$\delta - I_g$ - Closed Sets

M.Navaneethakrishnan¹ and S.Alwarsamy²

¹Department of Mathematics, Kamaraj College, Thoothukudi - 628 003.

²Department of Mathematics, Government Arts and Science College, Kovilpatti.

Tamil Nadu, India.

Abstract

We define $\delta - I_g - closed$ sets and discuss their properties. Using these sets we characterize. $T_{1/2} - spaces$ and $T_I - spaces$.

$$\begin{split} \mathbf{Keywords}: \ I_g-closed, g-closed, \theta-I_g-closed, \theta-g-closed, \delta-I_g-closed, \delta-g-closed, \delta-g-close$$

1 Introduction and preliminaries

An ideal I on a topological space (X, τ) is a non empty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A, B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on Xand if P(X) is the set of all subsets of X, a set operator $(\cdot)^* : P(X) \to P(X)$ called a local function [8] of A with respect to τ and I is defined as follows: for $A \subset X, A^*(X, \tau) = \{x \in X | U \cap A \notin I, \text{ for every } U \in \tau(x)\}, \text{ where } \tau(x) = \{U \in \tau | x \in U\}.$ A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I, \tau)$ called the \star - topology, finer than τ, is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [13]. When there is no confusion we will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an *ideal space*. A subset A of an ideal space $(X\tau, I)$ is said to be \star -closed [7] if $A^* \subset A$. A subset A of an ideal space (X, τ, I) is said to be I_g - closed [2] if $A^* \subset U$ whenever $A \subset U$ and U is open. A subset A of an ideal space (X, τ, I) is said to be I_g - open if (X - A) is I_g - closed. An ideal space (X, τ, I) is said to be a T_I - space [2] if every I_g - closed set is \star -closed. A subset A of an ideal space (X, τ, I) is said to be $I = -locally \star$ -closed [12] if there exist an open set U and a \star - closed set F such that $A = U \cap F$. If $I = \{\phi\}$, then $I - locally \star$ -closed sets coincide with locally closed sets.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X, cl(A)$ and int(A) will respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) . A subset A of a topological space (X, τ) is said to be a g-closed set [9] if $cl(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a topological space (X, τ) is said to be a g-open set if X - A is a g-closed set. A space (X, τ) is said to be a $T_{1/2}-space$ [9] if every g-closed set is a closed set.

For a subset A of a space (X, τ) , the θ - interior [14] of A is the union of all open sets of X whose closures contained in A and is denoted by $int_{\theta}(A)$. The subset A is called θ - open if $A = int_{\theta}(A)$. The complement of a θ - open set is called a θ - closed set. Equivalently, $A \subset X$ is called θ - closed [14] if $A = cl_{\theta}(A) = \{x \in X | cl(U) \cap A \neq \phi \text{ for all } U \in \tau(x)\}$. The family of all θ - open sets of X forms a topology [14] on X, which is coarser than τ and is denoted by τ_{θ} . A subset A of a topological space (X, τ) is said to be a $\theta - g - closed$ set [3] if $cl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a space (X, τ) is said to be a $\theta - g - open$ set [3] if X - A is a $\theta - g - closed$ set. A subset A of a space (X, τ) is said to be a $\Lambda - set$ [10,11] if $A = A^{\Lambda}$, where $A^{\Lambda} = \cap \{U \in \tau | A \subset U\}$.

ISSN: 2231-5373

A subset A of an ideal space (X, τ, I) is said to be $\theta - I - closed$ [1] if $cl_{\theta}^{*}(A) = A$, where $cl_{\theta}^{*}(A) = \{x \in X | A \cap cl^{*}(U) \neq \phi \text{ for all } U \in \tau(x)\}$. A is said to be $\theta - I - open$ if X - A is $\theta - I - closed$. If $I = \{\phi\}, cl_{\theta}^{*}(A) = cl_{\theta}(A)$. If $I = P(X), cl_{\theta}^{*}(A) = cl(A)$. For a subset A of X, $int_{\theta}I(A) = \cup\{U \in \tau | cl^{*}((U) \subset A\}$ [1]. We denote this $int_{\theta}I(A)$ by $int_{\theta}^{*}(A)$. The family of all $\theta - I - open$ sets of (X, τ, I) is a topology and it is denoted by $\tau_{\theta - I}$ (see [1, Theorem 1]).

