ¢ >0, 1<i<p. Permutation extended by r

elements ag.1, ap+2, ...ap+r Where r is finite, denoted

by 7 . isgivenby () 7 . (ap+)=am () 7 . (an)=apsr

(iii)f[r* (a))= ﬂ(r—l)* (aj), 1 <m,n <p, provided Gﬂ is

r

connected[6].
Definition 3.2:  An extension of a permutation n

by r elements . is said to be similar if the

extension preserves the structure of G” containing

G,[6].

We have stretched this idea of extending a
permutation by finite number of elements to
extending a permutation by another permutation
either or both sides of a permutation. The operation
is named as ConCatenation of Permuations. The
definitions are as follows:

Definition  3.3: Let 1 be a connected
permutation on a finite set V ={a;,a,,...,a,} such that
[ais1- @il =k, k>0,1 < i<pand n(a;)) =a'j, ] <i< p;
m; be a connected permutation on a finite set V; =
{by, by, ..., b} such that |bis- bi| =k, k>0,1< i
<m and m(b) = b, 1 < 1< m and n, be a
connected permutation on a finite set V, = {c,, C,, ...,
Cn} such that [cisi- €| =k, k>0, 1 < i<nand my(c;) =
Ci, 1 < 1< n. Then the (i) © ConCatenated with m;
at left is known as Left ConCatenation of =,
denoted by ConCatr(m[p]). This is obtained by
interchanging b'y, under m; with a'; under © in
s(ConCat n(m[p])), where s(ConCat n(m[p])) is the
image sequence of ConCat n(m[p]) given by

{bll, blz, ,blm_l , a', blm, ay, .., a'p}(ll) )TC
ConCatenated with m, at right is known as Right
ConCatenation of n, denoted by ConCatxn([p]n).
This is obtained by interchanging &', under © with c';
under m, in s(ConCat m([p]n)), where s(ConCat
n([p]n)) is the image sequence of ConCat n([p]n)
given by {a'y, a', ..., @1, C'1, @, C'2, .oy Cho T

(iii) The connected permutation 7 can be extended at
both sides by ConCatenating 7, at left and =, at right
as mentioned above, will be denoted by ConCat
n(m[pln). If the = realises P, then the
ConCatenation of permutations m; and =, either /
both side of 7 is known as Catenation and denoted

by Catr(m[p]), Catr([pln) and Cata(m[p]n)
respectively.[7]

IV.CATERPILLARS AS CATENATION OF
PERMUTATIONS

Theorem:4.1 Let & be a connected permutation on a
finite set V ={ay,a,,...,ap} such that |aj.;- a| = k,
k>0, 1<i<pandr(a)=a", 1 < i< p realising
a path. Let m; be a permutation on {by,by,bs,...,on}
such that |bj- bil = & k> 0, I < i < m realising
a star Kymiand w3 on {C1,C,C3, ..., Cp} sSuch that
[Civi-Ci| =k k> 0, 1 < i <n realising a star Ky ;.
Then m Catenated with m, or w3 realsie a Caterpillar.

Proof: Given 7 realise a path with p elements. Then

L a a, a; a, .. ap_1 ap
a, a, a a; ap ap_2
odd p and,
a a, a . a
= 1 2 3 4 p-1 p
a a, a 6 p-3 p-1
even p.

Given m; on {by,b,,bs,....bm} realise a star Ky ..
Then

_[bl b, b, b, .. b bm]
T, =

b, b, b, b, .. b b

= (b1b2b3 bm)

R
bm bl b2 bS bm—Z bm—l

= (blbmbm-l b2)

Let us denote the former permutation on m elements
realising a star Ky .1 as m; and the later as m,.
Similarly let 73 and 74 be permutations on n
elements realising a star K, ,.; given by

(cl c, ¢ C .. C,, an
Ty, =
c, ¢, C, C. .. C C
= (€162C5 ... €o) (or)

[Cl Cc, ¢ G Ciu G J
T, =

Cn Cl C2 C3 n-2 Cn—l

= (C1CnCpt ... C2).

