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ABSTRACT 

 

The effects of variable heat flux on the 

flow and heat transfer of a non-Newtonian 

Maxwell fluid over an unsteady stretching sheet in 

the presence of, MHD, heat source/sink and 

radiation effects have been studied. The governing 

differential equations are transformed into a set of 

coupled non-linear ordinary differential equations 

and then solved with a numerical technique using 

appropriate boundary conditions for various 

physical parameters. The numerical solution for the 

governing non-linear boundary value problem is 

based on applying the fourth-order Runge–Kutta 

method coupled with the shooting technique using 

appropriate boundary conditions for various 

physical parameters. The effects of various 

parameters like the viscosity parameter, thermal 

conductivity parameter, unsteadiness parameter, 

radiation parameter, heat source/sink parameter, 

Deborah number, and Prandtl number on the 

velocity and temperature profiles as well as on the 

local skin-friction coefficient and the local Nusselt 

number are presented and discussed. 
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1. Introduction 

 

The flow of non-Newtonian fluids over a 

stretching surface has received considerable 

attention during the last several decades because of 

its numerous applications in engineering problems, 

such as chemical engineering and particularly, 

polymer fluids, manufacturing of plastic and rubber 

sheets, solidification of liquid crystals, glass 

blowing, hot rolling, crystal growing, continuous 
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cooling and fibres’ spinning, exotic lubricants, and 

suspension solutions. Crane [1] was the first to 

study the motion set up in the ambient fluid due to 

a linearly stretching surface. Gupta and Gupta [2] 

have subsequently explored various aspects of the 

accompanying heat transfer occurring in the infinite 

fluid medium surrounding the stretching sheet. The 

flow field of a stretching wall with a power-law 

velocity variation was discussed by Banks.[3]. The 

self-similar boundary flow with identically 

vanishing skin friction induced by a continuous 

plane surface with stretching velocity is considered 

by Magyari and Keller.[4]. Mahapatra and Gupta 

[5] analyzed stagnation-point flow towards a 

stretching surface in the presence of free stream 

velocity. Megahed [6] studied the variable fluid 

properties and variable heat flux effects on the flow 

and heat transfer in a non-Newtonian Maxwell 

fluid over an unsteady stretching sheet with slip 

velocity. 

The magnetohydrodynamic (MHD) 

problems of flow of an electrically conducting fluid 

over a stretching porous plate in a porous medium 

with an external transverse uniform magnetic field 

has many applications in petroleum industry, 

purification of crude oil and fluid droplets sprays 

wire and fiber coating and polymer technology, 

production of plastic sheets and foils, and cold 

drawing of plastic sheets. All these processes 

depend on the physical/rheological properties of 

the fluid around the sheet. Many studies to 

understand the features of the flow over a 

stretching sheet had been done traditionally for 

Newtonian fluids, although the fluids used in 

industrial purposes are non-Newtonian. The MHD 

flow and heat transfer over a stretching sheet is one 

of the very important problems in fluid mechanics. 

It had been discussed for the first time by Sakiadis 

[7]. In last decades the applications of this problem 

has been widely speeded in metallurgical industry, 

polymer processing, and paper production [8-10]. 

Liao [11, 12] introduced the analytic solution of the 

steady state non-Newtonian MHD fluid flow over a 

stretching sheet by means of HAM. Hayat et al. 

[13] analyzed the MHD boundary layer flow of an 

upper convected Maxwell fluid over a porous 

stretching sheet by means of homotopy analysis 

method. The effect of Hall currents on flow and 

heat transfer over an unsteady stretching surface in 

the presence of a strong magnetic field has been 

analyzed by El-Aziz.[14]. Abdallah [15] studied 

the homotopy analytical solution of MHD fluid 

flow and heat transfer problem. Bataller [16] 

studied the magnetohydrodynamic flow and heat 

transfer of an upper-convected Maxwell fluid due 

to a stretching sheet. 