For a subset A of $(X, \tau, I), [A]_{\delta-I} = \{x \in X/A \cap int(cl^*(U)) \neq \phi \text{ for all } U \in \tau(x)\}$ [15], is called $\delta - I - closure$ of A. We denote $[A]_{\delta-I}$ by $cl^*_{\delta}(A)$. The set A is said to be $\delta - I - closed$ if $cl^*_{\delta}(A) = A$. The complement of $\delta - I - closed$ set is said to be $\delta - I - open$. For a subset A of a space $(X, \tau), cl_{\delta}(A) = \{x \in X/A \cap int(cl(U)) \neq \phi \text{ for all } U \in \tau(x)[14].$ If $cl_{\delta}(A) = A$, then A is said to be $\delta - closed$. The complement of a $\delta - closed$ set is said to be a $\delta - open$ set. The family of all $\delta - open$ sets of X form a topology τ_{δ} . The family of all $\delta - I - open$.

Lemma 1.1. [15, Theorem 2.3] Let (X, τ, I) be an ideal space and $\tau_{\delta-I} = \{A \subset X/A \text{ is a } \delta - I - open \text{ set of } (X, \tau, I)\}$. Then $\tau_{\delta-I}$ is a topology such that $\tau_{\delta} \subset \tau_{\delta-I} \subset \tau$.

Lemma 1.2. [15, proposition 2.1] Let (X, τ, I) be an ideal space. (1). If $I = \{\phi\}$ or the ideal N of nowhere dense sets of (X, τ) , then $\tau_{\delta-I} = \tau_{\delta}$. (2). If I = P(X), then $\tau_{\delta-I} = \tau$.

2 $\delta - I_q$ - closed sets

A subset A of an ideal space (X, τ, I) is said to be $\delta - I_g - closed$ if $cl^*_{\delta}(A) \subset U$, whenever $A \subset U$ and U is open. The complement of $\delta - I_g - closed$ set is called $\delta - I_g - open$ set. The set A is said to be $\delta - g - closed$ [4], if $cl_{\delta}(A) \subset U$, whenever $A \subset U$ and U is open. The complement of $\delta - g - closed$ set is $\delta - g - open$. Every $\delta - I - closed$ set is $\delta - I_g - closed$. If $I = \{\phi\}$ or the ideal N of nowhere dense subsets of (X, τ) , then $\delta - I_g - closed$ sets coincide with $\delta - g - closed$ sets. If I = P(X), then $\delta - I_g - closed$ sets coincide with g - closed sets. Since $cl^*(A) \subset cl(A) \subset cl^*_{\delta}(A) \subset cl^*_{\theta}(A) \subset cl_{\theta}(A)$, we have the following inclusion diagram.

$$\theta - g - closed \rightarrow \theta - I_g - closed \rightarrow \delta - I_g - closed$$

 $\rightarrow g - closed \rightarrow I_g - closed.$

Since $cl(A) \subset cl^*_{\delta}(A) \subset cl_{\delta}(A)$ we have the following inclusion diagram.

 $\delta - g - closed \rightarrow \delta - I_g - closed \rightarrow g - closed$

The following Example 2.1 shows that a g-closed set need not be $\delta - I_g - closed$.

Example 2.1. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{a\}, \{c\}, \{a, c\}\}.$

Then $int(cl^*(U)) = X$, for all $U \in \tau$. Therefore, $cl^*_{\delta}(A) = X$, for all subsets A of X. Let $A = \{d\}$. Then A is closed and hence g - closed. But A is not $\delta - I_g - closed$, because, $A \subset \{a, b, d\}, \{a, b, d\}$ is open and $cl^*_{\delta}(A) = X \not\subset \{a, b, d\}$

The following Example 2.2 shows that $\delta - I_g - closed$ set need not be $\theta - I_g - closed$ set.

Example 2.2. Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{c, d, e\}, \{b, c, d, e\}, X\}$ and $I = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a, b\}$. Then $cl^*_{\delta}(A) = A$. Therefore, A is $\delta - I$ -closed and hence $\delta - I_g$ -closed. But A is not $\theta - I_g$ -closed, because, $A \subset \{a, b, c\}, \{a, b, c\}$ is open and $cl^*_{\theta}(A) = X \not\subset \{a, b, c\}$.

The following Example 2.3 shows that every $\delta - I_g - closed$ set need not be $\delta - I - closed$ set.

Example 2.3. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Let $A = \{d\}$. Since X is the only open set containing A, A is $\delta - I_g - closed$. But A is not $\delta - I - closed$, because, $cl_{\delta}^*(A) = \{b, d\} \neq A$.

ISSN: 2231-5373

The following Example 2.4 shows that $\delta - I_g - closed$ set need not be $\delta - g - closed$ set.

