Radio mean D-distance number of cycle-related graphs

T. Nicholas ${ }^{\mathrm{a}}$, K.John Bosco ${ }^{\mathrm{b}}$.
${ }^{a}$ Department of Mathematics, St. Jude's College, Thoothoor, Manonmaniam Sundaranar University, Tirunelveli
${ }^{\mathrm{b}}$ Research scholar Department of Mathematics, St. Jude's College, Thoothoor, Manonmaniam Sundaranar
University, Tirunelveli.

Abstract

A Radio Mean D-distance labeling of a connected graph G is an injective map f from the vertex set $V(G)$ to the \mathbb{N} such that for two distinct vertices u and v of $G, d^{D}(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1$ $+\operatorname{diam}^{D}(G)$, where $d^{D}(u, v)$ denotes the D-distance between u and v and $\operatorname{diam}^{D}(G)$ denotes the D-diameter of G. The radio mean D-distance number of $f, r m n^{D}(f)$ is the maximum label assigned to any vertex of G. The radio mean D-distance number of G, $r m n^{D}(G)$ is the minimum value of $r m n^{D}(f)$ taken over all radio mean D-distance labeling f of G. In this paper we find the radio mean D-distance number of cycle-related graphs.

Key words . D-distance, Radio D-distance coloring, Radio D-distance number, Radio mean D- distance, Radio mean D-distance number.
AMS Subject Classification : 05C12, 05C15, 05C78.

1. Introduction

By a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

Let G be a connected graph of diameter d and let k an integer such that $1 \leq \mathrm{k} \leq \mathrm{d}$. A radio k -coloring of G is an assignment f of colors (positive integers) to the vertices of G such that $d(u, v)+$ $|f(u)-f(v)| \geq 1+k$ for every two distinct vertices u, v of G . The radio k -coloring number $\mathrm{rc}_{\mathrm{k}}(\mathrm{f})$ of a radio k -coloring f of G is the maximum color assigned to a vertex of G . The radio k -chromatic number $\mathrm{rc}_{\mathrm{k}}(\mathrm{G})$ is $\min \left\{\mathrm{rc}_{\mathrm{k}}(\mathrm{f})\right\}$ over all radio k -colorings f of G . A radio k -coloring f of G is a minimum radio k -coloring if $\mathrm{rc}_{k}(\mathrm{f})=\mathrm{rc}_{\mathrm{k}}(\mathrm{G})$. A set S of positive integers is a radio k -coloring set if the elements of S are used in a radio k -coloring of some graph G and S is a minimum radio k -coloring set if S is a radio k -coloring set of a minimum radio k-coloring of some graph G. The radio 1 -chromatic number $\mathrm{rc}_{1}(\mathrm{G})$ is then the
chromatic number $\chi(\mathrm{G})$. When $\mathrm{k}=\operatorname{Diam}(\mathrm{G})$, the resulting radio k -coloring is called radio coloring of G . The radio number of G is defined as the minimum span of a radio coloring of G and is denoted as $\mathrm{rn}(\mathrm{G})$.

Radio labeling (multi-level distance labeling) can be regarded as an extension of distance two labeling which is motivated by the channel assignment problem introduced by Hale [6]. Chartrand et al. [2] introduced the concept of radio labeling of graph. Chartrand et al. [3] gave the upper bound for the radio number of Path. The exact value for the radio number of Path and Cycle was given by Liu and Zhu [10]. However Chartrand et al. [2] obtained different values than Liu and Zhu [10]. They found the lower and upper bound for the radio number of Cycle. Liu [9] gave the lower bound for the radio number of Tree. The exact value for the radio number of Hypercube was given by R. Khennoufa and O.Togni [8]. M.M.Rivera et al. [20] gave the radio number of $C_{n} \times C_{n}$, the Cartesian product of C_{n}. In [4] C.Fernandez et al. found the radio number for complete graph, star graph, complete bipartite graph, wheel graph and gear graph. M.T.Rahim and I.Tomescu [18] investigated the radio number of Helm Graph. The radio number for the generalized prism graphs were presented by Paul Martinez et.al. in [11].

