Congruences on La-Semirings and Variant of Semigroup

D.Mruduladevi^{#1}, G.Shobhalatha^{*2}, T.Padma Praveen^{#3}

¹Prof. in Mathematics, Aditya College of Engineering & Technology, Surampalem. EG DT, A.P. India. ²Prof. in Mathematics, S.K.D.University, Ananathapur. A.P. India ³Asst. Prof. in Mathematics, Aditya College of Engineering & Technology, Surampalem.EG DT, A.P. India.

Abstract – This paper deals with the properties of some congruence relations on variant of semigroup and LA-Semirings. The motivation to prove theorems in this paper is due to results of J.M.Howie[1] and congruences on regular semigroups[5].

Keywords - LA-semiring ,antiinverse semigroup ,variant of semi group.

Introduction- The concept of congruence on semigroup was introduced by pondelick. In this paper we determine group congruence on semirings and also congruence relation in anti inverse becomes maximum 5-potent semigroup congruence. On other hand if (S, •) satisfies some identies then (S, a) is an idempotent separate congruence on S.

1.1. Definition: A semiring $(S, +, \bullet)$ is said to be LA-Semiring if

- 1. (S, +) is a LA-Semigroup
- 2. (S, \bullet) is a LA-Semigroup
- 3. Distributive Laws hold in R.

Example: Let $S = \{a, b, c\}$ is a mono semiring with the following tables 1, 2 which is a LA-Semiring

•	а	b	c	+	а	b	с
а	а	а	a	а	а	а	а
b	а	а	c	b	а	а	с
с	а	а	a	с	а	а	a

(1)(2)1.2. Definition : A semi group S is called anti inverse if every element of S is anti inverse element.

Example: Let $S = \{a, b\}$ then (S, \bullet) with following table 1 or 2 or 3 is an inverse semigroup

•	9	h			1	1			
	a	U		•	а	b		0	h
а	a	а		9	9	h	•	a	υ
1	1	1		a	a	U	0		h
b	b	b		b	b	b	a	a	υ
						b	b	a	
(1)				((2)	(3)			

1.3. Definition: Let (S, •) be a semi group and for any a in S. we define a binary operation (sandwich operation) 'o' on the set S by xoy = xay where x, y \in S. Then S becomes a semigroup with respect to

this operation. We denote it by (S, a) and we refer to (S, a) as a variant of (S, •) (or) a-connected semigroup.

1.4. Theorem: Let $(S, +, \bullet)$ be a semiring. Let ρ be a relation define on S. If S contains multiplicative identity which is also an additive identity then S/ ρ is a group congruence.

Proof: Given that $(S, +, \bullet)$ be a semiring. Define a relation ρ on S by a ρ b \Rightarrow ae = eb For all a,b in S and

 $e \in E(S)$

Now we prove that ρ is an equivalence relation on S.

Clearly S is commutative ae = ea = a \implies a ρ a

 $\therefore \rho$ is reflexive

 \implies ae = eb Again a ρ b \implies be = ea \Rightarrow b ρ a

 $\therefore \rho$ is symmetric Now a ρ b b ρ c \Rightarrow ae

ow a
$$\rho$$
 b, b ρ c \implies ae = eb and be = ec
 \implies ae = be = ec
 \implies ae = ec

$$\Rightarrow a \rho c$$

$$\mathcal{O}$$
 is transitive

 $\Rightarrow \rho$ is an equivalence relation.

To prove that a ρ b \Longrightarrow ac ρ bc

a
$$\rho$$
 b = \Rightarrow ae = eb
 \Rightarrow aec = ebc
 \Rightarrow ace = ebc \Rightarrow ac ρ bc

Similarly a ρ b \Rightarrow ca ρ cb

 $\therefore \rho$ is an congruence relation.

To show S/ ρ is group congruence

Define S/ $\rho = \{a \rho : a \in S\}$ where $a \rho = \{b \in A\}$ $S/b \rho a$

Define 'o' on S/ ρ in the following way

 $a \rho, b \rho \in S/\rho$ s.t $(a \rho) o (b \rho) = (ab)$ ρ

then $(a \rho) (b \rho) = (ab) \rho$ \Rightarrow (a¹ ρ) (b¹ ρ)= (ab) ρ

If

 $\Rightarrow (a^{1}b^{1}) \ \rho = (ab) \ \rho$

Hence S/ ρ is well defined Clearly S/ ρ is a group

Hence S/ ρ is a group congruence.

1.5. Theorem: Let (S, \cdot) be an anti-inverse semigroup. If η be a relation defined on S by a η b $\Leftrightarrow e_a a = e_b b$ where e_a , e_b are unit elements of a, b in S respectively in S then η is a maximum 5-potent congruence on S.

