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Abstract: A particular quintic is the quintic which 

satisfy some specific condition. In other words, a 

quintic with co-efficient satisfy some perticular 

condition. This paper gives a simple explanation of 

method to find the roots and to discuss the nature of 

roots of the particular quintic equation which is 

known as, “De moivers quintic” i.e 

x
5
+5Ax

3
+5A

2
x+B=0. 
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I. INTRODUCTION 

 In mathematics a quintic function is a function of the 

form f(x)=a0x
5
+a1x

4
+a2x

3
+a3x

2
+a4x+a5  where (a0≠0) 

or in other words a function defined by a polynomial 

of degree 5 getting f(x)=0 produce usually a quintic 

equation of the form a0x
5
+a1x

4
+a2x

3
+a3x

2
+a4x+a5=0 

where ai’
s
 are rational. Solving quintic eqution[4] in 

term of redicals was a major problem in algebra from 

16
th

 century , where cubic and Biquadretic 

equation[1,2,3] were solved until the half of the 

century, when the impossiblity of such a general 

solution was proved (Abel –Ruffini theorem). Some 

quintic equation[6,7] can be solved in terms of 

redicals these include the reducible quantities and 

solvable irreducible quantities. For characterizing 

solvable quantities “Everiste galois” developed 

technique which gave a rise to group theory and 

Galois theory[5]. But the particular quintics of the 

type x
5
+5Ax

3
+5A

2
x+B=0 are always solvable in 

redicals[4,7] whether it is reducible or irreducible. 

 

II. EXPLANATION OF METHOD 

Let us try to solve the quintic equation 

x
5
+a1x

3
+a2x+a3=0                   … (1) 

Put   x=a+b 

 x
5
=(a+b)

5 

        =(a
2
+b

2
+2ab)(a+b)

3 

        =(5ab-3ab+a
2
+b

2
)(a+b)

3
 

        =5ab(a+b)
3
+(a

2
+b

2
-3ab)(a+b)

3
 

        =5abx
3
+[(a

2
+b

2
-3ab)(a+b)

2
](a+b) 

        =5abx
3
+[(a

2
+b

2
-3ab)(a

2
+b

2
+2ab)](a+b) 

        =5abx
3
+[a

4
+a

2
b

2
+2a

3
b+a

2
b

2
+b

4
+ab

3
-3a

3
b-3ab

3
-

6a
2
b

2
](a+b) 

        =5abx
3
+(a

4
+b

4
-4a

2
b

2
-a

3
b-ab

3
)(a+b) 

       =5abx
3
-5a

2
b

2
(a+b)+( a

4
+b

4
+a

2
b

2
-a

3
b-ab

3
)(a+b) 

       =5abx
3
-5a

2
b

2
x+(a

5
+b

5
) 

x
5
-5abx

3
+5a

2
b

2
x-(a

5
+b

5
)=0

 

 x
5
+5(-ab)x

3
+5(-ab)

2
x-(a

5
+b

5
)=0           …(2) 

Comparing (1) and (2) 

5(-ab)=a1   -ab=a1/5          …(3a)          

5(-ab)
2
=a2                                …(3b) 

-(a
5
+b

5
)=a3                             …(3c)     

x=a+b is a root of the equation (1) if a, b satisfies 

the three equation given by (3) there are three 

equation and two unknowns. So it becomes a 

particular quintic equation. The quintic equation (1) 

can be solved by this method if a2=5(a1/5)
2
= a1

2
/5 

Let us put a1=5A  ,a3=B 

Then equation (1) become 

 x
5
+5Ax

3
+5A

2
x+B=0                …(4) 
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comparing (2) and (4) 

-ab=A  (ab)
5
=-A

5
                         …(5a) 

-(a
5
+b

5
)=B   a

5
+b

5
=-B                 …(5b) 

a
5
 ,b

5
 are the roots of 

y
2
+By-A

5
=0                                 …..(6) 

y=[-B±√(B
2
+4A

5
)]/2 

a={[-B+√(B
2
+4A

5
)]/2}

1/5
 , b={[-B-√(B

2
+4A

5
)]/2}

1/5 

Nature of the roots: 

Case I : if B
2
+4A

5
≥0 

Subcase (i):  

[-B+√(B
2
+4A

5
)]/2=α

5
,    [-B-√(B

2
+4A

5
)]/2=β

5 

Where α,β are rational 

 x=a+b=α+β(rational) 

the quintic equation x
5
+5Ax

3
+5A

2
x+B=0 is reducible 

,one root is rational and other four roots may be real 

or imaginary. 

