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Abstract: Pnueli Lempel and Even introduced the 

concept of Permutation Graphs in 1971. If i, j 

belong to a permutation on p symbols    {1, 2, …, p} 

and i is less than j then there is an edge between i 

and j in the permutation graph if i appears after j in 

the sequence of permutation. The permutations 

realizing path, complete graph, bipartite graph, 

tripartite graph, double star, wind mill and 

elongated happy man had been characterized in the 

first phase of our research. The notion of extending 

a permutation by ConCatenating with other 

permutations was introduced by us earlier. This  has 

persuaded to see the permutation of certain 

caterpillars as Catenation of permutations which is 

described in this paper.  
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I. INTRODUCTION  

The permutation graph is introduced by Pnueli, 

Lempel and Even in 1971[1]. The idea of extending 

a permutation by finite number of elements is 

conceived by us which further led us to extend a 

permutation by ConCatenating permutations at 

either or both sides[7]. In the course of 

ConCatenating a permutation of a path with other 

permutations remarkably we came across some  

special types of caterpillars. The corresponding 

permutation is further decomposed into a product of 

cyclic permutations. We have characterised 

permutations realising some standard graphs earlier. 

In this paper we have proved that Catenating the 

permutation of a path with permutations of a star 

realise special types of caterpillars.  

Section I contains an introduction. Section II 

includes the preliminary definitions required for 

proving the results in ConCatenating the 

permutations. Section III comprises of the results on 

permutations realising a path with even and odd 

number of elements Catenated with permutations 

realising stars.  

II. PRELIMINARIES 

Definition:2.1:  Let π be a permutation on p 

symbols V={a1,a2,…,ap} where π(ai) = ai’, 1≤ i ≤ p 

and |ai+1 – ai| = c, c > 0, 1≤ i < p. Then the sequence 

of permutation s(π) is {a1’, a2’,…,ap’}. When the 

elements are ordered in a line L1 and the elements of 

s(π) are ordered in a lineL2 parallel to L1, then a line 

joining ai in L1 and ai in L2 is known as line 

representation of ai in π and is denoted by li [2]. The 

Residue of ai and aj is denoted by Res(ai,aj) and is 

given by Res(ai,aj)=(ai - aj)(π
-1

(ai) -  π
-1

(aj)). Then li 

and lj cross each other if Res(ai,aj) < 0. The 

neighbourhood of ai in π is Nπ(ai) = {aj  V/ 

Res(ai,aj) < 0} and dπ(ai) = |Nπ(ai)| is the number of 

lines that cross li in π.[3] 

Definition: 2.2:     Let  be a permutation on a 

finite set V = {a1,a2,...,ap} given by 
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11  pi . Then the permutation graph        

G = ( ),  EV where V = V  and aiaj E  if   

Res (ai ,aj) < 0. A graph G is a permutation graph if 

there exists  such that GG 
. That is a graph G 

is a permutation graph if it is realisable by a 

permutation  . Otherwise it is not a permutation 

graph [3] 

Note: Cn, n ≥ 5, are not permutation graphs. [3] 

Definition: 2.3:      A Caterpillar is a tree T such 

that the removal of all pendant vertices leaves a path, 

Pk:( u1, u2, …, uk), which is called the spine of T. For 

each i, 1 ≤ i ≤ k, if vi is the finite number of pendant 

vertices of T that are adjacent to the vertex ui, then 

the caterpillar T can be represented by the finite 

sequence (v1, v2, …, vk). Each vi is non-negative and 

v1 > 0, vk > 0.[4 ] 

Definition:2.4:       The double star S(n,m), n ≥ 0, 

m ≥ 0,   is the graph consisting of the union of two 

stars K1,n and K1,m together with the line joining their 

centres. The double star has a path P2 joining the 

centres of the n-star and m-star. The Double Star is a 

Caterpillar T: (n,m). The generalised form S(n,m:k) 

has a path Pk joining the n-star and m-star.[6] 

S(n,m:k) is also known as Elongated Double Star 

(EDS) which is a Caterpillar (n,0,0,…,0,m). When n 

= m = k = 2, then S(2,2:2) is the Happy Man and 

when n = m = 2, k ≥ 3 then S(2,2:k) is known as 

Elongated Happy Man [8]. S(n,0:k) is known as a 

Coconut Tree[7].  