The concept of D-distance was introduced by D. Reddy Babu et al. [19, 20, 21]. If u, vare vertices of a connected graph G the D-length of a connected $u-v$ path s is defined as $\ell^{\mathrm{D}}(\mathrm{s})=\ell(\mathrm{s})+$ $\operatorname{deg}(\mathrm{v})+\operatorname{deg}(\mathrm{u})+\sum \operatorname{deg}(w)$ where the sum runs over all intermediate vertices w of s and $\ell(\mathrm{s})$ is the length of the path. The D-distance, $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})$ between two vertices u, v of a connected graph G is defined a $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})=\min \left\{\ell^{\mathrm{D}}(\mathrm{s})\right\}$ where the minimum is taken over all u-v paths s in G. In other words, $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \quad \mathrm{v})=\min \{\ell(\mathrm{s})+\operatorname{deg}(\mathrm{v})+\operatorname{deg}(\mathrm{u})+$ $\left.\sum \operatorname{deg}(w)\right\}$ where the sum runs over all intermediate vertices w in s and minimum is taken over all $u-v$ paths s in G.

In [12], we introduce the concept of Radio D-distance. The radio D-distance coloring is a
function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathbb{N} \quad \mathrm{U}\{0\}$ such that $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+|f(u)-f(v)| \geq \operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1$. It is denoted by $\mathrm{rn}^{\mathrm{D}}(\mathrm{G})$. A radio D-distance coloring f of G is a minimum radio D -distance coloring if $\mathrm{rn}^{\mathrm{D}}(f)=\mathrm{rn}^{\mathrm{D}}(\mathrm{G})$, where $\mathrm{rn}^{\mathrm{D}}(\mathrm{G})$ is called radio D-distance number.

Radio mean labeling was introduced by R. Ponraj et al $[15,16,17]$. A radio mean labeling is a one to one mapping f from $\mathrm{V}(\mathrm{G})$ to \mathbb{N} satisfying the condition

$$
\begin{equation*}
\mathrm{d}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}(\mathrm{G}) \tag{1.1}
\end{equation*}
$$

for every $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$. The span of a labeling f is the maximum integer that f maps to a vertex of G. The radio mean number of $\mathrm{G}, \operatorname{rmn}(\mathrm{G})$ is the lowest span taken over all radio mean labelings of the graph G. The condition (1.1) is called radio mean condition.

In [14], we introduce the concept of Radio mean D-distance labeling. A radio mean D-distance labeling is a one to one mapping f from $\mathrm{V}(\mathrm{G})$ to \mathbb{N} satisfying the condition
$\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}^{\mathrm{D}}(\mathrm{G})$
for every $\mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G})$. The span of a labeling f is the maximum integer that f maps to a vertex of G. The radio mean D-distance number of $G, \operatorname{rmn}^{\mathrm{D}}(\mathrm{G})$ is the lowest span taken over all radio mean D-distance labelings of the graph G. The condition (1.2) is called radio mean D-distance condition. In this paper we determine the radio mean D -distance number of cycle-related graphs. The function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathbb{N}$ always represents injective map unless otherwise stated.

2. Main Result

Theorem 2.1.
The radio mean D-distance number of a cycle,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{C}_{n}\right) \leq\left\{\begin{array}{c}3 \text { if } n=3 . \\ 5\left(\frac{n}{2}\right)-7, \quad n \geq 10 \text { if } n \text { is even. } \\ 5\left(\frac{n-1}{2}\right)-6, n \geq 9 \text { if } n \text { is odd. }\end{array}\right.$
Proof .
It is obvious that $\operatorname{diam}^{\mathrm{D}}\left(\mathrm{C}_{\mathrm{n}}\right)=3\left(\frac{n}{2}\right)+2($ if n is even) and $\operatorname{diam}^{\mathrm{D}}\left(\mathrm{C}_{\mathrm{n}}\right)=3\left\{\frac{(n-1)}{2}\right\}+2$ (if n is odd). Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. Define the function f as

> if n is even
> $\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right) \quad=\mathrm{x}_{\mathrm{i}}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-5$.
> $\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+2-2 \mathrm{i}}\right)=\mathrm{x}_{\mathrm{n}-5+\mathrm{t},}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-5$.
> $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \quad=3\left(\frac{n}{2}\right)-7+i, 1 \leq i \leq n$.
if n is odd