Subcase (ii):  

[-B+√(B
2
+4A

5
)]/2≠α

5
  and [-B-√(B

2
+4A

5
)]/2≠β

5 

where α, β are rational then the quintic equation 

x
5
+5Ax

3
+5A

2
x+B=0 is irreducible . then one rot is 

real and other four roots are imaginary given by 

x1=a+b 

xi=aω
i
+bω

5-i
,  i=1,2,3,4 

where ω
i  

are complex fifth root of unity.  

So one root of quintic x
5
+5Ax

3
+5A

2
x+B=0 is real 

and other four root are complex. 

 Case II : if B
2
+4A

5
<0 

Then both a
5
 and b

5
 are complex conjugate of the 

type 

a
5
=r(cosθ+isinθ),   b

5
= r(cosθ-isinθ) 

a=r 
1/5

{cos[(2rπ+θ)/5]+isin[(2rπ+θ)/5]} 

b=r 
1/5

{cos[(2rπ+θ)/5]-isin[(2rπ+θ)/5]} 

x=a+b=2 r 
1/5

cos[(2rπ+θ)/5], r=0,1,2,3,4. 

In this case all the roots are real. 

Examples : 

1.  the given equation is  

x
5
-10x

3
+20x-33=0       …(a) 

comparing (a) with equation (2) 

-ab=-2=A 

 (ab)
5
=32 

-(a
5
+b

5
)=-33   

a
5
+b

5
=33 

 A=-2 and B=33 

          a
5
 ,b

5
 are the roots of 

           y
2
-33y+32=0 

a
5
=1, b

5
=32 a=1 and b=2 

x=a+b = 1+2 = 3 

Other four root are given by  

         x={[(-3-√5)/2]±√(30+6√5)}/4 

 x={[(-3+√5)/2]±√(30+6√5)}/4. 

2. The given equation is  

 x
5
+15x

3
+45x+18=0                           …(a) 

comparing  equation (a) with equation (2) 

-ab=3=A 

 (ab)
5
=-243 

-(a
5
+b

5
)=18   

a
5
+b

5
=-18 

 A=3 and B=18
 

y
2
+18y-243=0 

(y+27)(y-9)=0 

y=-27,9 

x=(9)
1/5

+(-27)
1/5 

Other four root are given by sub-case –II 

               

3. The given equation is  

 x
5
-15x

3
+45x-31=0                           …(a) 

Comparing equation (a) with equation (2) 

-ab=-3=A (ab)
5
=243 

-(a
5
+b

5
)=-31  a

5
+b

5
=31 

 A=-3 and B=-31
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y
2
-31y+243=0 

y =(31±i√11)/2 

a
5 
=(31+i√11)/2,  b

5
=(31-i√11)/2 

a= r 
1/5

{cos[(2kπ+θ)/5]+isin[(2kπ+θ)/5]} 

b= r 
1/5

{cos[(2kπ+θ)/5]-isin[(2kπ+θ)/5]} 

x=2 r 
1/5

cos[(2kπ+θ)/5], k=1,2,3,4 

where  

r=√[(31/2)
2
+(√11/2)

2
]=√[(961+11)/4]=√(972

/4) 

and θ=tan
-1

(√11/31). 

 

III. CONCLUSION 

In this study, it has been given that every “De 

moivers quintic” is solvable, whether it is reducible 

or irreducible. The nature of the roots also can be 

determined. So the proposed work of the paper has 

been done.  
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