Theorem 2.5:  Let π be a permutation on p symbols 

V = {a1,a2,…,ap} given by π(ai)=ai’,1≤ i ≤ p , where 

|ai+1 – ai| = c, c > 0. (i.e) s(π ) = {a’1,a’2,…, a’p}. If π 

realises a path then π
R (Restructured  Permutation), 

where s(π
R
) = is {a’2, a’3, a’1,a’4,a’5,…, a’p-4,a’p-1,a’p-
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2,a’p,a’p-3} for odd p and s(π
R
) = {a’2, a’3, a’1, 

a’4,a’5,…,a’p-3, a’p, a’p-2, a’p-1} for even p, realise the 

Elongated Happy Man S(2,2:p-4).[8] 

Theorem 2.6:   Let π be a permutation on p 

symbols V = {a1,a2,…,ap} given by π(ai)=ai’, 1≤ i ≤ 

p , where |ai+1 – ai| = c, c > 0. (i.e) s(π ) = {a’1,a’2,…, 

a’p}. If π realises a path then π
R
 = π2π π1, where π1 = 

(ap-3 ap ap-1), even p (or) π1 = (ap-2 ap-1 ap), odd p and 

π2 =(a1a2a3).[8] 

 

III. PERMUTATIONS EXTENDED BY FINITE NUMBER 

OF ELEMENTS 

Definition  3.1:     Let π be a connected permutation 

on a finite set V = {a1,a2,…,ap}  such that  |ai+1- ai| = 

c, c > 0, 1 ≤ i < p. Permutation extended by r 

elements ap+1, ap+2, …ap+r where r is finite, denoted 

by 
r

  is given by (i) 
r

 (ap+r)=am (ii) 
r

 (an)=ap+r   

(iii) 
r

 (ai)= 
 )1(r

 (ai), 1 ≤ m,n < p, provided 


r

G


is 

connected[6]. 

Definition  3.2:     An extension of a permutation π 

by r elements 
r

 is said to be similar if the 

extension preserves the structure of 


r

G


containing 

Gπ[6].  

 We have stretched this idea of extending  a 

permutation by finite number of elements to 

extending a permutation by another permutation 

either or both sides of a permutation. The operation 

is named as ConCatenation of Permuations. The 

definitions are as follows: 

Definition  3.3:      Let π  be a connected 

permutation on a finite set V ={a1,a2,...,ap} such that 

|ai+1- ai| = k, k > 0, 1 ≤  i < p and π(ai) = a'i, 1 ≤ i ≤  p; 

π1 be a connected permutation on a finite set V1 = 

{b1, b2, ..., bm} such that |bi+1- bi| = k, k > 0, 1 ≤  i 

 < m and π1(bi) = b'i, 1 ≤  i ≤  m and π2 be a 

connected permutation on a finite set V2 = {c1, c2, ..., 

cn} such that |ci+1- ci| = k, k> 0, 1 ≤  i < n and π2(ci) = 

c'i, 1 ≤  i ≤  n. Then the (i)  π ConCatenated with π1 

at left is known as Left ConCatenation of π, 

denoted by ConCatπ(m[p]). This is obtained by 

interchanging b'm under π1 with a'1 under π in 

s(ConCat π(m[p])), where s(ConCat π(m[p])) is the 

image sequence of ConCat π(m[p]) given by  

{b'1, b'2, ... ,b'm-1 , a'1, b'm, a'2, ..., a'p}.(ii) )π 

ConCatenated with π2 at right is known as Right 

ConCatenation of π, denoted by ConCatπ([p]n). 