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right)=\mathrm{x}_{\mathrm{i}}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-5 . \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1-2 \mathrm{i}}\right)=\mathrm{x}_{\mathrm{n}-5+\mathrm{i}}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}-5 . \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)==\mathrm{x}_{\mathrm{n}} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \quad=3\left(\frac{n-1}{2}\right)-7+i, 1 \leq i \leq n .
\end{aligned}
$$

Case 1. n is even, We must show that the radio mean D-distance condition

$$
\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{D}}\left(\mathrm{C}_{\mathrm{n}}\right)+1=3\left(\frac{n}{2}\right)+3
$$

for every pair of vertices (u, v) where $u \neq v$.
If v_{i} and v_{j} are adjacent, $\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil$

$$
\geq 5+\left\lceil\frac{3\left(\frac{n}{2}\right)+i-7+3\left(\frac{n}{2}\right)+j-7}{2}\right\rceil \geq 3\left(\frac{n}{2}\right)+3 \text {. }
$$

If v_{i} and v_{j} are not adjacent $|i-j| \leq \frac{n}{2}$,
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil$
$\geq 3\left(\frac{n}{2}\right)+2+\left\lceil\frac{3\left(\frac{n}{2}\right)+i-7+3\left(\frac{n}{2}\right)+j-7}{2}\right\rceil \geq 3\left(\frac{n}{2}\right)+3$
Case 2. n is odd, We must show that the radio mean D-distance condition $\mathrm{d}^{\mathrm{D}}(\mathbf{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$

$$
\geq \operatorname{diam}^{\mathrm{D}}\left(\mathrm{C}_{\mathrm{n}}\right)+1=3\left\{\frac{(n-1)}{2}\right\}+3
$$

If v_{i} and v_{j} are adjacent,

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \\
\geq & 5+\left\lceil\frac{3\left(\frac{n-1}{2}\right)+i-6+3\left(\frac{n-1}{2}\right)+j-6}{2}\right\rceil \geq 3\left\{\frac{(n-1)}{2}\right\}+3
\end{aligned}
$$

If v_{i} and v_{j} are not adjacent $|i-j| \leq \frac{n}{2}$,
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq 3\left\{\frac{(n-1)}{2}\right\}+3$
$+\left\lceil\frac{3\left(\frac{n-1}{2}\right)+i-7+3\left(\frac{n-1}{2}\right)+j-7}{2}\right\rceil \geq 3\left\{\frac{(n-1)}{2}\right\}+3$.
Therefore,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{C}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}3 \text { if } n=3 . \\ 5\left(\frac{n}{2}\right)-7, n \geq 10 \text { if } n \text { is even. } \\ 5\left(\frac{n-1}{2}\right)-6, n \geq 9 \text { if } n \text { is odd. }\end{array}\right.$
Note. $\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{C}_{\mathrm{n}}\right) \leq\left\{\begin{array}{l}4\left(\frac{n}{2}\right)-2, n=4,6,8 . \\ 4\left(\frac{n-1}{2}\right)-2, n=5,7 .\end{array}\right.$

Theorem 2.2.
The radio mean D -distance number of a wheel graph,

$$
\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{~W}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}
4 \text { if } n=3 . \\
7 \text { if } n=4,5 . \\
3\left(\frac{n-1}{2}\right)+3 \text { if } n \text { is odd, } n \geq 7 \\
3\left(\frac{n}{2}\right)+2 \text { if } n \text { is even, } n \geq 6
\end{array}\right.
$$

Proof.
It is obvious that $\operatorname{diam}^{\mathrm{D}}\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{n}+8(\mathrm{n} \geq 6)$.
Let $\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$, where v_{0} is the central vertex. Define the function f as

$$
\begin{aligned}
& \text { if } \mathrm{n} \text { is even } \\
& \mathrm{f}\left(\mathrm{v}_{0}\right) \quad=\mathrm{x}_{0} . \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right)=\mathrm{x}_{\mathrm{i}}, \quad 1 \leq \mathrm{i} \leq\left(\frac{n}{2}\right) . \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2 \mathrm{i}}\right)=x_{\left(\frac{n}{2}\right)+i}, \quad 1 \leq \mathrm{i} \leq\left(\frac{n}{2}\right)-1 . \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right) \quad=\mathrm{x}_{\mathrm{n}} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \quad=\left\{\begin{array}{l}
5, i=0 . \\
\left(\frac{n}{2}\right)+2+i, 1 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

if n is odd
$\mathrm{f}\left(\mathrm{v}_{0}\right) \quad=\mathrm{x}_{0}$.

