I_{gm} - Closed Sets

 $M.Navanee thak rishnan^1$ $S.Alwarsamy^2$ and $S.Balamurugan^3$

¹Department of Mathematics, Kamaraj College, Thoothukudi - 628 003.

² Department of Mathematics, Government Arts and Science College, Kovilpatti.

³Department of Mathematics, Government Arts College, Melur - 625106.

Tamil Nadu, India.

Abstract

We define I_{gm} - closed sets in (X, M, I) and discuss their properties.

Keywords : $m - Space, g_m - closed, g_m - open, mg - closed, mg - open, I_{gm} - closed, I_{gm} - open, I - locally * -closed, m - locally * -closed.$

1 Introduction and preliminaries

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A, B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on Xand if P(X) is the set of all subsets of X, a set operator $(\cdot)^* : P(X) \to P(X)$ called a local function [5] of A with respect to τ and I is defined as follows: for $A \subset X, A^*(X, \tau) = \{x \in X/U \cap A \notin I, \text{ for every } U \in \tau(x)\}, \text{ where } \tau(x) = \{U \in \tau/x \in U\}.$

ISSN: 2231-5373

http://www.ijmttjournal.org

A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I,\tau)$ called the *topology, finer than τ , is defined by $cl^*(A) = A \cup A^*(I,\tau)$ [8]. When there is no confusion we will simply write A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. A subset A of an ideal space (X,τ,I) is said to be *-closed[4] if $A^* \subset A$ and *-dense in itself it $A \subset A^*$ [3]. A subset A of a an ideal space (X,τ,I) is said to be $I_g - closed$ [2] if $A^* \subset U$ whenever $A \subset U$ and U is open. A Subset A of an ideal space (X,τ,I) is said to be $I_g - open$ if X - A is $I_g - closed$. A subset A of an ideal space (X,τ,I) is said to be I - locally * -closed [7] if there exists an open set U and a * - closedset F such that $A = U \cap F$

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X, cl(A)$ and int(A) will respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) . A subset A of a topological space (X, τ) is said to be a g-closed set [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a topological space (X, τ) is said to be a g-open set if X - A is a g-closed set. A sub collection M of P(X) is called a minimal structure [1] on X, if (i) $\phi, X \in M$ and (ii) Mis closed under finite intersection.

(X, M) is called a minimal space. If I is an ideal on X, (X, M, I) is called an ideal minimal space. If $U \in M$, U is said to be a m-open set. The complement of a m-open set is called m-closed set. We set $mint(A) = \bigcup \{U \in M/U \subset A\}$ and $mcl(A) = \bigcap \{F/A \subset F \text{ and } X - F \in M\}$. A subset A of (X, M) is said to be mg-closed [1] if $mvl(A) \subset U$ whenever $A \subset U$ and $U \in M$. The complement of mg-closed set is called mg-open set.

2 I_{gm} - closed sets

If (X, M) is a m - space, we denote the topology generated by M by τ_m . If (X, M, I) is an ideal m - space, then (X, τ_m, I) is an ideal topological space. We denote the $\star - topology$ generated by I and τ_m on X by τ_m^* .

For a subset A of X, we denote the local function of A with respect to I and τ_m by A^* and closure of A in τ_m and τ_m^* by cl(A) and $cl^*(A)$ respectively.

A subset A of an ideal m-space(X, M, I) is said to be $I_{gm}-closed$ if $A^* \subset U$ whenever $A \subset U$ and $U \in M$. The complement of an $I_{gm}-closed$ set is called an $I_{gm}-open$ set.

A subset A of (X, τ_m) is said to be $g_m - closed$ if $cl(A) \subset U$ whenever $A \subset U$ and $U \in M$. The complement of a $g_m - closed$ set is called a $g_m - open$ set.

Since $cl^*(A) \subset cl(A) \subset mcl(A)$ and $M \subset \tau_m$ we have the following diagram.

$$m-closed \rightarrow closed \rightarrow \star-closed$$

 $\downarrow \qquad \downarrow \qquad \downarrow$
 $mg-closed \rightarrow g-closed \rightarrow I_g-closed$
 $\downarrow \qquad \downarrow$
 $g_m-closed \rightarrow I_{gm}-closed$

If $M = \tau$, a topology on X, then $\tau_m = \tau$, cl(A) = mcl(A) and hence the concepts mg - closed, g - closed and $g_m - closed$ are coincide and the concepts $I_g - closed$ and $I_{gm} - closed$ are coincide.

The Theorems 2.1 and 2.2 gives characterizations for I_{gm} – closed sets.