Proof: Let (S, \cdot) be an anti-inverse semigroup. Define η is a on S by $a\eta b \Leftrightarrow e_a a = e_b b$ where e_a , e_b are unit elements of a, b in S respectively in S.

First we show that η is an equivalence relation on S.

For any a in S $a = a \Longrightarrow a^5 = a^5 \Longrightarrow e_a a = e_a a \Longrightarrow a$ ηa

Hence η is reflexive

Symmetric:
$$a\eta b \Leftrightarrow e_a a = e_b b$$

 $\Leftrightarrow a^4 a = b^4 b$
 $\Leftrightarrow a^5 = b^5$
 $\Leftrightarrow a = b$
 $\Leftrightarrow b = a$
 $\Leftrightarrow b^5 = a^5$
 $\Leftrightarrow b^4 b = a^4 a$
 $\Leftrightarrow b\eta a$

 $\therefore \eta$ is symmetric

Transitive: Let $a \eta b$ and $b \eta c \Leftrightarrow e_a a = e_b b$ and $e_b b = e_a c$

с

So
$$e_a a = e_b b = e_c c$$

 $\Rightarrow e_a a = e_c c$
 $\Rightarrow a \eta c$
 $\therefore a \eta b and b \eta c \Rightarrow a \eta$
 $\therefore \eta$ is transitive

Hence η is equivalence relation

Left compatibility: Let $a\eta b \Leftrightarrow e_a a = e_b b$

$$\Leftrightarrow z^5 e_a a = z^5 e_b b$$
$$\Leftrightarrow z^5 a^5 = z^5 b^5$$
$$\Leftrightarrow (za)^5 = (zb)^5$$

$$\Leftrightarrow (za)^4 za = (zb)^4 zb$$
$$\Leftrightarrow e_{za} za = e_{zb} zb$$
$$\Leftrightarrow za\eta zb$$

 $\therefore \eta$ is left compatibility Right compatibility

$$a\eta b \Leftrightarrow e_a a = e_b b$$

$$\Leftrightarrow e_a a z^5 = e_a b z^5$$
$$\Leftrightarrow a^5 z^5 = b^5 z^5$$
$$\Leftrightarrow (az)^5 = (bz)^5$$
$$\Leftrightarrow (az)^4 a z = (bz)^4 b z$$
$$\Leftrightarrow e_{az} a z = e_{bz} b z$$
$$\Leftrightarrow a z \eta b z$$

 $\therefore \eta$ is right compatibility

Hence η is compatibility

Therefore n is a congruence relation on S. To show that n is 5-potent congruence

Let
$$a^{5}\eta b^{5} \Leftrightarrow e_{a}a^{5} = e_{b}b^{5}$$

 $\Leftrightarrow e_{a}a = e_{b}b$
 $\Leftrightarrow a\eta b$

 \therefore η is 5-potent congruence relation on

To show that η is maximum 5-potent congruence relation on S.

To prove that η is maximum, let μ be any 5-potent congruence relation on S.

Let $a, b \in \mu \Leftrightarrow (a^5, b^5) \in \mu \Leftrightarrow$ $(e_a, e_b) \in \mu$

We know that for all $(e_a, e_b) \in \mu$ and $(a, b) \in \mu \iff (e_a a, e_b b) \in \mu$

Since $(e_a a, e_b b) \Leftrightarrow a \eta b \Leftrightarrow (a, b) \in \eta$ and $(a, b) \in \mu$

$$\therefore \mu \subseteq n$$

S.

Hence η is maximum 5-potent congruence relation on S.

1.6. Theorem: Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) be an anti inverse semigroup and let η be a congruence relation on S then S/η is a anti inverse sub semigroup.

Proof: Let $(S, +, \cdot)$ be a LA-semiring and (S, \cdot) be an anti inverse semigroup and η be a congruence relation on S.

Therefore we can construct the congruence class S/ η such that S/ $\eta = \{a\eta : a \in (S, \bullet)\}$ where η is a congruence class on S.

For any $a\eta$, $b\eta \in S/\eta$

Define 'o' on S/ η in the following way.

Such that
$$(a\eta)o(b\eta) = (ab)\eta$$

Let $a\eta = a^{1}\eta$ and $b\eta = b^{1}\eta$ then $(a^{1}\eta) o(b^{1}\eta) = (ab)\eta \& (a^{1}b^{1})\eta = (ab)\eta$ Hence 'o' is well defined it is also associative. Hence $(S/\eta, \cdot)$ is an anti-inverse semi group. **1.7. Theorem:** Let η be a congruence relation on an anti-inverse semi group S then η^{n} is also a congruence relation on S.

Proof: Let η be a congruence relation on an antiinverse semigroup S.