$$
\mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right)=\mathrm{x}_{\mathrm{i}}, \quad 1 \leq \mathrm{i} \leq\left(\frac{n-1}{2}\right) .
$$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1-2 \mathrm{i}}\right)=x_{\left(\frac{n-1}{2}\right)+i}, \quad 1 \leq \mathrm{i} \leq\left(\frac{n-1}{2}\right) .
$$

$$
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right) \quad=\mathrm{x}_{\mathrm{n}}
$$

$$
\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \quad=\left\{\begin{array}{c}
5, i=0 \\
\left(\frac{n-1}{2}\right)+2+i, 1 \leq i \leq n
\end{array}\right.
$$

Case 1. n is even, We must show that the radio mean D-distance condition $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \quad \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq$ $\operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1=\mathrm{n}+9$, for every pair of vertices (u, v) where $u \neq v$.
If v_{0} and v_{i} are adjacent $\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil$

$$
\geq \mathrm{n}+4+\left\lceil\frac{5+\left(\frac{n}{2}\right)+2+i}{2}\right\rceil \geq \mathrm{n}+9
$$

for $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right),|i-j| \leq \frac{n}{2}$

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq \\
& \quad \mathrm{n}+8+\left\lceil\frac{\left(\frac{n}{2}\right)+2+i+\left(\frac{n}{2}\right)+2+j}{2}\right] \geq \mathrm{n}+9
\end{aligned}
$$

If v_{i} and v_{j} are adjacent

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) & +\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq \\
7 & +\left\lceil\frac{\left(\frac{n}{2}\right)+2+i+\left(\frac{n}{2}\right)+2+j}{2}\right\rceil \geq \mathrm{n}+9 .
\end{aligned}
$$

Case 2. n is odd, We must show that the radio mean D-distance condition $\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$
$\geq \operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1=\mathrm{n}+9$, for every pair of vertices (u, v) where $u \neq v$.

$$
\begin{aligned}
& \text { If } \mathrm{v}_{0} \text { and } \mathrm{v}_{\mathrm{i}} \text { are adjacent } \\
& \qquad \begin{array}{l}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil \geq \mathrm{n}+4+\left\lceil\frac{5+\left(\frac{n-1}{2}\right)+2+i}{2}\right\rceil \\
\text { for }\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right),|i-j| \leq \frac{n}{2} \geq \mathrm{n}+9
\end{array} \\
& \mathrm{~d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq \\
& \mathrm{n}+8 \quad+\left\lceil\frac{\left(\frac{n-1}{2}\right)+2+i+\left(\frac{n-1}{2}\right)+2+j}{2}\right\rceil \geq \mathrm{n}+9
\end{aligned}
$$

If v_{i} and v_{j} are adjacent

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) & +\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right] \geq \\
7 & +\left[\frac{\left(\frac{n-1}{2}\right)+2+i+\left(\frac{n-1}{2}\right)+2+j}{2}\right] \geq \mathrm{n}+9
\end{aligned}
$$

Therefore,

$$
\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{~W}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}
4 \text { if } n=3 . \\
7 \text { if } n=4,5 . \\
3\left(\frac{n-1}{2}\right)+3 \text { if } n \text { is odd }, n \geq 7 \\
3\left(\frac{n}{2}\right)+2 \text { if } n \text { is even, } n \geq 6
\end{array}\right.
$$

Note. The Gear graph is obtained by inserting a vertex in each edge of the cycle of the wheel.

Theorem 2.3.

The radio mean D -distance number of a gear graph,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{G}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}11, n=3 . \\ 16, n=4 . \\ 17, n=5 . \\ 3 n+4, n \geq 6 .\end{array}\right.$

Proof .