Theorem 2.1. A subset A of an ideal m-space (X, M, I) is I_{gm} -closed if and only it $cl^*(A) \subset U$ whenever $A \subset U$ and $U \in M$.

Proof. Suppose that A is I_{gm} - closed. Then $A^* \subset U$ whenever $A \subset U$ and $U \in M$. Therefore, $A \cup A^* \subset U$ whenever $A \subset U$ and $U \in M$. (ie) $cl^*(A) \subset U$

ISSN: 2231-5373

whenever $A \subset U$ and $U \in M$. Converse follows from the fact that $A^* \subset Cl^*(A)$.

For a subset A of an ideal m - space(X, M, I), define $\Lambda_m(A) = \bigcap \{U \in M / A \subset U\}$. A is said to be a $\Lambda_m - set$ if $\Lambda_m(A) = A$.

Theorem 2.2. A subset A of an ideal m-space (X, M, I) is I_{gm} -closed if and only it $cl^*(A) \subset \Lambda_m(A)$.

Proof. Suppose A is I_{gm} - closed. Let $U \in M$ be such that $A \subset U$. Then $cl^*(A) \subset U$. Therefore $cl^*(A) \subset \cap \{U \in M/A \subset U\}$. (ie) $cl^*(A) \subset \Lambda_m(A)$.

Conversely, suppose $cl^*(A) \subset \Lambda m(A)$. If $A \subset U$ and $U \in M$ then $\Lambda_m(A) \subset U$ and hence $cl^*(A) \subset U$. Therefore A is $I_{gm} - closed$.

The Theorem 2.3 gives some properties of I_{gm} – closed sets and Example 2.4 shows that the converse need not be true.

Theorem 2.3. Let (X, M, I) be an ideal m – space If $A \subset X$ is I_{gm} – closed, then the following properties hold.

(a) $cl^*(A) - A$ contains no non empty m - closed set.

(b) $A^* - A$ contains no non empty m - closed set.

Proof. Let A be I_{gm} - closed set.

(a). Suppose $V \subset cl^*(A) - A$ and V is m - closed. since A is $I_{gm} - closed$ and X - V is a m - open, set containing A, $cl^*(A) \subset X - V$. Hence $V \subset X - Cl^*(A)$. Since $V \subset Cl^*(A)$ and $V \subset cl^*(A) - A$, we get $V = \phi$

(b) If A is I_{gm} - closed, then by (a) $cl^*(A) - A$ contains no non empty closed set. But $cl^*(A) - A = A^* - A$. Therefore (b) follows.

Example 2.4. Let $X = \{a, b, c\}, M = \{\phi, \{a\}, \{b\}, \{b, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $\tau_m = \{\phi, \{a\}, \{b\}\{a, b\}, \{b, c\}, X\}$

If $A = \{b\}$, then $A^* - A = \{c\}$, which contains no non empty m-closed sets. But A is not I_{gm} -closed. **Theorem 2.5.** Suppose a subset A of an ideal m – space is both I_{gm} – closed and m – open. Then it is \star – closed.

Proof. Since A is I_{gm} - closed. $A \subset A$ and $A \in M$ implies that $cl^*(A) \subset A$. Hence A is \star - closed.

Theorem 2.6. Let (X, M, I) be an ideal m – space. Then every subset of X is I_{gm} – closed if and only if every m – open set is \star – closed.

Proof. Suppose every subset of X is I_{gm} - closed. Let U be an m - open set. Since $U \subset U$, from the definition of I_{gm} - closed sets, $U^* \subset U$ and hence $cl^*(U) \subset U$. Therefore U is \star - closed.

Conversely, suppose that every m - open set is $\star - closed$. If A is any subset of X and $A \subset U$, U is m - open, then $A^* \subset U^* \subset cl^*(U) = U$ and hence A is $I_{gm} - closed$.

Theorem 2.7. If A is an I_{gm} - closed subset of an ideal m - space (X, M, I), then the following properties are equivalent.

(a) A is a \star - closed set

(b) $cl^*(A) - A$ is a m - closed set

(c) $A^* - A$ is a m - closed set.

Proof. $(a) \Rightarrow (b)$. If A is \star -closed then $cl^*(A) = A$ and hence $cl^*(A) - A = \phi$, which is m-closed.

 $(b) \Rightarrow (c)$. Since $cl^*(A) - A = A^* - A, A^* - A$ is m - closed.

 $(c) \Rightarrow (a)$. Suppose $A^* - A$ is m - closed. Since A is $I_{gm} - closed$, by Theorem 2.3, $A^* - A$ contains no non empty m - closed set. Therefore, $A^* - A = \phi$ and hence $A^* \subset A$. So A is $\star - closed$.