(A) Let w be Catenated with &; or m, at left or at
right.
Case(i): Let p be even
(a) Let & be catenated with =; at left. «t realises a
path P, = (2,1,4,3,6,5,...,p,p-1) and m; realises Ky m.;.
Then Catn(m[p]) has p+m elements. Here d,(a;) = 1,
i=2,p-1;d.(a)=2,i=1,34, .., p-2,p;

d, (b)=1i=23.mad d_(b)=m-1.

n is Catenated with m; at left.
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Cat z(m[p]) =
b, b, b, .. b b
Then , D3 Dy 1 O
b, b, b, b .. b a
a 8 8 a, .. a,; a
booa, & a .. a3 a.,

Here the lines of a, and b, cross. Here Res(b;,a,) <0
and all other crossing of lines remain unaltered.
Hence dcam(m[p])(az) =2and dCatn(m[p])(bl) =m.
Therefore dcatmpp)(@p-1) = 1; Acatmmip)(@i) = 2,
i= 1,2,3,4, . ap_z, ap; dCatn(m[p])(bi) = 1, i= 2,3,...,m.
Here b, is a support of m-1 elements.

p m

Z deatnppy (@) + Z deatnpn (D)

i=1 j=1
= m+m+2(p-1) = 2(p+m-1). Therefore Catrn(m[p]) is
a tree. Hence Catn(m[p]) realise a caterpillar of the
form (m-1,0,0,0, ..., 1) whose spine is Py. ----- (4.1.2)
(b) Let &t be catenated with &, at left. & realises a
path P, = (2,1,4,3,6,5,...,p,p-1) and m;, realises Ky m.1.
Then Catrn(m[p]) has p+m elements. Here d.(a;) = 1,
i=2,p-1;d.(a)=2,i=1,34, ..., p-2,p;

d_(0)=1i=123..m1land

d” (bm) = M —1.x is Catenated with r, at left.
2
Then

Cat 7 (m[p]) =

[b1 b, by by . by By
by b b, by .. by, &
& A 3 a .. A 3,
bps @ & 8 .. a3 ap,

Here the lines of a, and by, cross. Here Res(a,,bi.1)
< 0 and all other crossing of lines remain unaltered.
Hence dcammpp(@2) = 2 and deanmpp(bmi) = 2.
Therefore dcawmppp(@p-1) = 15 deammpn(@) = 2, 1 =
1,2,3,4, veny p—2,p, dCatn(m[p])(bi) = 1, i :1, 2,3,...,m-2.
Here by, is a support of m-1 elements.
p m
Z dcat(mppn (@) + Z dcammpn(05) =
i=1 j=1
m-1+m-1+2p = 2(p+m-1). Therefore Catn(m[p]) is
a tree. Hence Catn(m[p]) realise a caterpillar of the
form (m-2,0,0,0, ...,1) whose spine is Pp.;. ----(4.1.2)
(c) Let m be catenated with &t; at right. « realises a
path P, = (2,1,4,3,6,5,...,p,p-1) and m; realises Ky n.1.
Then Catn([p]m) has p+m elements. Here d.(a;) = 1,
i=2,p-1;d(a) =2,i=1,34, ..., p-2,p;
d,(b)=1i=23..mand d_(b)=m-1.

7 is Catenated with 7t; at right. Then

Cat 7 ([p]m) =
a a 3 a .. A,y a,
a a, a a .. a,3 b

Here the lines of a,, and b, cross. Here Res(by,a,.1)
< 0 and all other crossing of lines remain unaltered.
Hence dCatn([p]m)(aZ) = 1 and dCatTr([p]m)(ai) = 2:
i =1,34,..., p-2,p-1,p. Therefore dcyumpmb2) = 2;
dCam([p]m)(bi) = l, i= 314: vy M and dCam([p]m)(bl) =m.
Here b, is a support of m-1 elements.

p m
Z dCatn([p]m)(ai) + z dCam([p]m)(bj) =

i=1 j=1
m-1+m-1+2p = 2(p+m-1). Therefore Catn([p]m) is
a tree. Hence Catn([p]m) realise a caterpillar of the
form (1,0,0,0, ..., m-2) whose spine is Py4;-----(4.1.3)
(d) Let © be Catenated with &, at right. & realises a
path P, = (2,1,4,3,6,5,...,p,p-1) and =, realises K m.1.
Then Catn([p]m) has p+m elements.