It is clear that $\operatorname{diam}^{D}\left(G_{n}\right)=n+14(n \geq 6)$. Let $\left\{v_{0}\right.$, $\left.v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ are the vertices set, where v_{0} is the central vertex. Define the function f as $\mathrm{f}\left(\mathrm{v}_{0}\right)=4, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+4,1 \leq \mathrm{i} \leq \mathrm{n}$, $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}+4,1 \leq \mathrm{i} \leq \mathrm{n}$. We must show that the radio mean D-distance condition

$$
\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{D}}\left(\mathrm{G}_{\mathrm{n}}\right)+1=\mathrm{n}+15
$$

for every pair of vertices (u, v) where $u \neq v$.
If v_{0} and v_{i} are adjacent

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil \geq \\
& \quad \mathrm{n}+4+\left\lceil\frac{[+2 n+i+4}{2}\right\rceil \geq \mathrm{n}+15
\end{aligned}
$$

If v_{0} and u_{i} are not adjacent
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{u}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(u_{i}\right)}{2}\right\rceil \geq$

$$
\mathrm{n}+7+\left\lceil\frac{4+n+i+4}{2}\right\rceil \geq \mathrm{n}+15
$$

Check the pair of $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)|i-j| \leq \frac{n}{2}$

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(u_{i}\right)+f\left(u_{j}\right)}{2}\right\rceil \geq & \\
\quad \mathrm{n}+14+\left\lceil\frac{n+i+4+n+j+4}{2}\right\rceil & \geq \mathrm{n}+15 .
\end{aligned}
$$

Check the pair of $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)|i-j| \leq \frac{n}{2}$

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil & \geq \\
\mathrm{n}+8+\left\lceil\frac{2 n+i+4+2 n+j+4}{2}\right\rceil & \geq \mathrm{n}+15 .
\end{aligned}
$$

If v_{i} and u_{j} are adjacent
Check the pair of $\left(v_{i}, u_{j}\right)$

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(u_{j}\right)}{2}\right\rceil & \geq \\
6 & +\left\lceil\frac{2 n+i+4+n+j+4}{2}\right\rceil \geq \mathrm{n}+15 .
\end{aligned}
$$

Therefore,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{G}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}11, n=3 . \\ 16, n=4 . \\ 17, n=5 . \\ 3 n+4, n \geq 6 .\end{array}\right.$

Note. The Helm H_{n} is obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle.

Theorem 2.4.

The radio mean D-distance number of a Helm graph,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{H}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}10, n=3 . \\ 16, n=4 . \\ 17, n=5 . \\ 2(n+4), n \geq 6 .\end{array}\right.$
Proof.
It is clear that $\operatorname{diam}^{\mathrm{D}}\left(\mathrm{H}_{\mathrm{n}}\right)=\mathrm{n}+14(\mathrm{n} \geq 6)$. Let $\left\{\mathrm{v}_{0}\right.$, $\left.v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ are the vertex set, where v_{0} is the central vertex and also $\left\{u_{1}\right.$, $\left.u_{2}, u_{3}, \ldots, u_{n}\right\}$ are the pendent vertices. Define the function f as $\mathrm{f}\left(\mathrm{v}_{0}\right)=7, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{i}+8,1 \leq \mathrm{i} \leq \mathrm{n}$,
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{n}+\mathrm{i}+8,1 \leq \mathrm{i} \leq \mathrm{n}$.
We must show that the radio mean D -distance condition
$\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1=\mathrm{n}+15$, for every pair of vertices (u, v) where $u \neq v$.
If v_{0} and v_{i} are adjacent

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil & \\
\mathrm{n}+5+\left\lceil\frac{7+n+i+8}{2}\right\rceil & \geq \mathrm{n}+15
\end{aligned}
$$

If v_{0} and u_{i} are not adjacent
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{u}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(u_{i}\right)}{2}\right\rceil \geq$

$$
\mathrm{n}+7+\left\lceil\frac{7+i+8}{2}\right\rceil \geq \mathrm{n}+15
$$

Check the pair of $\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)|i-j| \leq \frac{n}{2}$

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(u_{i}\right)+f\left(u_{j}\right)}{2}\right\rceil \geq \\
& \quad \mathrm{n}+14+\left\lceil\frac{i+8+j+8}{2}\right\rceil \geq \mathrm{n}+15 .
\end{aligned}
$$

Check the pair of $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)|i-j| \leq \frac{n}{2}$

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq \\
& \mathrm{n}+10+\left\lceil\frac{n+i+8+n+j+8}{2}\right\rceil \geq \mathrm{n}+15
\end{aligned}
$$

Check the pair of $\left(v_{i}, u_{j}\right)$

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(u_{j}\right)}{2}\right\rceil & \geq \\
\mathrm{n}+12+\left\lceil\frac{n+i+8+j+8}{2}\right\rceil & \geq \mathrm{n}+15 .
\end{aligned}
$$

Therefore,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{H}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}10, n=3 . \\ 16, n=4 . \\ 17, n=5 . \\ 2(n+4), n \geq 6 .\end{array}\right.$

Theorem 2.5.