Theorem 2.8. Let (X, M, I) be an ideal m – space. Then a subset A of X is \star – closed if and only if $A^* - A$ is m – closed and A is I_{gm} – closed.

Proof. Suppose A is \star - closed. Then $A^* - A = cl^*(A) - A = \phi$, which is m - closed. Also every $\star - closed$ set is $I_{gm} - closed$. Hence A is $I_{gm} - closed$.

Conversely, suppose $A^* - A$ is m - closed and A is $I_{gm} - closed$. Then by Theorem 2.7, A is $\star - closed$.

Theorem 2.9. Let (X, M, I) be an ideal m – space. If A is \star – dense in itself, then $A^* = mcl(A^*) = mcl(A)$

Proof. Clearly, $A^* \subset mcl(A^*)$. It $x \notin A^*$, then there exist $U \in \tau_m$ such that $x \in U$ and $U \cap A \in I$. Since τ_m is generated by M, there exist $V \in M$ such that $x \in V \subset U$. Since $V \cap A \subset U \cap A \in I$, we have $V \cap A \in I$. If $x \in V$, then $x \in U$ and $U \cap A \in I$ and hence $x \notin A^*$. Therefore $V \cap A^* = \phi$. So $x \notin mcl(A^*)$. This proves that $mcl(A^*) \subset A^*$. Therefore $A^* = mcl(A^*)$. Since A is \star - dense in itself, $A \subset A^*$ and hence $mcl(A) \subset mcl(A^*)$.

On the other hand, $A^* \subset cl^*(A) \subset cl(A) \subset mcl(A)$ and hence $mcl(A^*) \subset mcl(A)$. Therefore $mcl(A^*) = mcl(A)$.

In general I_{gm} – closed sets need not be mg – closed. The following Theorem 2.10 gives a condition where it is mg – closed.

Theorem 2.10. Let (X, M, I) be an ideal m – space and A is a subset of X. If A is \star – dense in itself and I_{gm} – closed, then A is mg – closed.

Proof. A is $\star - dense$ in itself. So $A \subset A^*$. Therefore, $cl^*(A) = A \cup A^* = A^*$. Suppose $U \in M$ and $A \subset U$. Since A is I_{gm} -closed, by Theorem 2.1, $cl^*(A) \subset U$. Therefore $A^* \subset U$. Since A is $\star - dense$ in itself, by Theorem 2.9, $A^* = mcl(A)$. Therefore $mcl(A) \subset U$ and hence A is mg-closed.

Theorem 2.11. Let (X, M, I) be an ideal m – space and A, B be subsets of X. If A is I_{gm} – closed and $A \subset B \subset cl^*(A)$, then B is also I_{gm} – closed. **Proof.** Suppose $B \subset U$ and U is m - open. Then $A \subset U$. Since A is $I_{gm} - closed, cl^*(A) \subset U$. Since $A \subset B \subset cl^*(A), cl^*(A) \subset cl^*(B) \subset cl^*(cl^*(A)) = cl^*(A)$.

Hence $cl^*(A) = cl^*(B)$. Therefore, $cl^*(B) \subset U$ and hence B is I_{qm} - closed.

Theorem 2.12. Union of two I_{gm} - closed sets is an I_{gm} - closed set.

Proof. Let (X, M, I) be an ideal m - space and let A and B be $I_{gm} - closed$ sets in X. Suppose $A \cup B \subset U$ and U is m - open. Since A is $I_{gm} - closed$ and $A \subset U$, we have $cl^*(A) \subset U$. Similarly $cl^*(B) \subset U$. Therefore $cl^*(A \cup B) =$ $cl^*(A) \cup cl^*(B) \subset U$. Hence $A \cup B$ is $I_{qm} - closed$.

The following Example 2.13 shows that intersection of two I_{gm} – closed sets need not be I_{gm} – closed.

Example 2.13. Let $X = \{a, b, c\}, M = \{\phi, \{a\}, \{b\}, \{b, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $\tau_m = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$.

Let $A = \{a, b\}$ and $B = \{b, c\}$. Since X is the only m – open set containing A, A is I_{gm} – closed. Since, $B^* = \{b, c\}, B$ is \star – closed and hence I_{gm} – closed. Now $A \cap B = \{b\}$, which is m – open and $(A \cap B)^* = \{b, c\}$. Therefore $A \cap B$ is not I_{gm} – closed.