This is obtained by interchanging a'p under π with c'1 

under π2 in s(ConCat π([p]n)), where s(ConCat 

π([p]n)) is the image sequence of ConCat π([p]n) 

given by {a'1, a'2, ..., a'p-1, c'1, a'p, c'2, ..., c'n }.   

(iii) The connected permutation π can be extended at 

both sides by ConCatenating π1 at left and π2 at right 

as mentioned above, will be denoted by ConCat 

π(m[p]n). If the π realises Pp then the 

ConCatenation of permutations π1 and π2 either / 

both side of π is known as Catenation and denoted 

by Catπ(m[p]), Catπ([p]n) and Catπ(m[p]n) 

respectively.[7]  

IV. CATERPILLARS AS CATENATION OF 

PERMUTATIONS 

Theorem:4.1 Let π  be a connected permutation on a 

finite set V ={a1,a2,...,ap} such that |ai+1- ai| = k,       

k > 0, 1 ≤  i < p and π(ai) = a'i, 1 ≤  i ≤  p  realising 

a path. Let π1 be a permutation on {b1,b2,b3,...,bm} 

such that |bi+1- bi| = k, k > 0, 1 ≤  i < m realising      

a star K1,m-1and π3 on {c1,c2,c3, ..., cn} such that  

|ci+1- ci| = k, k > 0, 1 ≤  i < n  realising a star K1,n-1. 

Then π Catenated with π1 or π3  realsie a Caterpillar.  

Proof: Given π realise a path with p elements. Then  
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even p. 

Given π1 on {b1,b2,b3,...,bm} realise a star K1,p-1.  

Then 
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= (b1b2b3 … bm)  

(or)
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= (b1bmbm-1 … b2).  

Let us denote the former permutation on m elements 

realising a star K1,m-1 as π1 and the later as π2. 

Similarly let π3 and π4 be permutations on n 

elements realising a star K1,n-1 given by 
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= (c1c2c3 … cn)  (or) 
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= (c1cncn-1 … c2).  

 

 

(A) Let π be Catenated with π1 or π2 at left or at 

right.   

Case(i): Let p be even 

(a) Let π be catenated with π1 at left. π realises a 

path Pp = (2,1,4,3,6,5,...,p,p-1) and π1 realises K1,m-1. 

Then Catπ(m[p]) has p+m elements. Here dπ(ai) = 1, 

i = 2,p-1; dπ(ai) = 2, i = 1,3,4, ..., p-2,p; 

,1)(
1


i

bd


 i = 2,3,...,m and 1)(
11

 mbd


. 

π is Catenated with π1 at left.  
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Then 
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Here the lines of a2 and b1 cross. Here Res(b1,a2) < 0 

and all other crossing of lines remain unaltered. 

Hence dCatπ(m[p])(a2) = 2 and dCatπ(m[p])(b1) = m. 

Therefore dCatπ(m[p])(ap-1) = 1; dCatπ(m[p])(ai) = 2,            

i = 1,2,3,4, ..., ap-2, ap; dCatπ(m[p])(bi) = 1, i = 2,3,...,m. 

Here b1 is a support of m-1 elements.   




p

i 1

dCatπ(m[p])(ai) + 


m

j 1

dCatπ(m[p])(bj)  

= m+m+2(p-1) = 2(p+m-1). Therefore  Catπ(m[p]) is 

a tree. Hence Catπ(m[p]) realise a caterpillar of the 

form (m-1,0,0,0, ..., 1) whose spine is Pp. -----(4.1.1) 

(b) Let π be catenated with π2 at left. π realises a 

path Pp = (2,1,4,3,6,5,...,p,p-1) and π2 realises K1,m-1. 

Then Catπ(m[p]) has p+m elements. Here dπ(ai) = 1, 

i = 2,p-1; dπ(ai) = 2, i = 1,3,4, ..., p-2,p; 

,1)(
2


i

bd


 i = 1,2,3,...,m-1 and 

1)(
2

 mbd
m

.π is Catenated with π2 at left. 