The effects of radiation on unsteady free 

convection flow and heat transfer problem have 

become more important industrially. At high 

operating temperature, radiation effect can be quite 

significant. Many processes in engineering areas 

occur at high temperature and knowledge of 

radiation heat transfer becomes very important for 

design of reliable equipments, nuclear plants, gas 

turbines and various propulsion devices or aircraft, 

missiles, satellites and space vehicles. Das [17] 

studied the effect of chemical reaction and thermal 

radiation on heat and mass transfer flow of MHD 

micropolar fluid in a rotating frame of reference. 

Ishak [18] discussed thermal boundary layer flow 

over a stretching sheet in a micropolar fluid with 

radiation effect. The influence of thermal radiation 

on hydromagnetic Darcy-Forchheimer mixed 

convection flow was presented by Pal and Mondal 

[19]. Mukhopadhyay et al. [20] considered forced 

convection flow and heat transfer over a porous 

plate in a Darcy-Forchheimer porous medium in 

presence of radiation. Olajuwon and Oahimire [21] 

studied the unsteady free convection heat and mass 

transfer in an MHD micropolar fluid in the 

presence of thermo diffusion and thermal radiation. 

Prabir Kumar et al. [22] studied the MHD 

micropolar fluid flow with thermal radiation and 

thermal diffusion in a rotating frame. 

The heat source/sink effects in thermal 

convection are significant where there may exist 

high temperature differences between the surface 

(e.g. space craft body) and the ambient fluid. Heat 

generation is also important in the context of 

exothermic or endothermic chemical reaction. 

Tania et al [23] has investigated the Effects of 

radiation, heat generation and viscous dissipation 

on MHD free convection flow along a stretching 

sheet. Moalem [24] studied the effect of 

temperature dependent heat sources taking place in 

electrically heating on the heat transfer within a 

porous medium. Vajravelu and Nayfeh [25] 

reported on the hydro magnetic convection at a 

cone and a wedge in the presence of temperature 

dependent heat generation or absorption effects. 

The effect of the unsteadiness parameter on heat 

transfer and flow field over a stretching surface 

with and without heat generation was considered 

by Elbashbeshy and Bazid,[26,27] respectively. 

Swati Mukhopadhyay [29] analyze the heat transfer 

analysis of the unsteady flow of a Maxwell fluid 

over a stretching surface in the presence of a heat 

source/sink. 

The present study contains an analysis of 

the effects of magnetohydrodynamic flow of a non-

Newtonian Maxwell fluid over an unsteady 

stretching sheet by taking heat source/sink, 

radiation into account. Using the similarity 

transformations, the governing equations have been 

transformed into a set of ordinary differential 

equations, which are nonlinear and cannot be 

solved analytically, therefore, fourth order Runge-

Kutta method along with shooting technique has 

been used for solving it. The results for velocity 

and temperature functions are carried out for the 
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wide range of important parameters namely, 

magnetic parameter, unsteadiness parameter, 

viscosity parameter, thermal conductivity 

parameter, heat source/sink parameter and radiation 

parameter. The skin friction and rate of heat 

transfer have also been computed. 

 

2. MATHEMATICAL FORMULATION 

 

Consider an unsteady, two-dimensional 

laminar boundary layer flow of a non-Newtonian 

Maxwell fluid over a stretching sheet immersed in 

an incompressible and radiative fluid. The flow is 

in the region   > 0 and is subjected to a non-

uniform magnetic field of strength 

0 / 1B B at   applied normally to the surface, 

0B  is the initial strength of the magnetic field. The 

unsteady fluid and heat flows start at   = 0. The 

sheet emerges out of a slit at origin (  = 0,   = 0) 

and moves with non-uniform velocity

( , ) /1U x t bx at  , where b and a are positive 

constants with dimensions of (time)
−1

, we must 

observe that our problem is valid only for at<1, b is 

the initial stretching rate. The surface of the sheet is 

held at a surface heat flux qw(x, t). It is assumed 

that the magnetic Reynolds number is very small 

and as there is no electric field, the electric field 

due to polarization of charges is neglected. Under 

these assumptions along with the Boussinesq and 

boundary layer approximations, the system of 

equations, which models the flow is given by 

Continuity equation 

0
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The boundary conditions for the velocity, 