Example 2.4. Let X = R, the real line, $\tau = \{\phi, \{x\}, (-\infty, x], [x, \infty), X\}$ where x is any element of R and $I = P((-\infty, x])$.

Let $A = (x, \infty)$. Then cl(U) = X, for all nonempty $U \in \tau$, int(cl(U)) = Xand hence $cl_{\delta}(A) = X$. Therefore, A is not $\delta - g - closed$. Let $U = (-\infty, x]$. Then $U^* = \phi, cl^*(U) = U$, $int(cl^*(U)) = U$, $A \cap int(cl^*(U)) = A \cap U = \phi$. Therefore, $y \in U$ implies $y \notin cl^*_{\delta}(A)$. Therefore, $cl^*_{\delta}(A) = A$. Therefore, A is $\delta - I - closed$ and hence $\delta - I_g - closed$.

The following Example 2.5 shows that $\delta - I_g - closed$ set need not be $\theta - I_g - closed$ set.

Example 2.5. Let X = R, the real line, $\tau = \{\phi, (0, 1), [1, 2), (0, 2), (-\infty, 2), [1, \infty), (0, \infty), X\}$ and $I = P((-\infty, 1))$. Let $A = (-\infty, 1)$. Then $cl^*_{\delta}(A) = A$. Therefore, A is $\delta - I - closed$ and hence $\delta - I_g - closed$. Now $A \subset (-\infty, 2)$. But $cl^*_{\theta}(A) = X \not\subset (-\infty, 2)$. Therefore, A is not $\theta - I_g - closed$.

The following Theorem 2.6 gives characterization for $\delta - I_q - closed$ sets.

Theorem 2.6. If A is a subset of an ideal space (X, τ, I) , then the following are equivalent.

- (a) A is $\delta I_q closed$
- (b) For all $x \in cl^*_{\delta}(A), cl(\{x\}) \cap A \neq \phi$
- (c) $cl^*(A) A$ contains no nonempty closed sets.

Proof. $(a) \Rightarrow (b)$. Suppose $x \in cl^*_{\delta}(A)$. If $cl(\{x\}) \cap A = \phi$, then $A \subset X - cl(\{x\})$. Since A is $\delta - I_g - closed$, $cl^*_{\delta}(A) \subset X - cl(\{x\})$, it is a contradiction to the fact that $x \in cl^*_{\delta}(A)$. $(b) \Rightarrow (c)$. Suppose $F \subset cl^*_{\delta}(A) - A$, F is closed and $x \in F$. Since $F \subset X - A$ and F is closed, $cl(\{x\}) \cap A \subset cl(F) \cap A = F \cap A = \phi$, which is a contradiction. This proves (c).

 $(c) \Rightarrow (a)$. Let $A \subset U$, U is open. Since $cl_{\delta}^*(A)$ is closed, $cl_{\delta}^*(A) \cap (X - U)$ is closed and $cl_{\delta}^*(A) \cap (X - U) = cl_{\delta}^*(A) - U \subset cl_{\delta}^*(A) - A$. By hypothesis, $cl_{\delta}^*(A) \cap (X - U) = \phi$ and hence $cl_{\delta}^*(A) \subset U$. Therefore A is $\delta - I_g - closed$.

If we put $I = \{\phi\}$, in Theorem 2.6, we get Corollary 2.7, which gives characterizations for $\delta - g - closed$ sets. If we put I = P(X), in Theorem 2.6, we get Corollary 2.8 which gives characterizations for g - closed sets.

Corollary 2.7. If A is a subset of a topological space (X, τ) , then the following are equivalent

(a) A is $\delta - g - closed$

(b) For all $x \in cl_{\delta}(A), \ cl(\{x\}) \cap A \neq \phi$

 $(c)cl_{\delta}(A) - A$ contains no nonempty closed set.

Corollary 2.8. If A is a subset of a topological space (X, τ) , then the following are equivalent.

(a) A is
$$g-closed$$

- (b) For all $x \in cl(A)$, $cl(\{x\}) \cap A \neq \phi$
- (c) cl(A) A contains no nonempty closed set.

 (X, τ) is said to be a T_1 – space, if given any two different points a and b of X, each has a neighbourhood not containing the other.

The following Corollary 2.9 shows that in $T_1 - spaces$, $\delta - I_g - closed$ sets are $\delta - I - closed$, the proof of which follows from Theorem 2.6(c). Corollary 2.10 gives a relation between $\delta - I_g - closed$ and $\delta - I - closed$.

