On characterization of fuzzy η -irresolute functions Where $\eta \in \{\alpha, \text{ semi, pre}\}$

G.Sutha¹ and P.Thangavelu²

¹Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India ²Ramanujam Centre for Mathematical Sciences, Thiruppuvanam-630611, India

Abstract

In this paper we characterize the C-fuzzy α -irresolute function, C-fuzzy irresolute function, C-fuzzy pre-irresolute function.

Mathematical Subject Classification 2010: 54A40, 3E72.

Key Words: Fuzzy topology, C-fuzzy a-irresolute, C-fuzzy irresolute and C-fuzzy pre-irresolute.

1. Introduction

Sutha. et. al. introduced and studied the concepts of C-fuzzy α -open sets, C-fuzzy semi-open sets, C-fuzzy pre-open sets and C-fuzzy α -closed sets, C-fuzzy semi-closed sets, C-fuzzy pre-closed sets. In this paper we characterize the C-fuzzy α -irresolute function, C-fuzzy irresolute function, C-fuzzy pre-irresolute function. The concepts that are needed in this paper are discussed in the second section. The third section is devoted to applications of C-fuzzy α -open, C-fuzzy semi-open, C-fuzzy pre-open to fuzzy irresolute functions. Throughout this paper (X, τ) is a fuzzy topological space in the sense of Chang[4].

2. Preliminaries

Definition 2.1

Let (X, τ) be a fuzzy topological space. Then a fuzzy subset λ of X is called

(i) fuzzy α -open in (X, τ) if $\lambda \leq Int \ Cl \ Int \ \lambda$ [2]

(ii) fuzzy semi-open in (X, τ) if $\lambda \leq Cl Int \lambda$ [1]

(iii) fuzzy pre-open in (X, τ) if $\lambda \leq Int \ Cl \ \lambda$ [2]

A fuzzy subset λ of a fuzzy topological space (X, τ) is said to be fuzzy α -closed (resp. fuzzy semi closed, fuzzy pre closed) if $1-\lambda$ is fuzzy α -open (resp. fuzzy semi-open, fuzzy pre-open).

Definition 2.2[7]

Let λ be a fuzzy subset of a fuzzy topological space (X, τ) . Let C: $[0, 1] \rightarrow [0, 1]$ be a complement function. Then λ is

- (i) C-fuzzy α -open if C(λ) is fuzzy α -closed,
- (ii) C-fuzzy semi-open if $C(\lambda)$ is fuzzy semi-closed,
- (iii) C-fuzzy pre-open if $C(\lambda)$ is fuzzy pre-closed,

Definition 2.3[8]

f is said to be fuzzy irresolute if $f^{-1}(\lambda)$ is fuzzy semi-closed in (X, τ) for each fuzzy semi-closed set λ in (Y, σ) .

Definition 2.4[6]

f is said to be fuzzy α -irresolute if $f^{-1}(\lambda)$ is fuzzy α -closed in (X, τ) for each fuzzy α -closed set λ in (Y, σ) .

Definition 2.5[4]

f is said to be fuzzy pre-irresolute if $f^{-1}(\lambda)$ is fuzzy pre-closed in (X, τ) for each fuzzy pre-closed set λ in (Y, σ) .

Lemma 2.6

Suppose f is a function from X to Y. Then $f^{-1}(C\mu) = Cf^{-1}(\mu)$ for any fuzzy subset μ of Y.

3. On fuzzy η -irresolute functions

Theorem 3.1

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: $[0, 1] \to [0, 1]$ satisfies the involutive condition. Then f is fuzzy α -irresolute if and only if $f^{-1}(\lambda)$ is C-fuzzy α -open in X for every C-fuzzy α -open set λ in Y.

Proof

Suppose f is fuzzy α -irresolute. Let λ be C-fuzzy α -open in Y. Then by Definition 2.2(i), C λ is fuzzy α -closed in Y. Then by using Definition 2.4, f⁻¹(C λ) is fuzzy α -closed in X. By using Lemma 2.6, C(f⁻¹(λ)) is fuzzy α -closed in X. By Definition 2.2(i), f⁻¹(λ)) is C-fuzzy α -open in X. Conversly, assume that, f⁻¹(λ) is C-fuzzy α -open in X. Let λ be fuzzy α -closed in Y. Since C satisfies the involutive condition, C(C λ) is fuzzy α -closed. Again by Definition 2.2(i), C λ is C-fuzzy α -open in Y. By our assumption, f⁻¹(C λ) is C-fuzzy α -open in X. Then by using Lemma 2.6, C(f⁻¹(λ)) is C-fuzzy α -open in X. Again by Definition 2.2(i), C(C(f⁻¹(λ))) is fuzzy α -closed in X. Since C satisfies the involutive condition 2.2(i), the fuzzy α -open in X. Then by using Lemma 2.6, C(f⁻¹(λ)) is C-fuzzy α -open in X. Again by Definition 2.2(i), C(C(f⁻¹(λ))) is fuzzy α -closed in X. Since C satisfies the involutive condition 2.2(i), the fuzzy α -closed in X. Since C satisfies the involutive condition 2.2(i), the fuzzy α -closed in X. Since C satisfies the involutive condition 2.2(i), C(C(f⁻¹(λ))) is fuzzy α -closed in X. Since C satisfies the involutive condition 2.4, f is fuzzy α -irresolute.