Then 
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Here the lines of a2 and bm-1 cross. Here Res(a2,bm-1) 

< 0 and all other crossing of lines remain unaltered. 

Hence dCatπ(m[p])(a2) = 2 and dCatπ(m[p])(bm-1) = 2. 

Therefore dCatπ(m[p])(ap-1) = 1; dCatπ(m[p])(ai) = 2, i = 

1,2,3,4, ..., p-2,p;  dCatπ(m[p])(bi) = 1, i =1, 2,3,...,m-2. 

Here bm is a support of m-1 elements.   




p

i 1

dCatπ(m[p])(ai) + 


m

j 1

dCatπ(m[p])(bj)  =  

m-1+m-1+2p = 2(p+m-1).  Therefore Catπ(m[p]) is 

a tree. Hence Catπ(m[p]) realise a caterpillar of the 

form (m-2,0,0,0, ...,1) whose spine is Pp+1. ----(4.1.2) 

(c) Let π be catenated with π1 at right. π realises a 

path Pp = (2,1,4,3,6,5,...,p,p-1) and π1 realises K1,m-1. 

Then Catπ([p]m) has p+m elements. Here dπ(ai) = 1, 

i = 2,p-1; dπ(ai) = 2, i = 1,3,4, ..., p-2,p; 

,1)(
1


i

bd


 i = 2,3,...,m and 1)(
11

 mbd


. 

π is Catenated with π1 at right. Then 
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Here the lines of ap-1 and b2 cross. Here Res(b2,ap-1) 

< 0 and all other crossing of lines remain unaltered. 

Hence dCatπ([p]m)(a2) = 1 and dCatπ([p]m)(ai) = 2,              

i =1,3,4,…, p-2,p-1,p. Therefore dCatπ([p]m)(b2) = 2; 

dCatπ([p]m)(bi) = 1, i = 3,4, ..., m and dCatπ([p]m)(b1) = m. 

Here b1 is a support of m-1 elements.   




p

i 1

 dCatπ([p]m)(ai) + 


m

j 1

 dCatπ([p]m)(bj)  =  

m-1+m-1+2p = 2(p+m-1).  Therefore Catπ([p]m) is 

a tree. Hence Catπ([p]m) realise a caterpillar of the 

form (1,0,0,0, ..., m-2) whose spine is Pp+1-----(4.1.3) 

(d) Let π be Catenated with π2 at right. π realises a 

path Pp = (2,1,4,3,6,5,...,p,p-1) and π2 realises K1,m-1.  

Then Catπ([p]m) has p+m elements. 

,1)(
2


i

bd


 i = 2,3,...,m and 

1)(
12

 mbd


. π is Catenated with π2 at right. 

Then 

























123211

14321

36142

14321

...

...

...

...
)]([

mmp

mm

mp

pp

bbbbba

bbbbbb

baaaaa

aaaaaa
mpCat

 

Here the lines of ap-1 and bm cross. Here Res(bm,ap-1) 

< 0 and all other crossing of lines remain unaltered. 

Hence dCatπ([p]m)(a2) = 1;  dCatπ([p]m)(ai) = 2,  

i =1,3,4,…, p-2,p-1,p;  dCatπ([p]m)(bi) = 1, i = 1,2,3,4, 

..., m-1 and dCatπ(m[p])(bm) = m. Here bm is a support 

of m-1 elements.   




p

i 1

 dCatπ([p]m)(ai) + 


m

j 1

 dCatπ([p]m) (bj)  = 

m+m+2(p-1) = 2(p+m-1).  Therefore Catπ([p]m) is a 

tree. Hence Catπ([p]m) realise a caterpillar of the 

form (1,0,0,0, ..., m-1) whose spine is Pp.  -----(4.1.4) 

Case(ii) Let p be odd. 