Corollary 2.9. If (X, τ, I) is a T_1 – space and A is $\delta - I_g$ – closed set, then A is a $\delta - I$ – closed set.

Corollary 2.10. If (X, τ, I) is an ideal space and A is $\delta - I_g$ - closed set, then the following are equivalent.

(a) A is a $\delta - I - closed$ set

(b) $cl^*_{\delta}(A) - A$ is a closed set.

Proof. $(a) \Rightarrow (b)$. If a is $\delta - I - closed$, then $cl^*_{\delta}(A) - A = \phi$ and so $cl^*_{\delta}(A) - A$ is closed.

 $(b) \Rightarrow (a)$. If $cl^*_{\delta}(A) - A$ is closed, since A is $\delta - I_g - closed$, by Theorem 2.6, $cl^*_{\delta}(A) - A = \phi$ and so $cl^*_{\delta}(A) = A$, which proves (a).

If we put $I = \{\phi\}$ in Corollary 2.10, we get Corollary 2.11. If we put I = P(X) in Corollary 2.10, we set Corollary 2.12.

Corollary 2.11. If (X, τ) is a topological space and A is a $\delta - g$ - closed set, then the following are equivalent.

- (a) A is a δ closed set
- (b) $cl_{\delta}(A) A$ is a closed set.

Corollary 2.12. If (X, τ) is a topological space and A is a g - closed set, then the following are equivalent.

- (a) A is a closed set
- (b) cl(A) A is a closed set.

Theorem 2.13. If every open set of an ideal space (X, τ, I) is \star - closed, then every g - closed set is $\delta - I_g$ - closed.

Proof. Since every open set is $\star - closed, cl^*(U) = U$ for every $U \in \tau$. Therefore, for every subset A of X, $cl^*_{\delta}(A) = \{x \in X/A \cap int(cl^*(U)) \neq \phi \text{ for all } U \in \tau(x)\}$ = cl(A). This implies that every g - closed set is $\delta - I_g - closed$. **Corollary 2.14.** If every subset of an ideal space (X, τ, I) is I_g - closed, then every g - closed set is $\delta - I_g$ - closed.

The proof follows from the fact that every subset of X is $I_g - closed$ if and only if every open set is $\star - closed$ and Theorem 2.13.

Theorem 2.15. Let (X, τ, I) be an ideal space. Then every subset of X is $\delta - I_{\delta}$ - closed if and only if every open set is $\delta - I$ - closed.

Proof. Suppose every subset of X is $\delta - I_g - closed$. If U is open, then U is $\delta - I_{\delta} - closed$, and so $cl^*_{\delta}(U) \subset U$. Hence U is $\delta - I - closed$.

Conversely, suppose $A \subset U$ and U is open. Since every open set is $\delta - I - closed$, $cl^*_{\delta}(A) \subset U$ and so A is $\delta - I_g - closed$.

If we put $I = \{\phi\}$ in Theorem 2.15, we set Corollary 2.16. If we put I = P(X) in Theorem 2.15, we set Corollary 2.17.

Corollary 2.16. Let (X, τ) be a topological space. Then every subset of X is $\delta - g$ - closed if and only if every open set is δ - closed.

Corollary 2.17. Let (X, τ) be a topological space. Then every subset of X is g - closed if and only if every open set is closed.

Theorem 2.18. Intersection of a $\delta - I_g$ - closed set and a $\delta - I$ - closed set is $\delta - I_g$ - closed.

Proof. Let A be a $\delta - I_g - closed$ set and F a $\delta - I - closed$ set of an ideal space (X, τ, I) . Suppose $A \cap F \subset U$ and U is open in X. Then $A \subset U \cup (X - F)$. Now X - F is an open set containing A. Since A is $\delta - I_g - closed$, $cl^*_{\delta}(A) \subset U \cap (X - F)$. Therefore $cl^*_{\delta}(A) \cap F \subset U$, which implies that $cl^*_{\delta}(A \cap F) \subset U$. So $A \cap F$ is $\delta - I_g - closed$.

If we put $I = \{\phi\}$ in Theorem 2.18, we get Corollary 2.19. If we put I = P(X) in Theorem 2.18, we get Corollary 2.20.

Corollary 2.19. Intersection of a $\delta - g$ -closed set and a δ -closed set is always $\delta - g$ -closed.

Corollary 2.20. Intersection of a g – closed set and a closed set is always a g – closed set.