Let a η b then there ist $t_1, t_2, t_3, \dots, t_{n-1} \in S$ and by transitivity We have

$$a\eta t_1, t_1\eta t_2, t_2\eta t_3, \ldots, t_{n-1}\eta b \Longrightarrow a\eta^n b.$$

It is easy to see that η^{n} is an equivalence relation.

Let $c \in S$ then ca η cb (\therefore since η is compatible)

 $\operatorname{ca}\eta\operatorname{ct}_1,\operatorname{ct}_1\eta\operatorname{ct}_2,\operatorname{ct}_2\eta\operatorname{ct}_3,\ldots,\operatorname{ct}_{n-1}\eta\operatorname{cb} \Longrightarrow \operatorname{ca}\eta^n\operatorname{cb}.$

Hence
$$a\eta^n b = ca\eta^n cb$$
.

Similarly we can prove that $a\eta^n b = ac\eta^n bc$

Hence η^{n} is compatible

Therefore η^{n} is a congruence relation on S.

1.8. Theorem: Let (S, \bullet) be a semigroup. For any a $\in S$, (S, a) is a variant of semigroup such that (S, \bullet) is a rectangular band define a relation η on (S, a) such that $x \eta y \Leftrightarrow xoy = x$ then η is an

idempotent separate congruence on S.

Proof: Let (S, \bullet) be a rectangular band. Then for all a, $b \in S$ aba = a.

Let (S, a) be a variant of S. Define η on (S, a) by x

 $\eta y \Leftrightarrow xoy = x$

 \Leftrightarrow xay = x

Now we show that η is a congruence on (S, a)

xax = x $\Rightarrow xox = x$ $\Rightarrow x \eta x$

 \Rightarrow η is reflexive

Let $x \eta y \Longrightarrow xoy = x$

Since S is rectangular

 $\Rightarrow yoxoy = yox$ $\Rightarrow yaxay = yax$ $\Rightarrow y(axa)y = yax$ $\Rightarrow yay = yax$ $\Rightarrow y = yax$ $\Rightarrow y = yox$ $\Rightarrow y \eta x$ $\Rightarrow \eta \text{ is symmentric}$ Let $x \eta y$ and $y \eta z \Rightarrow xoy = x$ and yoz = z

у

```
Now yoz = y

\Rightarrowxoyoz = xoy

\Rightarrowxayaz = xay

\Rightarrowxaz = x

\Rightarrowx\eta z

\Rightarrow\eta is transitive
```

 $\therefore \eta$ is an equivalence relation on (S, a) To prove compatibility, i.e., $x \eta y \Longrightarrow xoz \eta yoz$ $\forall x, y, z \text{ in } S$ We have to show that $(xoz) \circ (yoz) = xoz$ We know that $x \eta y \Longrightarrow xoy = x$ \Rightarrow xozoxoyoz = xozoxoz \Rightarrow xaz(axa)yaz = xazaxaz \Rightarrow xazayaz = xaz(axa)z \Rightarrow xazayaz = xa(zaz) \Rightarrow xazayaz = xaz \Rightarrow (xoz)o(yoz) = xoz Similarly we show that $x \eta y \Leftrightarrow zox \eta zoy$ Hence η is a congruence relation on (S, a) Now we show that η is separative on (S, a) i.e $x \circ x \eta x \circ y \eta y \circ y \Rightarrow x = y$ $xox \eta xoy$ \Rightarrow xox η xoy = xox \Rightarrow xaxaxay = xax \Rightarrow x(axa)xay = xax \Rightarrow xaxay = xax [axa = a] \Rightarrow xay = x [axa = a] -----------(1)

From (1) and (2) x = y

Hence η is separative congruence on (S, a)

Let $(x, y) \in (S, a) \Longrightarrow xox = x, yoy = y$

Consider (xox)
$$\eta$$
 (yoy) \Rightarrow (xox)o(yoy) = xox

Let
$$x \eta y \implies xay = x$$

xax

 \Rightarrow (xox) o (yoy) = xox

 \implies xaxayay = xaxay =

Hence η is an idempotent separative congruence on (S, a).

REFFERENCES

[1] Howie, J.M "Introduction to semi group theory" academic press. London, 1976

[2] Hickey, J.B "On variants of semi groups" theory academic press,

1976

[3] Kazim, M.A and "On almost semi groups" the Alig.Ball. math,

Naseeruddin, M.2 (1972), 1-7 [4] Mitchell, S.S., Fenoglio, P.B."Congruence – free commutative semirings", Semigroup forum 37(1998), 79 [5] Pastijin, F. and Petrich, M. "Congruence on regular semi groups". Trans. Amer. Math. Soc. 295 (1986), 607-633.