temperature and concentration fields are   
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where u and v are the velocity components along x 

and y directions, respectively, ρ is the fluid density, 

T is the temperature of the fluid, 
1
 is the 

relaxation time, cp is the specific heat at constant 

pressure,   is the fluid viscosity, k is the fluid 

thermal conductivity, rq  is the radiative heat flux, 

0Q  is the heat source/sink constant, 
 is the 

thermal conductivity at the ambient, and T
 is the 

free stream temperature.  

By using the Rosseland approximation the radiative 

heat flux 
rq is given by 

44
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Where 
s is the Stefan -Boltzmann constant and

ek  is the mean absorption coefficient. It should be 

noted that by using the Rosseland approximation, 

the present analysis is limited to optically thick 

fluids. If temperature differences within the flow 

are significantly small, then equation [2.5] can be 

linearised by expanding 
4T into the Taylor series 

aboutT
, which after neglect higher order terms 

takes the form: 
4 3 44 3T T T T  

                                   
(2.6)

 

In view of equations [2.6] and [2.7], eqn. [2.3] 
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The continuity equation (2.1) is satisfied by the 

Cauchy Riemann equations 

u
y





  and  v
x
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where ( , )x y  is the stream function.
 

In order to transform equations (2.2) and (2.7) into 

a set of ordinary differential equations, the 

following similarity transformations and 

dimensionless variables are introduced.
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(2.9) 

where ( )f  is the dimensionless stream function, 

θ - dimensionless temperature, η - similarity 

variable, M - Magnetic parameter, S - unsteadiness 

parameter, 
- viscosity at the ambient, 0T - is a 

(positive or negative; heating or cooling), d is a 

constant, De - Deborah number, 
0 - is a constant,   
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Q - heat source/sink parameter, N- radiation 

parameter, Pr- Prandtl number. 

The viscosity   and thermal conductivity   of 

the fluid are assumed to vary with the temperature 

as follows:
[30]
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where   
is the viscosity parameter, and   is the 

thermal conductivity parameter. 

The surface heat flux q(x, t) at the stretching sheet 

varies with the power of distance x from the slit 

and with the power of time factor t 
[30]
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In view of Equations (2.8) - (2.11), the Equations 

(2.2) and (2.7) transform into  
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The corresponding boundary conditions are: 
(0) , '(0) 1, '(0) 1f fw f                       

' 0, 0f         as                         

(2.14) 

where the primes denote differentiation with 

respect to   
The physical quantities of interest are the skin 

friction coefficient
fC , the local Nusselt 

number Nu  which are defined as 

1/22Re ''(0)f xC f  ,

1/ 2Re

(0)

xNu
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3 SOLUTION OF THE PROBLEM 

 

The set of coupled non-linear governing 

boundary layer equations (2.12) and (2.13) together 

with the boundary conditions (2.14) are solved 

numerically by using Runge-Kutta fourth order 

technique along with shooting method. First of all, 

higher order non-linear differential Equations 

(2.12) and (2.13) are converted into simultaneous 

linear differential equations of first order and they 

are further transformed into initial value problem 

by applying the shooting technique (Jain et al.[32]). 

The resultant initial value problem is solved by 

employing Runge-Kutta fourth order technique. 

The step size  =0.05 is used to obtain the 

numerical solution with five decimal place 

accuracy as the criterion of convergence. From the 

process of numerical computation, the skin-friction 

coefficient and Nusselt number, which are 

respectively proportional to ''(0)f  and1/ (0) , 

are also sorted out and their numerical values are 

presented in a tabular form. 