Theorem 2.21. A subset A of an ideal space (X, τ, I) is $\delta - I_g - closed$ if and only if $cl^*_{\delta}(A) \subset A^{\Lambda}$

Proof. Suppose A is $\delta - I_g - closed$ and $x \in cl^*_{\delta}(A)$. If $x \notin A^{\Lambda}$, then there exists an open set U such that $A \subset U$, but $x \notin U$. Since A is $\delta - I_g - closed$, $cl^*_{\delta}(A) \subset U$ and $x \notin cl^*_{\delta}(A)$, a contradiction. Therefore, $cl^*_{\delta}(A) \subset A^{\Lambda}$.

Conversely, suppose that $cl_{\delta}^*(A) \subset A^{\Lambda}$. If $A \subset U$ and U is open, then $A^{\Lambda} \subset U$ and so $cl_{\delta}^*(A) \subset U$. Therefore, A is $\delta - I_g - closed$.

If we put $I = \{\phi\}$ in Theorem 2.21, we get Corollary 2.22. If we put I = P(X) in Theorem 2.21, we get Corollary 2.23.

Corollary 2.22. A subset A of a space (X, τ) is $\delta - g - closed$ if and only if $cl_{\delta}(A) \subset A^{\Lambda}$.

Corollary 2.23. A subset A of a space (X, τ) is g-closed if and only if $cl(A) \subset A^{\Lambda}$.

Theorem 2.24. Let A be a Λ – set of an ideal space (X, τ, I) . Then A is $\delta - I_g$ – closed if and only if A is $\delta - I$ – Closed.

Proof. Suppose A is $\delta - I_g - closed$. By Theorem 2.21, $cl_{\delta}^*(A) \subset A^{\Lambda} = A$, since A is a $\Lambda - set$. Therefore, A is $\delta - I - closed$. Converse follows from the fact every $\delta - I - closed$ is $\delta - I_g - closed$.

If we put $I = \{\phi\}$ in Theorem 2.24, we get Corollary 2.25. If we put I = P(X) in Theorem 2.24, we get Corollary 2.26.

Corollary 2.25. Let A be a Λ - set of a space (X, τ) . Then A is δ - g - closed if and only if A is δ - closed.

Corollary 2.26. Let A be a Λ – set of a space (X, τ) . Then A is g – closed if and only if A is closed.

Theorem 2.27. Let (X, τ, I) be an ideal space and $A \subset X$. If A^{Λ} is $\delta - I_g - closed$, then A is also $\delta - I_g - closed$.

Proof. Suppose that A^{Λ} is a $\delta - I_g - closed$ set. If $A \subset U$ and U is open, then $A^{\Lambda} \subset U$. Since A^{Λ} is $\delta - I_g - closed$, $cl^*_{\delta}(A^{\Lambda}) \subset U$. But $cl^*_{\delta}(A) \subset cl^*_{\delta}(A^{\Lambda})$. Therefore, Λ is $\delta - I_g - closed$.

If we put $I = \{\phi\}$ in Theorem 2.27, we get Corollary 2.28. If we put I = P(X) in Theorem 2.27, we get Corollary 2.29.

Corollary 2.28. let (X, τ) be a topological space and $A \subset X$. If A^{Λ} is $\delta - g - closed$, then A is also $\delta - g - closed$.

Corollary 2.29. Let (X, τ) be a space and $A \subset X$. If A^{Λ} is g-closed set, then A is also g-closed set.

Theorem 2.30. For an ideal space (X, τ, I) , the following are equivalent.

(a) Every $\delta - I_g - closed$ set is $\delta - I - closed$.

(b) Every singleton of X is closed or $\delta - I - open$.

Proof. (a) \Rightarrow (b). Let $x \in X$. If $\{x\}$ is not closed, then $A = X - \{x\} \notin \tau$ and then A is trivially $\delta - I_g - closed$. By (a), A is $\delta - I - closed$. Hence $\{x\}$ is $\delta - I - open$.

 $(b) \Rightarrow (a)$. Let A be a $\delta - I_g - closed$ set and let $x \in cl^*_{\delta}(A)$. We have the following cases.

case (i). $\{x\}$ is closed. By Theorem 2.5, $cl^*_{\delta}(A) - A$ does not contain a nonempty closed set. This shows $x \in A$.

case (ii). $\{x\}$ is $\delta - I - open$. Then $\{x\} \cap A \neq \phi$. Hence, $x \in A$.

Thus in both the cases $x \in A$ and so $A = cl^*_{\delta}(A)$, that is, A is $\delta - I - closed$, which proves (a).