Theorem 2.14. Let (X, M, I) be an ideal m-space and A, B be subsets of X. If $A \subset B \subset A^*$ and A is I_{gm} -closed, then B is mg-closed.

Proof. Since $A \subset B \subset A^*$, we have $A^* \subset B^* \subset (A^*)^* = A^*$. Therefore $A^* = B^*$ and hence A and B are \star – dense in itself. Since $A \subset B \subset A^* \subset cl^*(A)$ and A is I_{gm} – closed, by Theorem 2.11, B is I_{gm} – closed. Since B is \star – dense in itself and I_{gm} – closed, by Theorem 2.10, B is mg – closed.

Theorem 2.15. Let(X, M, I) be an ideal m – space and $I = \{\phi\}$. Then A is I_{gm} – closed if and only if A is mg – closed.

Proof. Since $I = \{\phi\}, cl(A) = cl^*(A)$, for every subset of X. Therefore $cl^*(A) \subset U$ if and only if $cl(A) \subset U$. Therefore A is I_{gm} - closed if and only if A is mg - closed.

Theorem 2.16. Let (X, M, I) be an ideal m – space. For every $x \in X$, the set $X - \{x\}$ is I_{gm} – closed or m – open.

Proof. Suppose $X - \{x\}$ is not m - open. Then X is the only m - open set contains $X - \{x\}$ and $(X - \{x\})^* \subset X$. Hence $X - \{x\}$ is $I_{qm} - closed$.

The following theorem 2.17, gives a characterization for I_{gm} – open sets.

Theorem 2.17. Let (X, M, I) be an ideal m – space and $A \subset X$. Then A is I_{gm} – open if and only if $F \subset int^*(A)$ whenever F is m – closed and $F \subset A$.

Proof. Suppose A is I_{gm} – open and $F \subset A$, F is m – closed. Then $X - A \subset X - F$, X - F is m-open and X - A is I_{gm} -closed. Therefore $cl^*(X - A) \subset X - F$. Therefore $F \subset X - cl^*(X - A) = int^*(A)$.

Conversely, suppose $F \subset int^*(A)$ whenever $F \subset A$ and F is m-closed. If $X - A \subset U$ and U is m-open, then $X - U \subset A$ and X - U is m-closed. Therefore, by hypothesis, $X - U \subset int^*(A)$ and hence $cl^*(X - A) = X - int^*(A) \subset C$

U. Therefore X - A is $I_{gm} - closed$ and hence A is $I_{gm} - open$. Since every m - closed set is $I_{gm} - closed$, every m - open set is $I_{gm} - open$.

Theorem 2.18. Let (X, M, I) be an ideal m – space and A, B be subsets of X. If A is I_{gm} – open and $int^*(A) \subset B \subset A$, then B is I_{gm} – open. The proof follows from the Theorem 2.11.

Theorem 2.19. Intersection of two I_{gm} – open sets is an I_{gm} – open set. The proof follows from the Theorem 2.12.

Theorem 2.20. If a subset A of an ideal m – space (X, M, I) is I_{gm} – closed then $A \cup (X - A^*)$ is also I_{gm} – closed. **Proof.** Suppose A is $I_{gm} - closed$. If $A \cup (X - A^*) \subset U$ and U is m - open, then $X - U \subset X - [A \cup (X - A^*)] = (X - A) \cap A^* = A^* - A$ and X - U is m - closed. Since A is $I_{gm} - closed$, by, Theorem 2.3, $X - U = \phi$ and hence X = U. Therefore X is the only m - open set containing $A \cup (X - A^*)$ and hence $A \cup (X - A^*)$ is $I_{gm} - closed$.

Theorem 2.21. Let (X, M, I) be an ideal m – space. Then the following are equivalent.

(a) Every I_{gm} - closed set \star - closed

(b) Every singleton of X is either m - closed or \star - open.

Proof. (a) \Rightarrow (b). Let $x \in X$. If $\{x\}$ is not m - closed, then $X - \{x\}$ is not m - open. Therefore X is the only m - open set containing $X - \{x\}$ and $X - \{x\}$ is $I_{gm} - closed$ set. By hypothesis, $X - \{x\}$ is $\star - closed$ and hence $\{x\}$ is $\star - open$.

 $(b) \Rightarrow (a)$. Let A be an I_{gm} - closed set and $x \in A^*$. We have to prove that $x \in A$.

Case (i). If $\{x\}$ is m-closed and $x \notin A$, then $A \subset X - \{x\}$ and $X - \{x\}$ is m-open. Since A is $I_{gm}-closed$, A $* \subset X - \{x\}$ and hence $x \notin A^*$, which is a contradiction.