Theorem 3.2

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutive condition. Then f is fuzzy irresolute if and only if $f^{-1}(\lambda)$ is C-fuzzy semi-open in X for every C-fuzzy semi-open set λ in Y.

Proof

Suppose f is fuzzy irresolute. Let λ be C-fuzzy semi-open in Y. Then by Definition 2.2(ii), $C\lambda$ is fuzzy semi-closed in Y. Then by using Definition 2.3, $f^{-1}(C\lambda)$ is fuzzy semi-closed in X. By using Lemma 2.6, $C(f^{-1}(\lambda))$ is fuzzy semi-closed in X. By Definition 2.2(ii), $f^{-1}(\lambda)$ is C-fuzzy semi-open in X. Conversly, assume that, $f^{-1}(\lambda)$ is C-fuzzy semi-open in X. Let λ be fuzzy semi-closed in Y. Since C satisfies the involutive condition, $C(C\lambda)$ is fuzzy semi-closed. Again by Definition 2.2(ii), $C\lambda$ is C-fuzzy semi-open in Y. By our assumption, $f^{-1}(C\lambda)$ is C-fuzzy semi-open in X. Then by using Lemma 2.6, $C(f^{-1}(\lambda))$ is C-fuzzy semi-open in X. Again by Definition 2.2(ii), $C\lambda$ is C-fuzzy semi-open in X. Again by Definition 2.2(ii), $C(C(f^{-1}(\lambda)))$ is fuzzy semi-open in X. Again by Definition 2.2(ii), $C(C(f^{-1}(\lambda)))$ is fuzzy semi-open in X. By Definition 2.3, f is fuzzy irresolute.

Theorem 3.3

Suppose $f: X \to Y$ be a mapping from a fuzzy topological space (X, τ) to a fuzzy topological space (Y, σ) and C: [0, 1] \to [0, 1] satisfies the involutive condition. Then f is fuzzy pre-open in X for every C-fuzzy pre-open set λ in Y.

Proof

Suppose f is fuzzy pre-irresolute. Let λ be C-fuzzy pre-open in Y. Then by Definition 2.2(iii), C λ is fuzzy pre-closed in Y. Then by using Definition 2.5, f⁻¹(C λ) is fuzzy pre-closed in X. By using Lemma 2.6, C(f⁻¹(λ)) is fuzzy pre-closed in X. By Definition 2.2(iii), f⁻¹(λ)) is C-fuzzy pre-open in X. Conversly, assume that, f⁻¹(λ) is C-fuzzy pre-open in X. Let λ be fuzzy pre-closed in Y. Since C satisfies the involutive condition, C(C λ) is fuzzy pre-closed. Again by Definition 2.2(iii), C λ is C-fuzzy pre-open in Y. By our assumption, f⁻¹(C λ) is C-fuzzy pre-open in X. Then by using Lemma 2.6, C(f⁻¹(λ)) is C-fuzzy pre-open in X. Again by Definition 2.2(iii), C λ is C-fuzzy pre-open in X. Again by Definition 2.2(iii), C(f⁻¹(λ)) is C-fuzzy pre-open in X. Again by Definition 2.2(iii), C(C(f⁻¹(λ))) is fuzzy pre-closed in X. Since C satisfies the involutive condition, f⁻¹(λ)) is fuzzy pre-closed in X. By Definition 2.5, f is fuzzy pre-closed in X. Since C satisfies the involutive condition, f⁻¹(λ)) is fuzzy pre-closed in X. By Definition 2.5, f is fuzzy pre-closed in X.

REFERENCES

- [1] K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math.Anal.Appl. 82 (1) (1981), 14-32.
- [2] A.S.Bin shahana, On fuzzy strong semi-continuity and fuzzy precontinuity, *Fuzzy Sets and Systems* 44 (1991), 303-308.
- [3] C.L.Chang, Fuzzy topological space, J.Math.Anal.Appl. 24 (1968), 182-190.
- [4] M.A.Fath Alla, On fuzzy Topological Spaces, *Ph.D. Thesis, Assuit University, Egypt* (1984).
- [5] George J.Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, *PHI, New Delhi, Inc.* (2005).
- [6] V.Seenivasan and G.Balasubramaniam, Fuzzy pre α-irresolute functions, *Journal of Fuzzy Mathematics* 15(4) (2007), 945-956.
 [7] G.Sutha, P.Thangavelu, C-fuzzy η-open sets where η∈ {regular, α, semi, pre, β, strongly pre}, Proceedings of the National Conference on Ramanujan's Contributions and Recent
- Trends in Mathematics, Madurai Kamaraj University, Madurai, December 21-23(2015).
- [8] T.H.Yalvac, Semi-interior and semi-closure of fuzzy set, J.Math.Anal.Appl. 132 (2)(1988), 356-364.
- [9] L.A. Zadeh, Fuzzy sets, Inform. and Control 8(1965), 338-353.