Let π be catenated with (a) π1 and (b) π2 at left.  
The proof for (a) and (b) for odd p is the same as for 

even p. The Catπ(m[p]) and Catπ([p]m) realise 

Caterpillars (m-1,0,0,0,...,1) whose spine is Pp(4.2.1) 

and  (m-2,0,0, ...,1) and Pp+1 ----- (4.2.2) respectively.  

(c) Let π be catenated with π1 at right. π realises a 

path Pp = (2,1,4,3,6,5,...,p-1,p-2,p) and π1 realises 

K1,m-1. Then Catπ([p]m) has p+m elements. Here 

dπ(ai) = 1, i=2,p; dπ(ai) = 2, i = 1,3,4, ..., p-2, p-1; 

1)(
1


i

bd


, i = 2,3,...,m and 1)(
11

 mbd


. 

π is Catenated with π1 at right. Then 
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Here the lines of ap-2 and b2 cross. Here Res(b2,ap-2) 

< 0 and all other crossing of lines remain unaltered. 

Hence dCatπ([p]m)(ap-2) = 3, dCatπ([p]m)(ai) = 1, i = 2,p;  

dCatπ([p]m)(ai) = 2, i =1,3,4,…,p-1;  dCatπ([p]m)(b2)=2; 
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dCatπ([p]m)(bi) = 1, i =1,3,4, ..., m and dCatπ([p]m)(b1) = 

m-1. Here b1 is a support of m-2 elements.   




p

i 1

dCatπ([p]m) (ai) + 


m

j 1

dCatπ([p]m) (bj) 

 = m+m-1+3+2(p-2) = 2(p+m-1).  Therefore 

Catπ([p]m) is a tree. Hence Catπ([p]m) realise a 

caterpillar of the form (1,0,0,0, ...,0,1,0, m-2) whose 

spine is Pp.  ------------------------(4.2.3) 

(d) Let π be Catenated with π2 at right. π realises a 

path Pp = (2,1,4,3,6,5,...,p-1,p-2,p) and π2 realises 

K1,m-1. Then Catπ([p]m) has p+m elements.  

,1)(
2


i

bd


 i = 2,3,...,m and 

1)(
12

 mbd


. π is Catenated with π2 at right. 

Then 
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Here the lines of ap-2 and bm cross. Here Res(bm,ap-2) 

< 0 and all other crossing of lines remain unaltered. 

Hence dCatπ([p]m)(ai) = 1, i =2,p;  dCatπ([p]m)(ai) = 2, 

 i =1,3,4,…,p-3,p-1; dCatπ([p]m)(ap-2) = 3; dCatπ([p]m)(bi) 

= 1, i = 1,2,3,4, ..., m-1 and dCatπ([p]m)(bm) = m.  

Here bm is a support of m-1 elements.   




p

i 1

 dCatπ([p]m)(ai) + 


m

j 1

 dCatπ([p]m)(bj)  = 

m+1+m+3+2(p-3) = 2(p+m-1).  Therefore 

Catπ([p]m) is a tree. Hence Catπ([p]m) realise a 

caterpillar of the form (1,0,0,0, ...,0,1, m-1) whose 

spine is Pp-1. --------------------(4.2.4) 

 (B) Let π be Catenated with π1 or π2 or π3 or π4 at 

left and π1 or π2 or π3 or π4 at right 

(i) Let p be even.. 

(a) Let us consider that π is Catenated with π1 at left 

and π3 at right. The other cases can be similarly 

discussed.  

Given π realise a path with p elements. Then  
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and 
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= (b1b2b3 … bm)  
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= (c1c2c3 … cn)  
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Here dCatπ(m[p]n)(b1) = m; dCatπ(m[p]n)(c1) = n-1; 

dCatπ(m[p]n)(bi) = 1, i = 2,3,4, ..., m; dCatπ(m[p]n)(ci) = 1,   

i = 3,4, ..., n; dCatπ(m[p]n)(ai) = 2, i =1,2,3,4, ..., p and 

dCatπ(m[p]n)(c2) = 2.  