If we put $I = \{\phi\}$ in Theorem 2.30, we get Corollary 2.31. If we put I = P(X) in Theorem 2.30, we get Corollary 2.32.

Corollary 2.31. For a topological space (X, τ) the following are equivalent

(a) Every $\delta - g - closed$ set is g - closed.

(b) Every singleton of X is closed or δ – open.

Corollary 2.32. For a topological space (X, τ) , the following are equivalent.

(a) Every g - closed set is closed.

(b) Every singleton of X is closed or open.

Theorem 2.33. Let (X, τ, I) be an ideal space and $A \subset X$. Then A is $\delta - I_g$ - closed if and only if A = F - N, where F is $\delta - I$ - closed and N contains no nonempty closed set.

Proof. If A is $\delta - I_g - closed$, then by Theorem 2.5, $N = cl_{\delta}^*(A) - A$ contains no nonempty closed set. If $F = cl_{\delta}^*(A)$, then F is $\delta - I - closed$ such that $F - N = cl_{\delta}^*(A) - (cl_{\delta}^*(A) - A) = cl_{\delta}^*(A) \cap ((X - cl_{\delta}^*(A)) \cup A) = A.$

Conversely, suppose A = F - N, where F is $\delta - I - closed$ and N contains no nonempty closed set. let U be an open set such that $A \subset U$. Then, $F - N \subset U$, which implies that $F \cap (X - U) \subset N$. Now, $A \subset F$ and F is $\delta - I - closed$ implies that $cl^*_{\delta}(A) \cap (X - U) \subset cl^*_{\delta}(F) \cap (X - U) \subset F \cap (X - U) \subset N$. Since $\delta - I - closed$ sets are closed, $cl^*_{\delta}(A) \cap (X - U)$ is closed. By hypothesis, $cl^*_{\delta}(A) \cap (X - U) = \phi$ and $cl^*_{\delta}(A) \subset U$, which implies that A is $\delta - I_g - closed$.

ISSN: 2231-5373

If we put $I = \{\phi\}$, in Theorem 2.33, we get Corollary 2.34. If we put I = P(X) in Theorem 2.33, we get Corollary 2.35.

Corollary 2.34. Let (X, τ) be a space and $A \subset X$. Then A is $\delta - g$ - closed subset of X if and only if A = F - N, where F is δ - closed and N contains no nonempty closed set.

Corollary 2.35. Let (X, τ) be a space and $A \subset X$. Then A is g-closed if and only if A = F - N, where F is g-closed and N contains no nonempty closed set.

Theorem 2.36. Let (X, τ, I) be an ideal space. If A is a $\delta - I_g - closed$ subset of X and $A \subset B \subset cl^*_{\delta}(A)$, then B is also $\delta - I_g - closed$.

Proof. $cl^*_{\delta}(B) - B \subset cl^*_{\delta}(A) - A$ and since $cl^*_{\delta}(A) - A$ has no nonempty closed subset, neither does $cl^*_{\delta}(B) - B$. By Theorem 2.5, B is $\delta - I_g - closed$.

If we put $I = \{\phi\}$ in Theorem 2.36, we get Corollary 2.37. If we put I = P(X) in Theorem 2.36, we get Corollary 2.38.

Corollary 2.37. Let (X, τ) be a space. If A is a $\delta - g$ -closed subset of X and $A \subset B \subset cl_{\delta}(A)$, then B is also $\delta - g$ -closed.

Corollary 2.38. Let (X, τ) be a space. If A is a g - closed subset of X and $A \subset B \subset cl(A)$, then B is also g - closed.

The following Theorem 2.39 gives characterization for $\delta - I_g - open$ sets.

Theorem 2.39. A subset A of an ideal space (X, τ, I) is $\delta - I_g$ – open if and only if $F \subset int^*_{\delta}(A)$ whenever F is closed and $F \subset A$.

Proof. Suppose A is a $\delta - I_g - open$ set and F is a closed set contained in A. Then $X - A \subset X - F$ and X - F is open. Since X - A is $\delta - I_g - closed$, $cl^*_{\delta}(X - A) \subset (X - F)$ and so $F \subset X - cl^*_{\delta}(X - A) = int^*_{\delta}(A)$. Conversely, suppose $X - A \subset U$ and U is open. By hypothesis, $X - U \subset int^*_{\delta}(A)$, which implies that $cl^*_{\delta}(X - A) = X - int^*_{\delta}(A) \subset U$. Therefore, X - A is $\delta - I_g - closed$ and hence A is $\delta - I_g - open$.