d _(b)=1i=23..mand

d,r (b1) = M—1. nis Catenated with m, at right.
2

Catz ([p]m) =
a, a, a, a, .. a a
1 2 3 4 -1
Then P bp
a a & a .. 8,5 by

b, b, b, b, .. b, b,
p-1 b1 b2 b3 bm—z bm—l

Here the lines of a,; and by, cross. Here Res(bm,ap.1)
< 0 and all other crossing of lines remain unaltered.
Hence deampm)(@2) = 1, deamqpim (@) = 2,
i:1,3,4,..., p'2,p'1,p; dCam([p]m)(bi) = 1, i= 1,2,3,4,
v, M-1 and deainmppp(Om) = M. Here by, is a support
of m-1 elements.

a

p m
Z dcatm((pim)(ai) + Z deatn(pim) (07) =

i=1 j=1
m+m+2(p-1) = 2(p+m-1). Therefore Catn([p]m) is a
tree. Hence Catn([p]m) realise a caterpillar of the
form (1,0,0,0, ..., m-1) whose spine is Py. ----- (4.1.4)
Case(ii) Let p be odd.
Let t be catenated with (a) w; and (b) &, at left.
The proof for (a) and (b) for odd p is the same as for
even p. The Catn(m[p]) and Catn([p]m) realise
Caterpillars (m-1,0,0,0,...,1) whose spine is Py(4.2.1)
and (m-2,0,0, ...,1) and Py, . (4.2.2) respectively.
(c) Let 7 be catenated with &; at right. « realises a
path P, = (2,1,4,3,6,5,...,p-1,p-2,p) and m; realises
Kim-1. Then Catn([p]m) has p+m elements. Here
d.(a&) =1,i=2,p; d(a)) =2,i=1,34, ..., p-2, p-1;

d,(b)=1i=23..mand d_(b)=m-1.

7 is Catenated with 7t; at right. Then

Catz([p]m) =

a a, a; a; .. a,; a,
a, a, a a .. a, b
b, b, by, b, .. b,, b,
a,, by by by .. b, b

Here the lines of a,.; and b, cross. Here Res(b,,a,.2)
< 0 and all other crossing of lines remain unaltered.
Hence dcain(pim)(@p2) = 3, deampm(@) = 1, 1= 2,p;
dCam([p]m)(ai) = 2: i :1,374,”',[3'1; dCatﬂ:([p]m)(bZ)ZZ;
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dCatn([p]m)(bi) = 1: [ :11314! vy M and dCatn([p]m)(bl) =
m-1. Here b is a support of m-2 elements.

p
Z dCatn([p]m) (ai) +
i=1 j

= m+m-1+3+2(p-2) = 2(p+m-1). Therefore
Catn([p]m) is a tree. Hence Catn([p]m) realise a
caterpillar of the form (1,0,0,0, ...,0,1,0, m-2) whose
spine is Py, (4.2.3)

(d) Let t be Catenated with &, at right. « realises a
path P, = (2,1,4,3,6,5,...,p-1,p-2,p) and m; realises
Kim-1- Then Catn([p]m) has p+m elements.

d_(b)=1i=23..mand

d” (b1) = M—1. n is Catenated with m, at right.
2

m

dCatn([p]m) (bj)
=1

Cat z ([p]m )=

a, a, a, a, .. a a
Then 1 2 3 4 p-1 p

a, a, a a .. a, by

b, b, by b .. by, by

@, by by by by, by

Here the lines of a,., and by, cross. Here Res(by,ay-)
< 0 and all other crossing of lines remain unaltered.
Hence dCatn([p]m)(ai) = 1! [ :le; dCatn([p]m)(ai) = 2,
1=1,3,4,...,p-3,p-1; dcampim)(@p-2) = 3} dcatm(pm)(03)
= 1, i= 1,2,3,4, ceey m-1 and dCatn([p]m)(bm) =m.

Here by, is a support of m-1 elements.

p m
Z deamn(pm)(@i) + Z deampm(B)) =

i=1 j=1
m+1+m+3+2(p-3) = 2(p+m-1). Therefore
Catn([p]m) is a tree. Hence Catn([p]m) realise a
caterpillar of the form (1,0,0,0, ...,0,1, m-1) whose
spine is Pp.q. --=--=--m--mm-mmm- (4.2.49)

(B) Let  be Catenated with 7t; or @, or 75 or 7y at
left and &t; or 7, or 73 or @, at right
(i) Let p be even..
(a) Let us consider that 7 is Catenated with r; at left
and 73 at right. The other cases can be similarly
discussed.
Given = realise a path with p elements. Then

o a a, a; a, .. a, a,
a, a, a a a, a,,
odd p
. a
= 1 2 3 4 p-1 p
2 4 1 6 p-3 ap—l
even p.