The radio mean D-distance number of a fan graph, $\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{F}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}3, n=1 . \\ n+4, n \geq 2 .\end{array}\right.$
Proof.
It is clear that $\operatorname{diam}^{D}\left(F_{n}\right)=n+8(n \geq 2)$.
Let $V\left(F_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$, where v_{0} is the central vertex. Define the function f as $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}-1}\right)=\mathrm{i}+3$, $1 \leq \mathrm{i} \leq \mathrm{n}+1$. We must show that the radio mean D-distance condition $d^{\mathrm{D}}(\mathrm{u}, \quad \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq$ $\operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1=\mathrm{n}+9$, for every pair of vertices (u, v) where $u \neq v$.
If v_{0} and v_{i} are adjacent
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil \geq$

$$
\mathrm{n}+4+\left\lceil\frac{3+i+3}{2}\right\rceil \geq \mathrm{n}+9
$$

$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq$

$$
\mathrm{n}+3+\left\lceil\frac{3+j+3}{2}\right\rceil^{2} \geq \mathrm{n}+9
$$

If v_{i} and v_{j} are adjacent
$\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq$
$6+\left\lceil\frac{i+3+j+3}{2}\right\rceil \geq \mathrm{n}+9$
$\begin{aligned} \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil & \geq \\ 5+\left\lceil\frac{i+3+j+3}{2}\right\rceil & \geq \mathrm{n}+9\end{aligned}$
If v_{i} and v_{j} are not adjacent

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil & \geq \\
\mathrm{n}+8+\left\lceil\frac{i+3+j+3}{2}\right\rceil & \geq \mathrm{n}+9
\end{aligned}
$$

Therefore,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{F}_{\mathrm{n}}\right) \leq\left\{\begin{array}{c}3, n=1 . \\ n+4, n \geq 2 .\end{array}\right.$

Note. The graph $\mathrm{C}_{\mathrm{n}}{ }^{(t)}$ denoting the one point union of t copies cycle C_{n}. The graph $\mathrm{C}_{3}{ }^{(\mathrm{t})} \quad\left(\right.$ or $\mathrm{K}_{3}{ }^{(\mathrm{t})}$) is called friendship graph.

Theorem 2.6.

The radio mean D -distance number of a friendship graph, $\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{C}_{3}{ }^{(\mathrm{t})}\right) \leq\left\{\begin{array}{c}7, t=2 . \\ 11, t=3 . \\ 4 t-3, t \geq 4 .\end{array}\right.$
Proof.
It is clear that $\operatorname{diam}^{\mathrm{D}}\left(\mathrm{C}_{3}{ }^{(\mathrm{t})}\right)=2 \mathrm{t}+6(\mathrm{t} \geq 2)$.
Let $\left(\mathrm{C}_{3}{ }^{(\mathrm{t})}\right)=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{2 \mathrm{t}}\right\}$, where v_{0} is the central vertex. Define the function f as

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{0}\right)=\mathrm{x}_{0} \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right)=\mathrm{x}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 2 \mathrm{t} . \\
& \mathrm{f}\left(\mathrm{v}_{2(\mathrm{t}+1)-2 \mathrm{i}}\right)=\mathrm{x}_{\mathrm{n}+\mathrm{i}}, 1 \leq \mathrm{i} \leq 2 \mathrm{t} . \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
3, i=0 . \\
2 t+i-3,1 \leq i \leq t . \\
3 t+i-3,1 \leq i \leq t .
\end{array}\right.
\end{aligned}
$$