If we put $I = \{\phi\}$ in Theorem 2.39, we set Corollary 2.40. If we put I = P(X) in Theorem 2.39, we get Corollary 2.41.

Corollary 2.40. A subset A of a space (X, τ) is $\delta - g$ - open if and only if $F \subset int_{\delta}(A)$ whenever F is closed and $F \subset A$.

Corollary 2.41. A subset A of space (X, τ) is g-open if and only if $F \subset int(A)$ whenever F is closed and $F \subset A$.

The following Theorem 2.42 gives characterization of $\delta - I_g - closed$ sets in terms of $\delta - I_g - open$ sets.

Theorem 2.42. Let (X, τ, I) be an ideal space and $A \subset X$. Then the following are equivalent

- (a) A is $\delta I_a closed$
- (b) $A \cup (X cl^*_{\delta}(A))$ is $\delta I_g closed$
- (c) $cl^*_{\delta}(A) A$ is $\delta I_g open$.

Proof. $(a) \Rightarrow (b)$. Suppose A is $\delta - I_g - closed$. If U is any open set containing $A \cup (X - cl_{\delta}^*(A) \text{ then } X - U \subset X - (A \cup (X - cl_{\delta}^*(A))) = cl_{\delta}^*(A) - A$. Since A is $\delta - I_g - closed$, by Theorem 2.5 (c), it follows that $X - U = \phi$ and so X = U. Since X is the only open set containing $A \cup (X - cl_{\delta}^*(A)), A \cup (X - cl_{\delta}^*(A))$ is $\delta - I_g - closed$.

 $(b) \Rightarrow (a)$. Suppose $A \cup (X - cl_{\delta}^{*}(A))$ is $\delta - I_{g} - closed$. If F is any closed set contained in $cl_{\delta}^{*}(A) - A$, then $A \cup (X - cl_{\delta}^{*}(A)) \subset X - F$ and X - F is open. Therefore, $cl_{\delta}^{*}(A \cup (X - cl_{\delta}^{*}(A)) \subset X - F$, which implies that $cl_{\delta}^{*}(A) \cup$ $cl^*_{\delta}(X - cl^*_{\delta}(A)) \subset X - F$ and so $X \subset X - F$, it follows that $F = \phi$. Hence A is $\delta - I_g - closed$.

The equivalence of (b) and (c) follows from the fact that $X - (cl_{\delta}^*(A) - A) = A \cup (X - cl_{\delta}^*(A)).$

If we put $I = \{\phi\}$ in Theorem 2.42, we get Corollary 2.43. If we put I = P(X) in Theorem 2.42, we get Corollary 2.44.

Corollary 2.43. Let (X, τ) be a space and $A \subset X$. Then the following are equivalent.

- (a) A is $\delta g closed$
- (b) $A \cup (X cl_{\delta}(A))$ is $\delta g closed$
- (c) $cl_{\delta}(A) A$ is $\delta g open$.

Corollary 2.44. Let (X, τ) be a space and $A \subset X$. Then the following are equivalent.

(a) A is
$$g-closed$$

- (b) $A \cup (X cl(A))$ is g closed
- (c) cl(A) A is g open.

3 Characterization of $T_{1/2}$ and $T_I - spaces$

Theorem 3.1. In an ideal space (X, τ, I) , the following are equivalent.

- (a) Every $\delta g closed$ set is closed
- (b) (X, τ) is a $T_{1/2}$ space
- (c) Every $\delta I_g closed$ is closed.

Proof. $(a) \Rightarrow (b)$. Let $x \in X$. If $\{x\}$ is not closed, then $B = X - \{x\}$ is not open. Therefore, X is the only open set containing B and hence B is $\delta - g - closed$. So by (a), B is closed and hence $\{x\}$ is open. Thus every singleton in X is either open or closed. Therefore by Corollary 2.32, (X, τ) is a $T_{1/2} - space$.

 $(b) \Rightarrow (a)$. Let $A \subset X$ be $\delta - g - closed$. Then A is g - closed. Therefore by hypothesis, A is closed. This proves (a).

 $(b) \Rightarrow (c)$. Let A be a $\delta - I_g - closed$ set. Since every $\delta - I_g - closed$ set is g - closed, A is g - closed. By hypothesis, A is closed.

 $(c) \Rightarrow (b)$. Let $x \in X$. If $\{x\}$ is not closed, then $B = X - \{x\}$ is not open. So B is $\delta - I_g - closed$. By hypothesis, B is closed and so $\{x\}$ is open. By Corollary 2.32, (X, τ) is $T_{1/2} - space$.