1 2 3

o b b
MM b, b, b, b, .. b b
= (b1b2b3 bm

= (C1C2C5 ... Cy)

Then Catz(m[p]n) =

by by by .. by byoa @, oAy a, ¢
b by by .. by oa, b oa, ..oa; ¢ oA,
G, Cha €

Here dCatn(m[p]n)(bl) = m dCatn(m[p]n)(cl) = n'l;
dCatn(m[p]n)(bi) = 11 i= 213!4! ey M dCatTr(m[p]n)(ci) = 11
i =34, .., N deammpm(@) = 2, 1=1,23,4, ..., p and
Acatmmipny(C2) = 2.

p m
Z dcatn(mppin (@) + Z dcatmmpin(0)) +
i=1 j=1
n
Acatn(mippny (Ck) = M+n-1+m-1+n-2+2(p+1)
k=1

= 2(p+m+n-1).
Catn(m[p]n) has p+m+n elements. Therefore
Catr(m[p]n) is a tree and realises a Caterpillar of the
form (m-1,0,0,...,0,n-2) whose Spine is Pp.s.
(b) Let w be Catenated with m; at left and m4 at right.
Then Catr(m[p]n) realises a Caterpillar of the form
(m-1,0,0,...,0,n-1) whose Spine is Pp,,.
(c) If = is Catenated with m, at left and =5 at right,
then Catr(m[p]n) realises a Caterpillar of the form
(m-2,0,...,0,n-2) whose Spine is Pp...
(d) If & is Catenated with &, at left and =, at right
then Catr(m[p]n) realises a Caterpillar of the form
(m-2,0,...,0,n-1) whose Spine is Pp.s.
By Definition Cata(m[p]n) is a EDS when p is
even.
(ii) Let p be odd.
Analogous proof can be given for odd p as in the
previous case. The results are as follows:
(a) Let m be Catenated with mt; at left and 3 at right.
Then Catr(m[p]n) realises a Caterpillar of the form
(m-1,0,0,...,0,1,0,n-2) whose Spine is Pp...
(b) Let 7 be Catenated with =, at left and «, at right.
Then Catr(m[p]n) realises a Caterpillar of the form
(m-1,0,0....,0,1,n-1) whose Spine is Pp..
(c) If = is Catenated with =, at left and =3 at right,
then Catr(m[p]n) realises a Caterpillar of the form
(m-2,0,...,0,1,0,n-2) whose Spine is Pp.s.
(d) If = is Catenated with =, at left and =, at right
then Catr(m[p]n) realises a Caterpillar of the form
(m-2,0,...,0,1,n-1) whose Spine is Py,

Hence the theorem.

Theorem 4.2:  Let n be a connected permutation
on a finite set, p even, V ={vy,v,,...,vp} such that
[Visi- Vil=k, k>0,1< i<prealising a path. Let
m; be a permutation on {b1,b,,bs}such that |b;.s- bi| =
k>0,1< i< 3 given by (bjh,b3) and m, be a
permutation on {c;,c,,C3} such that |ci.- ¢| =k > 0,
1 < i< 3 given by (ciCsCy). Let m3,my and 75 be
permutations on {ay,ay,...,ap:e}, such that Jaj.; — & =
k>0, 1< i<p, where n, realises a path nz = (a3
Ap+6 ap+5) and 75 = (alazag). If © Catenated with m at
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left and m, at right, then Catn(3[p]3) = m" =,
T5TT4TT3.

Proof: The permutation of a Path with p+6 elements
when restructured  realises a S(2,2:p+2), by
Theorem 2.5. By Theorem 2.6, s expressed as a
product of cyclic permutations as msmyms. When «
Catenated with m, at left and w, at right, m=n=3
Catr(m[p]n) realises S(2,2:p+2) when p is even by
Theorem 4.1. Hence Catr(m/[p]n) = ms" =, msmms.

Result : Since & =,n?, (mR)'1 =, Catz(m[p]n).

V. CONCLUSIONS
The curiosity in applying the properties of
permutations with graph theoretic perspective drives
us to various avenues in Permutation Graphs. Many
more results are in progress.
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