  

4 RESULTS AND DISCUSSION 

 

 The governing equations (2.11) - (2.14) 

subject to the boundary conditions (2.15) are 

integrated as described in section 3. In order to get 

a clear insight of the physical problem, the velocity 

and temperature have been discussed by assigning 

numerical values to the parameters encountered in 

the problem. The effects of various parameters on 

velocity profiles in the boundary layer are depicted 

in Figs. 1-5. The effects of various parameters on 

temperature profiles in the boundary layer are 

depicted in Figs. 6-13.  

Fig.1 illustrates the effect of the 

unsteadiness parameter (S) on the velocity field. It 

is seen that as the unsteadiness parameter increases, 

the velocity field decreases. The effect of suction 

parameter (fw) on the velocity is illustrated in 

Fig.2. It is noticed that the velocity decreases with 

increasing values of the suction parameter.  Fig. 3 

shows the variation of the velocity with the 

Deborah number (De). It is noticed that the velocity 

thickness decreases with an increase in the Deborah 

number. 

Fig.4 illustrates the effect of heat 

source/sink parameter on the velocity.  It is noticed 

that as the heat source/sink parameter increases, the 

velocity increases. Fig. 5 shows the variation of the 

velocity with the viscosity parameter (α). It is 

noticed that the velocity thickness decreases with 

an increase in the viscosity parameter.  

Fig. 6 depicts the thermal boundary-layer 

with the unsteadiness parameter. It is noticed that 

the thermal boundary layer thickness decreases 

with an increase in the unsteadiness parameter.  

Fig. 7 depicts the thermal boundary-layer with the 

suction parameter. It is noticed that the thermal 

boundary layer thickness decreases with an 

increase in the suction parameter.   

Fig.8 illustrates the effect of the Deborah 

number on the temperature.  It is noticed that as the 

Deborah number increases, the temperature 

increases. Fig. 9 shows the variation of the thermal 

boundary-layer with the Prandtl number (Pr). It is 

noticed that the thermal boundary layer thickness 

decreases with an increase in the Prandtl number. 

Fig. 10 shows the variation of the thermal 

boundary-layer with the radiation parameter (N). It 

is observed that the thermal boundary layer 

thickness increases with an increase in the radiation 

parameter. Fig. 11 shows the variation of the 

thermal boundary-layer with the heat source/sink 

parameter (Q). It is observed that the thermal 

boundary layer thickness increases with an increase 

in the heat source/sink.   
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The effect of viscosity parameter on the 

temperature field is illustrated Fig.12.  As the 

viscosity parameter increases the temperature is 

found to be increasing. The effect of conductivity 

parameter on the temperature field is illustrated 

Fig. 13. It is noticed that the thermal boundary 

layer thickness increases with an increase in the 

conductivity parameter.  

The correctness of the present numerical 

method is checked with the results obtained by 

Abel et al. [33] and Megahed [6] for the values of 

Skin friction coefficient in the limiting condition. 

Thus, it is seen from Table 1. 

 

5 CONCLUSIONS 

In the present prater, the unsteady 

magnetohydrodynamic (MHD) laminar flow and 

heat transfer in a non-Newtonian Maxwell fluid 

over stretching sheet with prescribed surface heat 

flux by taking MHD, heat source/sink and radiation 

effects into account, are analyzed. The governing 

equations are approximated to a system of non-

linear ordinary differential equations by similarity 

transformation. Numerical calculations are carried 

out for various values of the dimensionless 

parameters of the problem. It has been found that 

1. The velocity decreases as well as 

temperature increases with an increase in 

the magnetic parameter. 

2. The velocity and temperature decreases 

with an increase in the suction parameter. 

3. The heat source/sink enhances the velocity 

and temperature. 

 

 
             

Fig.1 Velocity profiles for different values of S 

 
Fig.2 Velocity profiles for different values of fw 
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Fig.4 Velocity profiles for different values of Q 

 
Fig.5 Velocity for different values of α 

 

 
Fig.6 Temperature for different values of S 
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Fig.7 Temperature for different values of fw 

 
                                     

Fig.8 Temperature for different values of De 
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