Theorem 3.2. In an ideal space (X, τ, I) the following are equivalent.

(a) Every $\delta - g - closed$ set is $\star - closed$.

(b) (X, τ, I) is a T_I – space.

(c) Every $\delta - I_q$ - closed set is \star - closed.

Proof. $(a) \Rightarrow (b)$. Let $x \in X$. If $\{x\}$ is not closed, then X is the only open set containing $X - \{x\}$ and hence $X - \{x\}$ is $\delta - g$ - closed. By hypothesis, $X - \{x\}$ is \star - closed. Therefore, $\{x\}$ is \star - open. Thus every singleton in X is either \star - open or closed. By Theorem 3.3 [2], (X, τ, I) is a T_I - space.

 $(b) \Rightarrow (a)$. The proof follows from the fact that every $\delta - g - closed$ set is $I_q - closed$.

 $(b) \Rightarrow (c)$. The proof follows from the fact that every $\delta - I_g - closed$ set is $I_g - closed$.

 $(c) \Rightarrow (b)$. Let $x \in X$. if $\{x\}$ is not closed, then X is the only open set containing $X - \{x\}$ and hence $X - \{x\}$ is $\delta - I_g - closed$. By hypothesis, $X - \{x\}$ is \star - closed. Thus $\{x\}$ is \star - open. Therefore, every singleton in X is either \star - open or closed. Therefore, by Theorem 3.3 [2], (X, τ, I) is a T_I - space.

The proof of Corollary 3.3 follows from Theorem 3.2 and Theorem 3.10 [12]. If we put $I = \{\phi\}$ in Corollary 3.3, we get Corollary 3.4.

Corollary 3.3. In an ideal space (X, τ, I) , the following are equivalent.

- (a) Every $\delta g closed$ set is $\star closed$.
- (b) Every δI_q closed set is \star closed
- (c) Every I_g closed set is an I locally * -closed set.

Corollary 3.4. In a topological space (X, τ) , the following are equivalent.

- (a) Every $\delta g closed$ set is closed.
- (b) Every g closed set is locally closed set.

References

- [1] M.Akdag, θ I open sets, Kochi Journal of Mathematics, vol.3, pp.217-229, 2008.
- [2] J.Dontchev, M.Ganster and T.Noiri, Unified Operation approach of generalized closed sets via topological ideals, Mathematica Japonica, vol.49, no.3, pp.395-401,1999.
- [3] J.Dontchev and H.Maki, On θ-generalized closed sets, International Journal of Mathematics and Mathematical Sciences, vol.22, no.2, pp.239-249, 1999.
- [4] J.Dontchev and M.Ganster, On δ generalized closed sets and $T_{3/4}$ spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math, 17(1996), 15-31.

- [5] W.Dunham and N.Levine, Further results on generalized closed sets in topology, Kyungpook Mathematical Journal, vol.20, no.2, pp.169-175, 1980.
- [6] W.Dunham, $T_{1/2}$ -spaces, Kyunpook Mathematical Journal, vol.17, no.2, pp.161-169, 1977.
- [7] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, the American Mathematical Monthly, vol.97, no.4, pp.295-310, 1990.
- [8] K.Kuratowski, Topology, vol 1, Academic press, New york, NY, USA, 1966.
- [9] N.Levine, Generalized closed sets in topology, Rendiconti del circolo Mathematics di Palermo, vol 19, no.2, pp.89-96, 1970.
- [10] H.Maki, J.Umehara, and K.Yamamura, Characterizations of T_{1/2}-spaces using generalized V-sets, Indian Journal of Pure and Applied Mathematics, vol.19, no.7, pp.634-640, 1988.
- [11] M.Mrsevic, On pairwise R and pairwise R_∞ bitopological spaces, Bulletin Mathematique de la societe des Sciences Mathematiques de la Republique Socialiste de Roumanie, vol.30(78), no.22, pp.141-148, 1986.
- [12] M.Navaneethakrishnan and D.Sivaraj, Generalized locally closed sets in ideal topological spaces, Bulletin of the Allahabad Mathematical Society, vol.24, No.1, pp.13-19,2009.
- [13] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing, New York, NY, USA, 1946.
- [14] N.V.Velicko, H-closed topological spaces, Mathematical Sbornik, vol.70, no.112, pp.98-112, 1966.

[15] S.Yuksel, A.Acikgoz and T.Noiri, On $\delta - I -$ Continuous Functions, Turk.J.Math, 29(2005), 39-51.