We must show that the radio mean D-distance condition

$$
\mathrm{d}^{\mathrm{D}}(\mathrm{u}, \mathrm{v})+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq \operatorname{diam}^{\mathrm{D}}(\mathrm{G})+1=2 \mathrm{t}+7, \text { for }
$$

every pair of vertices (u, v) where $u \neq v$.
If v_{0} and v_{i} are adjacent

$$
\begin{aligned}
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil \geq \\
& 2 \mathrm{t}+3+\left\lceil\frac{3+2 t+i-3}{2}\right\rceil \geq 2 \mathrm{t}+7 \\
& \mathrm{~d}^{\mathrm{D}}\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}\right)+\left\lceil\frac{f\left(v_{0}\right)+f\left(v_{i}\right)}{2}\right\rceil \geq \\
& \quad 2 \mathrm{t}+3+\left\lceil\frac{3+3 t+i-3}{2}\right\rceil \geq 2 \mathrm{t}+7 \\
& \text { If } \mathrm{v}_{\mathrm{i}} \text { and } \mathrm{v}_{\mathrm{j}} \text { are adjacent } \\
& \mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq 5+\left\lceil\frac{2 t+i-3+3 t+j-3}{2}\right\rceil=13
\end{aligned}
$$

If v_{i} and v_{j} are not adjacent

$$
\begin{aligned}
\mathrm{d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq \\
2 \mathrm{t}+6+\left\lceil\frac{2 t+i-3+2 t+j-3}{2}\right\rceil \geq 2 \mathrm{t}+7 \\
\mathrm{~d}^{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq \\
2 \mathrm{t}+6+\left\lceil\frac{3 t+i-3+3 t+j-3}{2}\right\rceil \geq 2 \mathrm{t}+7
\end{aligned}
$$

Therefore,
$\operatorname{rmn}^{\mathrm{D}}\left(\mathrm{C}_{3}{ }^{(\mathrm{t})}\right) \leq\left\{\begin{array}{c}7, n=2 . \\ 11, n=3 . \\ 4 t-3, n \geq 4 .\end{array}\right.$

Reference

[1] F. Buckley and F. Harary, Distance in Graphs,AdditionWesley, Redwood City, CA, 1990.
[2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatorics and Its Applications, vol. 33, pp. 77-85, 2001.
[3] G. Chartrand, D. Erwin, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl., 43, 43-57(2005).
[4] C. Fernandaz, A. Flores, M. Tomova, and C. Wyels, The Radio Number of Gear Graphs, arXiv:0809. 2623, September 15, (2008).
[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012) \#Ds6.
[6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497-1514.
[7] F.Harary, Graph Theory, Addision wesley, New Delhi (1969).
[8] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube,accepted in 2008 publication in ArsCombinatoria.
[9] D. Liu, Radio number for trees, Discrete Math. 308 (7) (2008) 1153-1164.
[10] D. Liu, X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (3) (2005) 610-621.
[11] P. Murtinez, J. OrtiZ, M. Tomova, andC. Wyles, Radio Numbers For Generalized Prism Graphs, Kodai Math. J., 22,131-139(1999).
[12] T.Nicholas and K.John Bosco, Radio D-distance number of some graphs to appear.
[13] T.Nicholas and K.John Bosco, Radio mean D-distance number of banana tree family of graphs communicated.
[14] T.Nicholas, K.John Bosco and M. Antony, Radio mean Ddistance labeling of some graphs, to appear.
[15] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio mean labeling of graphs, AKCE International Journal of Graphs and Combinatorics 12 (2015) 224-228.
[16] R.Ponraj, S.Sathish Narayanan and R.Kala, On Radio Mean Number of Some Graphs, International J.Math. Combin. Vol.3(2014), 41-48.
[17] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio Mean Number Of Some Wheel Related Graphs, Jordan Journal of Mathematics and Statistics (JJMS) 7(4), 2014, pp. 273 286.
[18] M. T. Rahim, I. Tomescu, OnMulti-level distance labelings of Helm Graphs, accepted for publication in ArsCombinatoria.
[19] Reddy Babu, D., Varma, P.L.N., Average D-Distance Between Edges Of A Graph ,Indian Journal of Science and Technology, Vol 8(2), 152-156, January 2015.
[20] Reddy Babu, D., Varma, P.L.N.,Average D-Distance Between Vertices Of A Graph, Italian Journal Of Pure And Applied Mathematics - N. 33 ;2014 (293;298).
[21] Reddy Babu, D., Varma, P.L.N., D-distance in graphs, Golden Research Thoughts, 2 (2013), 53-58.
[22] M. M. Rivera, M. Tomova, C. Wyels, and A. Yeager, The Radio Number of $\mathrm{Cn} \quad \square \mathrm{Cn}$,re submitted to Ars Combinatoria, 2009