Case (ii). If $\{x\}$ is $\star - open$, since $x \in A^*$ we have $x \in cl^*(A)$ and hence $\{x\} \cap A \neq \phi$. (ie) $x \in A$. Therefore $A^* \subset A$ and hence A is $\star - closed$.

A subset A of an ideal m-space (X, M, I) is said to be $m-locally \star -closed$ if there exist a m-open set U and a $\star -closed$ set F of (X, τ_m^*) such that $A = U \cap F$. The set A is said to be m-locally closed if there exist a m-openset U and a closed set F of (X, τ_m) such that $A = U \cap F$.

If $I = \{\phi\}$, then the concept m - locally * -closed sets coincide with m - locally closed set.

Theorem 2.22. Let (X, M, I) be an ideal m – space and A be a subset of X. Then the following statements are equivalent.

(a) A is m -locally \star -closed

(b) $A = U \cap cl^*(A)$, for some m - open set U.

Proof. $(a) \Rightarrow (b)$. If A is $m - locally \star -closed$ Then there exist a m - openset U and a $\star - closed$ set F such that $A = U \cap F$. Clearly $A \subset U \cap cl^*(A)$. On the other hand, since F is $\star - closed$, $A \subset F$ implies that $cl^*(A) \subset cl^*(F) = F$ and so $U \cap cl^*(A) \subset U \cap F = A$. Therefore $A = U \cap cl^*(A)$

 $(b) \Rightarrow (a)$ is clear.

Theorem 2.23. Let (X, M, I) be an ideal m – space and A be a m – locally \star – closed subset of X. Then the following properties hold.

(a)
$$A^* - A$$
 is closed

(b)
$$(X - A^*) \cup A = A \cup (X - cl^*(A))$$
 is open

(c)
$$A \subset int(A \cup (X - A^*))$$

(d) A is I-locally \star -closed in (X, τ_m^*) .

Proof. (a) Since A is *m* − *locally* ★ −*closed*, by Theorem 2.21, $A = U \cap cl^*(A)$, for some *m* − *open* set U. Then, $A^* - A = A^* \cap (X - A) = A^* \cap [X - (U \cap cl^*(A))]$ $A^* \cap [(X - U) \cup (X - cl^*(A))] = (A^* \cap (X - U)) \cup (A^* \cap (X - cl^*(A))) = A^* \cap (X - U)$, which is closed (b). $X - (A^* - A) = X - [A^* \cap (X - A)] = (X - A^*) \cup A$

By (a), $(X - A^*) \cup A$ is open. Also $(X - A^*) \cup A = A \cup (X - cl^*(A))$.

(c). Since A is $m - locally \star -closed$, by (b), $A \cup (X - A^*)$ is open.

Therefore $A \cup (X - A^*) \subset int[A \cup (X - A^*)]$ and hence $A \subset int[A \cup (X - A^*)]$.

(d). The proof follows from the fact that every m - open set is open.

Theorem 2.24. Let (X, M, I) be an ideal m – space and A is a m – locally \star –closed and I – dense subset of X. Then A is open.

Proof. If A is $m - locally \star -closed$, then by Theorem 2.23(d), A is $I - locally \star -closed$. Therefore, by Theorem 3.1 (e)[7], $A \subset int[A \cup (X - A^*)]$. Since A is I - dense, $A^* = X$ and so $A \subset int(A)$. Therefore A is open.

References

- Ahmad, AL-Omari and T.Noiri, Generalized closed sets in ideal m-space, Joardan Journal of Mathematics and statistics 4(3), 2011, 171-183.
- [2] J.Dontchev, M.Ganster and T.Noiri, Unified Operation approach of generalized closed sets via topological ideals, Mathematica Japonica, vol.49, no.3, pp.395-401,1999.
- [3] E.Hayaschi, Topologies defined by local properties, Math.Am.156(1964), 205-215.
- [4] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, the American Mathematical Monthly, vol.97, no.4, pp.295-310, 1990.
- [5] K.Kuratowski, Topology, vol 1, Academic press, New york, NY, USA, 1966.
- [6] N.Levine, Generalized closed sets in topology, Rendiconti del circolo Mathematics di Palermo, vol 19, no.2, pp.89-96, 1970.
- M.Navaneethakrishnan and D.Sivaraj, Generalized locally closed sets in ideal topological spaces, Bulletin of the Allahabad Mathematical Society, vol.24, No.1, pp.13-19,2009.

[8] R.Vaidyanathaswamy, Set Topology, Chelsea Publishing, New York, NY, USA, 1946.