 


p

i 1

dCatπ(m[p]n)(ai) + 


m

j 1

 dCatπ(m[p]n)(bj) +  




n

k 1

 dCatπ(m[p]n) (ck) = m+n-1+m-1+n-2+2(p+1) 

 = 2(p+m+n-1).  

Catπ(m[p]n) has p+m+n elements. Therefore 

Catπ(m[p]n) is a tree and realises a Caterpillar of the 

form (m-1,0,0,…,0,n-2) whose Spine is Pp+3. 

(b) Let π be Catenated with π1 at left and π4 at right. 

Then Catπ(m[p]n) realises a Caterpillar of the form 

(m-1,0,0,…,0,n-1) whose Spine is Pp+2.  

(c) If π  is Catenated with π2 at left and π3 at right, 

then Catπ(m[p]n) realises a Caterpillar of the form 

(m-2,0,…,0,n-2) whose Spine is Pp+4.  

(d) If π is Catenated with π2 at left and π4 at right 

then Catπ(m[p]n) realises a Caterpillar of the form 

(m-2,0,…,0,n-1) whose Spine is Pp+3.  

By Definition Catπ(m[p]n) is a EDS when p is 

even. 

(ii) Let p be odd.  
Analogous proof can be given for odd p as in the 

previous case. The results are as follows: 

(a) Let π be Catenated with π1 at left and π3 at right. 

Then Catπ(m[p]n) realises a Caterpillar of the form 

(m-1,0,0,…,0,1,0,n-2) whose Spine is Pp+2. 

(b) Let π be Catenated with π1 at left and π4 at right. 

Then Catπ(m[p]n) realises a Caterpillar of the form 

(m-1,0,0,…,0,1,n-1) whose Spine is Pp+1.  

(c) If π  is Catenated with π2 at left and π3 at right, 

then Catπ(m[p]n) realises a Caterpillar of the form 

(m-2,0,…,0,1,0,n-2) whose Spine is Pp+3.  

(d) If π is Catenated with π2 at left and π4 at right 

then Catπ(m[p]n) realises a Caterpillar of the form 

(m-2,0,…,0,1,n-1) whose Spine is Pp+2. 

Hence the theorem.  

 

Theorem 4.2:  Let π  be a connected permutation 

on a finite set, p even, V ={v1,v2,...,vp} such that 

|vi+1- vi| = k,    k > 0, 1 ≤  i < p realising a path. Let 

π1 be a permutation on {b1,b2,b3}such that |bi+1- bi| =  

k > 0, 1 ≤  i < 3 given by (b1b2b3) and π2 be a 

permutation on {c1,c2,c3} such that |ci+1- ci| =k > 0,   

1 ≤  i < 3 given by (c1c3c2).  Let π3,π4 and π5 be  

permutations on {a1,a2,…,ap+6}, such that |ai+1 – ai| = 

k > 0, 1 ≤  i < p, where π4 realises a path π3 = (ap+3 

ap+6 ap+5) and π5 = (a1a2a3).  If π Catenated with π1 at 
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left and π2 at right,  then Catπ(3[p]3) ≅s π4
R
 ≅s 

π5π4π3. 

Proof: The permutation of a Path with p+6 elements 

when restructured  realises a S(2,2:p+2), by 

Theorem 2.5. By Theorem 2.6, π4
R 

is expressed as a 

product of cyclic permutations  as π5π4π3. When π 

Catenated with π1 at left and π2 at right, m=n=3 

Catπ(m[p]n) realises S(2,2:p+2) when p is even  by 

Theorem 4.1. Hence Catπ(m[p]n) ≅s  π4
R
 ≅s π5π4π3

 . 

 

Result : Since π ≅s π
-1,  (π4

R)
-1

 ≅s Catπ(m[p]n).  

 

V. CONCLUSIONS 

The curiosity in applying the properties of 

permutations with graph theoretic perspective drives 

us to various avenues in Permutation Graphs. Many 

more results are in progress. 

 

 

 

. 
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